
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 2: Αντικείμενα – Τύποι και Τιμές

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο

 (Attribution 3.0– Unported)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 2:

Objects, Types & Values

G. Papagiannakis

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Lecture: Types, Slide 5 HY150 Programming, University of Crete

Abstract

• Most programming tasks involve manipulating data.

Today, we will:

• describe how to input and output data

• present the notion of a variable for holding data

• introduce the central notions of “Type” and “Type Safety”

Lecture: Types, Slide 6 HY150 Programming, University of Crete

Overview
• Strings and string I/O

• Integers and integer I/O

• Types and objects

• Type safety

HY150 Programming, University of Crete

Why bother coding…

http://www.code.org

Lecture: Types, Slide 8 HY150 Programming, University of Crete

Input and output
// read first name:

#include "std_lib_facilities.h" // our course header

int main()

{

 cout << "Please enter your first name (followed " << "by 'enter'):\n";

 string first_name;

 cin >> first_name;

 cout << "Hello, " << first_name << “\n”;

}

// note how several values can be output by a single statement

// a statement that introduces a variable is called a declaration

// a variable holds a value of a specified type

// the final return 0; is optional in main()

// but you may need to include it to pacify your compiler

Lecture: Types, Slide 9 HY150 Programming, University of Crete

Source files

• "std_lib_facilities.h" is the header for our course

Interfaces to libraries

(declarations)

 #include "std_lib_facilities.h"

My code

My data

(definitions)

Myfile.cpp:

std_lib_facilities.h:

Lecture: Types, Slide 10 HY150 Programming, University of Crete

Input and type

• We read into a variable

• Here, first_name

• A variable has a type

• Here, string

• The type of a variable determines what operations we
can do on it

• Here, cin>>first_name; reads characters until a whitespace
character is seen

• White space: space, tab, newline, …

Lecture: Types, Slide 11 HY150 Programming, University of Crete

String input
// read first and second name:

int main()

{

 cout << "please enter your first and second names\n";

 string first;

 string second;

 cin >> first >> second; // read two strings

 string name = first + ' ' + second; // concatenate strings

 // separated by a space

 cout << "Hello, "<< name << '\n';

}

// I left out the #include "std_lib_facilities.h" to save space and

// reduce distraction

// Don't forget it in real code

// Similarly, I left out the Windows-specific keep_window_open();

Lecture: Types, Slide 12 HY150 Programming, University of Crete

Integers
// read name and age:

int main()

{

 cout << "please enter your first name and age\n";

 string first_name; // string variable

 int age; // integer variable

 cin >> first_name >> age; // read

 cout << "Hello, " << first_name << " age " << age << '\n';

}

Lecture: Types, Slide 13 HY150 Programming, University of Crete

Integers and Strings

• Strings

• cin >> reads (until whitespace)

• cout << writes

• + concatenates

• += s adds the string s at end

• ++ is an error

• - is an error

• …

• Integers and floating point numbers

• cin >> reads a number

• cout << writes

• + adds

• += n increments by the int n

• ++ increments by 1

• - subtracts

• …
The type of a variable determines which operations are valid

and what their meanings are for that type
(that's called "overloading" or "operator overloading")

Lecture: Types, Slide 14 HY150 Programming, University of Crete

Names

• A name in a C++ program

• Starts with a letter, contains letters, digits, and underscores (only)

• x, number_of_elements, Fourier_transform, z2

• Not names:

• 12x

• timetomarket

• main line

• Do not start names with underscores: _foo

• those are reserved for implementation and systems entities

• Users can't define names that are taken as keywords

• E.g.:

• int

• if

• while

• double

Lecture: Types, Slide 15 HY150 Programming, University of Crete

Names

• Choose meaningful names

• Abbreviations and acronyms can confuse people

• mtbf, TLA, myw, nbv

• Short names can be meaningful

• when used conventionally:

• x is a local variable

• i is a loop index

• Don't use overly long names

• Ok:

• partial_sum
element_count
staple_partition

• Too long:

• the_number_of_elements
remaining_free_slots_in_the_symbol_table

Lecture: Types, Slide 16 HY150 Programming, University of Crete

Simple arithmetic
// do a bit of very simple arithmetic:

int main()

