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                  Χρηματοδότηση 

 

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του 

εκπαιδευτικού έργου του διδάσκοντα. 

-   Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο 

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού 

υλικού.  

-   Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς 

πόρους. 
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Abstract 

• Most programming tasks involve manipulating data. 

Today, we will: 

• describe how to input and output data 

• present the notion of a variable for holding data 

• introduce the central notions of “Type” and “Type Safety”  
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Overview 
• Strings and string I/O 

• Integers and integer I/O 

• Types and objects 

• Type safety 
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Why bother coding… 

http://www.code.org 
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Input and output 
// read first name: 

#include "std_lib_facilities.h"  // our course header 

 

int main() 

{ 

 cout << "Please enter your first name (followed " << "by 'enter'):\n"; 

 string first_name; 

 cin >> first_name; 

 cout << "Hello, " << first_name << “\n”; 

} 

 

// note how several values can be output by a single statement 

// a statement that introduces a variable is called a declaration 

// a variable holds a value of a specified type 

// the final return 0; is optional in main() 

// but you may need to include it to pacify your compiler 
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Source files 

• "std_lib_facilities.h" is the header for our course 

Interfaces to libraries 

(declarations) 

 

 

 

 #include "std_lib_facilities.h"   

 

My code 

My data 

(definitions) 

 

 

 

Myfile.cpp: 

std_lib_facilities.h: 
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Input and type 

• We read into a variable 

• Here, first_name 

• A variable has a type 

• Here, string 

• The type of a variable determines what operations we 
can do on it 

• Here, cin>>first_name; reads characters until a whitespace 
character is seen 

• White space: space, tab, newline, … 
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String input 
// read first and second name: 

int main() 

{ 

 cout << "please enter your first and second names\n"; 

 string first; 

 string second; 

 cin >> first >> second;  // read two strings 

 string name = first + ' ' + second; // concatenate strings 

      // separated by a space 

 cout << "Hello, "<< name << '\n'; 

} 

 

// I left out the #include  "std_lib_facilities.h" to save space and  

//  reduce distraction 

// Don't forget it in real code 

// Similarly, I left out the Windows-specific keep_window_open(); 
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Integers 
// read name and age: 

 

int main() 

{ 

 cout << "please enter your first name and age\n"; 

 string first_name;  // string variable 

 int age;   // integer variable 

 cin >> first_name >> age; // read 

 cout << "Hello, " << first_name << " age " << age << '\n'; 

} 
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Integers and Strings 

• Strings 

• cin >> reads (until whitespace) 

• cout << writes 

• + concatenates 

• += s adds the string s at end 

• ++ is an error 

• - is an error 

• … 

• Integers and floating point numbers 

• cin >> reads a number 

• cout << writes 

• + adds 

• += n increments by the int n 

• ++ increments by 1 

• - subtracts 

• … 
The type of a variable determines which operations are valid 

and what their meanings are for that type 
(that's called "overloading" or "operator overloading") 
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Names 

• A name in a C++ program 

• Starts with a letter, contains letters, digits, and underscores (only) 

• x, number_of_elements, Fourier_transform, z2 

• Not names: 

• 12x 

•  time$to$market 

• main line 

• Do not start names with underscores: _foo 

• those are reserved for implementation and systems entities 

• Users can't define names that are taken as keywords 

• E.g.: 

• int 

• if 

• while 

• double 
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Names 

• Choose meaningful names 

• Abbreviations and acronyms can confuse people 

• mtbf, TLA, myw, nbv 

• Short names can be meaningful 

• when used conventionally: 

• x is a local variable 

• i is a loop index 

• Don't use overly long names 

• Ok: 

• partial_sum 
element_count 
staple_partition 

• Too long: 

• the_number_of_elements 
remaining_free_slots_in_the_symbol_table 
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Simple arithmetic 
// do a bit of very simple arithmetic: 

 

int main() 

{ 

 cout << "please enter a floating-point number: "; // prompt for a number 

 double n;         // floating-point variable 

 cin >> n;  

 cout << "n == " << n 

  << "\nn+1 == " << n+1               // '\n' means “a newline” 

