TALOS ERA CHAIR IN ARTIFICIAL INTELLIGENCE FOR HUMANITIES AND SOCIAL SCIENCES

Ontology Building Environment

Prof Christophe Roche

ERA Chair Holder - University of Crete https://christophe-roche.fr/

May 2025

Horizon ERA Chair TALOS AI4SSH Project funded by the European Commission Grant Agreement n° 101087269, https://cordis.europa.eu/project/id/101087269

Contents

TALOS

0. Introduction

1. Definitions

- Ontology

2. Principles

- Individual
- Property
- Class

3. Example

- Greek Vases

4. Ontology Building

- Class Hierarchy
- Property Restriction
- Populating
- Annotating

5. Open Questions

- Definition
- Linguistic Dimension

6. Conclusion

0. Introduction

- ✓ W3C standards compliant
- Customizable user interface
- ✓ Visualization support
- Ontology refactoring support
- Direct interface to reasoners
- Highly pluggable architecture
- Cross compatible with WebProtégé

https://protege.stanford.edu/

✓ Protégé is a free, open-source ontology editor written in Java developed at Stanford University
 ✓ More than 300,000 users are registered.

WHY PROTÉGÉ

Protégé's plug-in architecture can be adapted to build both simple and complex ontology-based applications. Developers can integrate the output of Protégé with rule systems or other problem solvers to construct a wide range of intelligent systems. Most important, the Stanford team and the vast Protégé community are here to help.

TALOS ERA Chair Al for SSH - Project nº 101087269

Ontology

An ontology is a formally-defined vocabulary for a particular domain of interest. Ontologies are typically based on a class hierarchy (asserted and/or inferred), supplemented by assorted properties.

https://protegewiki.stanford.edu/wiki/Pr4_UG_mi_Glossary#Ontology

Ontologies are used to capture knowledge about some domain of interest. An ontology describes the concepts in the domain and also the relationships that hold between those concepts.

A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

6. Conclusion

Language OWL provides the theoretical basis for Protégé ontologies.

0, Introduction

https://protegewiki.stanford.edu/wiki/Pr4_UG_mi_Glossary#Ontology

Different ontology languages provide different facilities. The most recent development in standard ontology languages is OWL from the World Wide Web Consortium (W3C).

A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

Reasoner The logical model allows the use of a reasoner which can check whether or not all of the statements and definitions in the ontology are mutually consistent and can also recognise which concepts fit under which definitions. The reasoner can therefore help to maintain the hierarchy correctly.

A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools - Edition 1.3

an inconsistent class is a class which cannot contain any individual because of its definition

0, Introduction 1. Definitions 2. Principles 3. Example 4. Ontology building 5. Open Questi	ons 6. Conclusion
---	-------------------

Extensional Logic

⇒

An object is not defined by its "nature", but by its relations with other objects

TALOS

Individuals, represent objects in the domain in which we are interested

Terminology: « individual », « instance », « object »

2. Principles

Components of OWL Ontologies

2) Object Properties

Properties are binary relations on individuals, i.e. properties link two individuals together.

Terminology: « properties », « slots » (Protégé), « roles » (DL), « relations », « attributes »

2. Principles

TALOS

Components of OWL Ontologies

3) Classes

OWL classes are interpreted as sets that contain individuals.

Classes are a concrete representation of concepts.

Classes are <u>defined</u> using <u>formal descriptions</u> that state precisely the requirements for membership of the class.

Person = ?

Person = { x / \exists y Country(y) \land livesInCountry (x,y) }

Person = { $x / \exists y Pet(y) \land hasPet(x,y)$ }

Person = { x / \exists y hasSibling(x,y) \lor hasSibling (y,x) }

"Protégé" Christophe Roche

6. Conclusion

2. Principles

0, Introduction

2. Principles

4) Property restriction A means to define classes of individuals

a) Existential Restrictions: describes (anonymous) classes of individuals that participate in *at least one* (some) relationship along a specified property to individuals that are members of a specified class.

b) Universal Restrictions: describes (anonymous) classes of individuals that for a given property *only* (only) have relationships along this property to individuals that are members of a specified class (all values of the property must be of a certain type)

c) Has value: at least one of the values of the property is a certain value

"Protégé" Christophe Roche

The Krater Ontology

0, Introduction

1. Definitions

"The term **'krater**' suggests a mixing-vessel (compare Greek kerannumi - to mix), and we know that the wine served at the symposium was mixed with water.

2. Principles

Column-krater: Named for its column-like handles, the column-krater is first known from Corinthian examples dated to the late seventh century. It is regularly produced by Athenian potters from the first half of the sixth-century until the third quarter of the fifth. It seems from graffiti on Athenian red-figure examples that the vessel was referred to as *Korinthios* or *Korinthiourges*.