{

 cout << "please enter a floating-point number: "; // prompt for a number

 double n; // floating-point variable

 cin >> n;

 cout << "n == " << n

 << "\nn+1 == " << n+1 // '\n' means “a newline”

 << "\nthree times n == " << 3*n

 << "\ntwice n == " << n+n

 << "\nn squared == " << n*n

 << "\nhalf of n == " << n/2

 << "\nsquare root of n == " << sqrt(n) // library function

 << endl; // another name for newline

}

Lecture: Types, Slide 17 HY150 Programming, University of Crete

A simple computation
int main() // inch to cm conversion

{

 const double cm_per_inch = 2.54; // number of centimeters per inch

 int length = 1; // length in inches

 while (length != 0) // length == 0 is used to exit the program

 { // a compound statement (a block)

 cout << "Please enter a length in inches: ";

 cin >> length;

 cout << length << "in. = "

 << cm_per_inch*length << "cm.\n";

 }

}

• A while-statement repeatedly executes until its condition becomes false

Lecture: Types, Slide 18 HY150 Programming, University of Crete

Types and literals
• Built-in types

• Boolean type

• bool

• Character types

• char

• Integer types

• int

• and short and long

• Floating-point types

• double

• and float

• Standard-library types

• string

• complex<Scalar>

• Boolean literals

• true false

• Character literals

• 'a', 'x', '4', '\n', '$’

• Integer literals

• 0, 1, 123, -6, 0x34, 0xa3

• Floating point literals

• 1.2, 13.345, .3, -0.54, 1.2e3, . 3F, .3F

• String literals "asdf",

 “Howdy, all y‘all!”

• Complex literals

• complex<double>(12.3,99)

• complex<float>(1.3F)

Lecture: Types, Slide 19 HY150 Programming, University of Crete

Types

• C++ provides a set of types

• E.g. bool, char, int, double

• Called “built-in types”

• C++ programmers can define new types

• Called “user-defined types”

• We'll get to that eventually

• The C++ standard library provides a set of types

• E.g. string, vector, complex

• Technically, these are user-defined types

• they are built using only facilities available to every user

Lecture: Types, Slide 20 HY150 Programming, University of Crete

Declaration and initialization

int a = 7;

int b = 9;

char c = 'a';

double x = 1.2;

string s1 = "Hello, world";

string s2 = "1.2";

7

9

'a'

1.2

12 | "Hello, world"

3 | "1.2"

a:

b:

c:

x:

s1:

s2:

Lecture: Types, Slide 21 HY150 Programming, University of Crete

Objects

• An object is some memory that can hold a value of a given type

• A variable is a named object

• A declaration names an object

int a = 7;

char c = 'x';

complex<double> z(1.0,2.0);

string s = "qwerty";

7

'x'

1.0

"qwerty"

2.0

6

a:

s:

c:

z:

Lecture: Types, Slide 22 HY150 Programming, University of Crete

Type safety
• Language rule: type safety

• Every object will be used only according to its type

• A variable will be used only after it has been initialized

• Only operations defined for the variable's declared type will be applied

• Every operation defined for a variable leaves the variable with a valid
value

• Ideal: static type safety

• A program that violates type safety will not compile

• The compiler reports every violation (in an ideal system)

• Ideal: dynamic type safety

• If you write a program that violates type safety it will be
detected at run time

• Some code (typically "the run-time system") detects every violation not
found by the compiler (in an ideal system)

Lecture: Types, Slide 23 HY150 Programming, University of Crete

Type safety
• Type safety is a very big deal

• Try very hard not to violate it

• “when you program, the compiler is your best friend”

• But it won’t feel like that when it rejects code you’re sure is correct

• C++ is not (completely) statically type safe

• No widely-used language is (completely) statically type safe

• Being completely statically type safe may interfere with your ability to express ideas

• C++ is not (completely) dynamically type safe

• Many languages are dynamically type safe

• Being completely dynamically type safe may interfere with the ability to express ideas
and often makes generated code bigger and/or slower

• Most of what you’ll be taught here is type safe

• We’ll specifically mention anything that is not

Lecture: Types, Slide 24 HY150 Programming, University of Crete

Assignment and increment

// changing the value of a variable

int a = 7; // a variable of type int called a

 // initialized to the integer value 7

a = 9; // assignment: now change a's value to 9

a = a+a; // assignment: now double a's value

a += 2; // increment a's value by 2

++a; // increment a's value (by 1)