  << "\nthree times n == " << 3*n 

  << "\ntwice n == " << n+n 

  << "\nn squared == " << n*n 

  << "\nhalf of n == " << n/2 

  << "\nsquare root of n == " << sqrt(n)    // library function 

  << endl;                // another name for newline 

} 
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A simple computation 
int main()  // inch to cm conversion 

{ 

 const double cm_per_inch = 2.54;    // number of centimeters per inch 

 int length = 1;           // length in inches 

 while (length != 0)            // length == 0 is used to exit the program 

 {    // a compound statement (a block) 

  cout << "Please enter a length in inches: "; 

  cin >> length; 

  cout << length << "in.  = " 

           << cm_per_inch*length << "cm.\n"; 

 } 

} 

• A while-statement repeatedly executes until its condition becomes false 
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Types and literals 
• Built-in types 

• Boolean type 

• bool 

• Character types 

• char 

• Integer types 

• int 

• and short and long 

• Floating-point types 

• double 

• and float 

• Standard-library types 

• string 

• complex<Scalar> 

• Boolean literals 

• true false 

• Character literals 

• 'a', 'x', '4', '\n', '$’ 

• Integer literals 

• 0, 1, 123, -6, 0x34, 0xa3 

• Floating point literals 

• 1.2, 13.345, .3, -0.54, 1.2e3, . 3F, .3F 

• String literals "asdf",  

  “Howdy, all y‘all!” 

• Complex literals 

• complex<double>(12.3,99) 

• complex<float>(1.3F) 
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Types  

• C++ provides a set of types 

• E.g. bool, char, int, double 

• Called “built-in types” 

• C++ programmers can define new types 

• Called “user-defined types” 

• We'll get to that eventually 

• The C++ standard library provides a set of types 

• E.g. string, vector, complex 

• Technically, these are user-defined types 

•  they are built using only facilities available to every user 
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Declaration and initialization 

int a = 7; 

 

int b = 9; 

 

char c = 'a'; 

 

double x = 1.2; 

 

string s1 = "Hello, world"; 

 

string s2 = "1.2"; 

 

7 

9 

'a' 

1.2 

12     |            "Hello, world" 

3     |               "1.2" 

a: 

b: 

c: 

x: 

s1: 

s2: 
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Objects 

• An object is some memory that can hold a value of a given type 

• A variable is a named object 

• A declaration names an object 

int a = 7; 

char c = 'x'; 

complex<double> z(1.0,2.0); 

string s = "qwerty"; 

7 

'x' 

1.0  

"qwerty" 

2.0 

6  

a: 

s: 

c: 

z: 
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Type safety 
• Language rule: type safety 

• Every object will be used only according to its type 

• A variable will be used only after it has been initialized 

• Only operations defined for the variable's declared type will be applied 

• Every operation defined for a variable leaves the variable with a valid 
value 

• Ideal: static type safety 

• A program that violates type safety will not compile 

• The compiler reports every violation (in an ideal system) 

• Ideal: dynamic type safety 

• If you write a program that violates type safety it will be 
detected at run time 

• Some code (typically "the run-time system") detects every violation not 
found by the compiler (in an ideal system) 
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Type safety 
• Type safety is a very big deal 

• Try very hard not to violate it 

• “when you program, the compiler is your best friend” 

• But it won’t feel like that when it rejects code you’re sure is correct 

• C++ is not (completely) statically type safe 

• No widely-used language is (completely) statically type safe 

• Being completely statically type safe may interfere with your ability to express ideas 

• C++ is not (completely) dynamically type safe 

• Many languages are dynamically type safe 

• Being completely dynamically type safe may interfere with the ability to express ideas 
and often makes generated code bigger and/or slower 

• Most of what you’ll be taught here is type safe 

• We’ll specifically mention anything that is not 
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Assignment and increment 

// changing the value of a variable 

int a = 7;          // a variable of type int called a 

            // initialized to the integer value 7 

a = 9;           // assignment: now change a's value to 9 

 

a = a+a;          // assignment: now double a's value 

 

a += 2;           // increment a's value by 2 

 