Example

Volute-krater: The volute-krater is named after its handles. The François Vase is a famous and early example, but the typical Athenian form occurs only later in the sixth century, with the handles tightly curled so that they look like the volutes on lonic columns. The shape is also found in metal. Over the course of the fifth and fourth centuries, examples become slimmer, and Apulian volute-kraters from South Italy are particularly elaborate.

Calyx-krater: The handles of the calyx-krater are placed low down on the body, at what is termed the cul. Their upward curling form lends the shape an appearance reminiscent of the calyx of a flower, hence the name. The earliest known example was possibly made by Exekias in the third quarter of the sixth century. It continues to be produced, mainly in red-figure, becoming more elongated over the course of the fifth and fourth centuries.

Beazley Archive: https://www.carc.ox.ac.uk/carc/Home

4. Ontology building

6. Conclusion

5. Open Questions

4. Ontology Building

protégé

≪ untitled-o File Edit	ntology-2 (http://ww	w.semanticweb.org/						
File Edit			roche/ontologies/20	25/3/untitled-ontology-2):[http://www.semant	icweb.org/roche/on	- (
	<u>V</u> iew <u>R</u> easoner	<u>T</u> ools <u>R</u> efactor	<u>W</u> indow <u>H</u> elp					
< >	untitled-ontology	/-2 (http://www.sen	nanticweb.org/roche	e/ontologies/2025/3/untitled	-ontology-2)			+
ctive ontolog	gy × Entities ×	Individuals by class	s × DLQuery ×					
Ontology he	ader:			? II = I ×	Ontology met	rics:	[208
Or	ntology IRI http://w	www.semanticweb.o	org/roche/ontologies/	2025/3/untitled-ontology-2	Metrics			
Ontology V	ersion IRI e.g. ht	tp://www.semanticw	eb.org/roche/ontolog	gies/2025/3/untitled-ontology	Axiom		0	
					Logical axi	om count	0	
Annotations	3				Declaration	n axioms count	0	
					Class cour	nt	0	
					Object prop	perty count	0	
					Data prope	erty count	0	
					Individual of	count	0	
					Annotation	Property count	0	
					Class axion	ıs		
					SubClass	Df	0	
					Equivalent	Classes	0	
					DisjointCla	isses	0	
					GCI count		0	
					Hidden GC	Count	0	
Ontology imr	orts Ontology Pr	afiyas Ganaral di	ass avions					
mported on	tologies:	elixes General cia					[2080
Direct Importe	0							
Direct imports (
ndirect Imports	1							
				No Reasoner set	. Select a reasoner fr	om the Reasoner menu	 Show Infe 	rences

4. Ontology Building

protégé

0, Introduction 1. Definitions	2. Principles	3. Example	4. Ontology building	5. Open Questions	6. Conclusion	
vntitled-ontology-2 (http://www.semanticweb.org/i	roche/ontologies/2025/3/u	untitled-ontology-2)	: [http://www.semant	icweb.org/roche/on	- 0	×
ile <u>E</u> dit <u>V</u> iew <u>R</u> easoner <u>T</u> ools <u>R</u> efactor	<u>W</u> indow <u>H</u> elp					
> of untitled-ontology-2 (http://www.sem)	<u>V</u> iews		ontology-2)			-Q
	<u>T</u> abs		Active ontolo	ах		
ctive ontology × Entities × Individuals by class	Create new tab		 Entities 			
ontology header:	Delete custom tab	S	Classes		200	
Ontology IBI http://www.semanticweb.o	Import tab		Object prope	rties		
ontology Version IRI e a http://www.semanticwo	Export current tab.		Data properti	es		
e.g. mp.//www.semanucw	Store current layou	ıt	Annotation p	roperties	0	- 1
	Reset selected tab	to default state	✓ Individuals by	/ class	0	-1
			OWLViz		0	
	Capture view to clip	board	✓ DL Query		0	
	Timestamp log / co	onsole	AOWLN		0	
	Show log		OntoGraf		0	
	Look & Feel		SWRLTab		0	
	Refresh user interfa	ace	OWLAx			
			SQWRLTab		0	
			SPARQL Qu	ery	0	
			Disjoinicia	isses	0	
			GCI count Hidden GC	1 Count	0	
			Hidden GC	A Count	U	11
)ntology imports Ontology Prefixes, General cla	ss axioms					
norted ontologies:					្រាញ	
irect Imports 🛨						
direct Imports						
iureet imports						
		No Reasoner:	set. Select a reasoner fro	om the Reasoner menu	Show Inference	s 📄

protégé

TALOS

TALOS ERA Chair AI for SSH – Project nº 101087269

"Protégé" Christophe Roche

0, Introduction	1. Definitions	2. Principles	3. Example	4. Ontology building	5. Open Questions	6. Conclusion