7

9

18

20

21

a:

Lecture: Types, Slide 25 HY150 Programming, University of Crete

A type-safety violation
(“implicit narrowing”)

// Beware: C++ does not prevent you from trying to put a large value

// into a small variable (though a compiler may warn)

int main()

{

 int a = 20000;

 char c = a;

 int b = c;

 if (a != b) // != means “not equal”

 cout << "oops!: " << a << "!=" << b << '\n';

 else

 cout << "Wow! We have large characters\n";

}

• Try it to see what value b gets on your machine

20000 a

??? c:

Lecture: Types, Slide 26 HY150 Programming, University of Crete

A type-safety violation (Uninitialized variables)

// Beware: C++ does not prevent you from trying to use a variable

// before you have initialized it (though a compiler typically warns)

int main()

{

 int x; // x gets a “random” initial value

 char c; // c gets a “random” initial value

 double d; // d gets a “random” initial value

 // – not every bit pattern is a valid floating-point value

 double dd = d; // potential error: some implementations

 // can’t copy invalid floating-point values

 cout << " x: " << x << " c: " << c << " d: " << d << '\n';

}

• Always initialize your variables – beware: “debug mode” may initialize (valid
exception to this rule: input variable)

Lecture: Types, Slide 27 HY150 Programming, University of Crete

A technical detail
• In memory, everything is just bits; type is what gives meaning to

the bits

(bits/binary) 01100001 is the int 97 is the char 'a'

(bits/binary) 01000001 is the int 65 is the char 'A'

(bits/binary) 00110000 is the int 48 is the char '0'

char c = 'a';

cout << c; // print the value of character c, which is a

int i = c;

cout << i; // print the integer value of the character c, which is 97

• This is just as in “the real world”:
• What does “42” mean?

• You don’t know until you know the unit used

• Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? …

Lecture: Types, Slide 28 HY150 Programming, University of Crete

About Efficiency

 • For now, don’t worry about “efficiency”
• Concentrate on correctness and simplicity of code

• C++ is derived from C, which is a systems programming language

• C++’s built-in types map directly to computer main memory

• a char is stored in a byte

• An int is stored in a word

• A double fits in a floating-point register

• C++’s built-in operations map directly to machine instructions

• An integer + is implemented by an integer add operation

• An integer = is implemented by a simple copy operation

• C++ provides direct access to most of the facilities provided by modern
hardware

• C++ help users build safer, more elegant, and efficient new types
and operations using built-in types and operations.

• E.g., string

• Eventually, we’ll show some of how that’s done

Lecture: Types, Slide 29 HY150 Programming, University of Crete

A bit of philosophy

• One of the ways that programming resembles other kinds of
engineering is that it involves tradeoffs.

• You must have ideals, but they often conflict, so you must decide
what really matters for a given program.

• Type safety

• Run-time performance

• Ability to run on a given platform

• Ability to run on multiple platforms with same results

• Compatibility with other code and systems

• Ease of construction

• Ease of maintenance

• Don't skimp on correctness or testing

• By default, aim for type safety and portability

Lecture: Types, Slide 30 HY150 Programming, University of Crete

Another simple computation

// inch to cm and cm to inch conversion:

int main()

{

 const double cm_per_inch = 2.54;

 int val;

 char unit;

 while (cin >> val >> unit) { // keep reading

 if (unit == 'i') // 'i' for inch

 cout << val << "in == " << val*cm_per_inch << "cm\n";

 else if (unit == 'c') // 'c' for cm

 cout << val << "cm == " << val/cm_per_inch << "in\n";

 else

 return 0; // terminate on a “bad unit”, e.g. 'q'

 }

}

Lecture: Types, Slide 31 HY150 Programming, University of Crete

Things to remember
• Input and output in C++

• cout, cin

• Integers and strings

• Types and literals

• Declaration and initialization

• Objects

• Type safety

Lecture: Types, Slide 32 HY150 Programming, University of Crete

The next lecture
• Will talk about expressions, statements, debugging, simple error

handling, and simple rules for program construction

• Read Chapter 3

Lecture: Types, Slide 33 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete

Thank you!