++a;         // increment a's value (by 1) 

7 

9 

18 

20 

21 

a: 
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A type-safety violation 
(“implicit narrowing”) 

// Beware: C++ does not prevent you from trying to put a large value 

// into a small variable (though a compiler may warn) 

 

int main() 

{ 

 int a = 20000; 

 char c = a; 

 int b = c; 

 if (a != b)      //  != means “not equal” 

  cout << "oops!: " << a << "!=" << b << '\n'; 

 else 

  cout << "Wow! We have large characters\n"; 

} 

 

• Try it to see what value b gets on your machine 

20000 a 

??? c: 



Lecture:  Types, Slide 26 HY150 Programming, University of Crete 

A type-safety violation (Uninitialized variables) 

// Beware: C++ does not prevent you from trying to use a variable 

// before you have initialized it  (though a compiler typically warns) 

 

int main() 

{ 

 int x;  // x gets a “random” initial value 

 char c;  // c gets a “random” initial value 

 double d;  // d gets a “random” initial value 

   //     – not every bit pattern is a valid floating-point value 

 double dd = d; // potential error: some implementations 

    // can’t copy invalid floating-point values 

 cout << " x: " << x << " c: " << c << " d: " << d << '\n'; 

} 

• Always initialize your variables – beware: “debug mode” may initialize (valid 
exception to this rule: input variable) 
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A technical detail 
• In memory, everything is just bits; type is what gives meaning to 

the bits 

(bits/binary) 01100001 is the int  97 is the char 'a' 

(bits/binary) 01000001 is the int 65 is the char 'A'  

(bits/binary) 00110000 is the int 48 is the char '0' 

 

char c = 'a'; 

cout << c; // print the value of character c, which is a 

int i = c; 

cout << i; // print the integer value of the character c, which is 97 

 

• This is just as in “the real world”: 
• What does “42” mean? 

• You don’t know until you know the unit used 

• Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? … 
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About Efficiency 

 • For now, don’t worry about “efficiency” 
• Concentrate on correctness and simplicity of code 

• C++ is derived from C, which is a systems programming language 

• C++’s built-in types map directly to computer main memory 

• a char is stored in a byte 

• An int is stored in a word 

• A double fits in a floating-point register 

• C++’s built-in operations map directly to machine instructions 

• An integer + is implemented by an integer add operation 

• An integer = is implemented by a simple copy operation 

• C++ provides direct access to most of the facilities provided by modern 
hardware  

• C++ help users build safer, more elegant, and efficient new types 
and operations using built-in types and operations. 

• E.g., string 

• Eventually, we’ll show some of how that’s done 
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A bit of philosophy 

• One of the ways that programming resembles other kinds of 
engineering is that it involves tradeoffs. 

• You must have ideals, but they often conflict, so you must decide 
what really matters for a given program. 

• Type safety 

• Run-time performance 

• Ability to run on a given platform 

• Ability to run on multiple platforms with same results 

• Compatibility with other code and systems 

• Ease of construction 

• Ease of maintenance 

• Don't skimp on correctness or testing 

• By default, aim for type safety and portability 
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Another simple computation 

// inch to cm and cm to inch conversion: 
 

int main() 

{ 

 const double cm_per_inch = 2.54; 

 int val; 

 char unit; 

 while (cin >> val >> unit) { // keep reading  

  if (unit == 'i')  // 'i' for inch 

   cout << val << "in == " << val*cm_per_inch << "cm\n"; 

  else if (unit == 'c') // 'c' for cm 

   cout << val << "cm == " << val/cm_per_inch << "in\n"; 

  else 

   return 0; // terminate on a “bad unit”, e.g. 'q'  

 } 

} 
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Things to remember 
• Input and output in C++ 

• cout, cin 

• Integers and strings 

• Types and literals 

• Declaration and initialization 

• Objects  

• Type safety 
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The next lecture 
• Will talk about expressions, statements, debugging, simple error 

handling, and simple rules for program construction 

• Read Chapter 3 
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