4. Ontology Building

TALOS ERA Chair AI for SSH - Project nº 101087269

4. Ontology Building: Class Hierarchy

TALOS ERA Chair AI for SSH - Project nº 101087269

TALOS ERA Chair Al for SSH – Project nº 101087269

4. Ontology					Ì
Building		volute_Krat	Asserted -	Annotations: Volute_Krater	
	V owl:Thing Krater Bell	Krater			
	Caly Colu Volu	k_Krater mn_Krater te_Krater		Class Hierarchy	
protégé				Description: Vo rdfs:subClassOf SubClass Of + rdfs:subClassOf	
				General class axio	
				SubClass Of (Anonymous Ancestor)	
				Target for Key 🕂 Definition?	
				Disjoint With + Calyx_Krater, Column_Krater, Bell_Krater ? @ × •	

Object Properties

Relationships between individuals

Definition of Krater Classes: Property Restrictions Annotations: Column krater Class hierarchy: Column krat 🛛 🗖 🗖 💌 protégé 11 I. Ø Asserted 👻 Annotations 🖶 Thing rdfs:label [language: en] 🕘 Greek 🛛 God column krater 🔻 😑 Krater 🛑 Bell krater rdfs:label [language: fr] Calyx krater cratère à colonnettes 🛑 Column krater Volute krater 🔻 😑 Part Description: Column krater Class hierarchy: Volute krate 🛛 🗖 🗖 💌 Annotations: Volute krater Foot **ti (**... Ø 🕷 😑 Handle Asserted 👻 Annotations 🗗 🕘 Column like handle SubClass Of 🕂 Thing rdfs:label [language: en] Upward_curling_handle hasPart exactly 2 Column_like_handle Greek God 🗝 🛑 Volute like handle volute krater 🔻 😑 Krater Krater 🔵 Lip 🔴 Bell krater Mouth skos:definition [language: fr] 🔴 Calyx_krater Neck General class axioms 🕂 Krater with a clearly defined neck and volute-like hand 🕘 Column 🛛 krater • Volute krater - 😑 Part Description: Volute krater SubClass Of (Anonymous Ancestor) · 🔴 Foot 👻 😑 Handle Equivalent To 🖶 Column_like_handle ----- Upward_curling_handle SubClass Of 🕂 ----- Volute_like_handle 🛑 Lip hasPart exactly 2 Volute_like_handle 🗼 😑 Mouth Krater ---- Neck General class axioms

SubClass Of (Anonymous Ancestor)

0, Introduction	1
-----------------	---

. Definitions 2. Principles

4. Ontology building 5. Open Questions 6. Conclusion

4. Ontology Building: Annotating

4. Ontology Building: Annotating

4. Ontology Building: Annotating

Class hierarchy: Bell Krater 2 II 🗆 🗆 🗵 Annotations: Bell Krater 2020 \otimes Θ Asserted 👻 Annotations 🖶 owl:Thing $@ \times 0$ rdfs:label [language: fr] 🐨 😑 Krater cratère à cloche Bell Krater $@ \times 0$ Calyx Krater rdfs:label [language: en] Column Krater bell krater Volute_Krater skos:definition [language: en] Part It is named for its bell-like shape, perhaps originating in wood. It has small horizontal upturned handles just over halfway up the body. @×0 rdfs:seeAlso https://www.carc.ox.ac.uk/carc/resources/Introduction-to-Greek-Pottery/Shapes/Kraters Description: Bell Krater 2088× SubClass Of 2000 Krater General class axioms SubClass Of (Anonymous Ancestor) Instances 🕀 Target for Key 🔂 Disjoint With 🕂 ?@×0 Calyx_Krater, Column_Krater, Volute_Krater

TALOS ERA Chair AI for SSH – Project nº 101087269

"Protégé" Christophe Roche

27

4. Ontology Building: Populating

Vase Number: 215424 Fabric: ATHENIAN Technique: RED-FIGURE Shape Name: KRATER, CALYX Date: -450 to -400

"Protégé" Christophe Roche

28

5. Open Questions

Definition: { essential characteristics }

Amphora

for storing and transport

without neck

for mixing wine and water

protégé

5. Open Questions

TALOS ERA Chair AI for SSH - Project nº 101087269

CC BY-NC-ND

6. Conclusion

- ✓ Free environment
- ✓ Large Community
- ✓ Definition based on relations between objects (Class)
- ✓ Description Logic Reasoners
- ✓ W3C Standards compliant

- How to represent essential characteristics (Concept)?
- \circ $\,$ How to represent the linguistic dimension?
- How to take into account the way of thinking of Experts?

