AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AlaAegn 2. Avrtikeiyeva — TuTtrol Kal TIEG

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete

Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn siocayousvo
(Attribution 3.0—- Unported)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete

XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete

Eicaywyn otov lNpoypaupatiouo
Introduction to Programming

Lecture 2:
Objects, Types & Values

G. Papagiannakis

HY150 Programming, University of Crete

ADbstract

- Most programming tasks involve manipulating data.
Today, we will:

- describe how to Input and output data
- present the notion of a variable for holding data
- Introduce the central notions of “Type” and “Type Safety”

HY150 Programming, University of Crete Lecture: Types, Slide 5

Overview

- Strings and string 1/0O

- Integers and integer 1/O
- Types and objects

- Type safety

HY150 Programming, University of Crete Lecture: Types, Slide 6

code.org

http://www.code.org

HY150 Programming, University of Crete

_ Input and output

#include "'std_lib_facilities.n™ // our course header

Int main()
{
cout << "'Please enter your first name (followed "' << "'by ‘enter"):\n"";
string first_name;
cin >> first_name;
cout << ""Hello, " << first_name << “\n”;

}

// note how several values can be output by a single statement
// a statement that introduces a variable is called a declaration
// a variable holds a value of a specified type

// the final return 0; is optional in main()

// but you may need to include it to pacify your compiler

HY150 Programming, University of Crete Lecture: Types, Slide 8

Source files

std_lib_facilities.h:

Myfile.cpp:

- "std_lib_facilities.h" is the header for our course

HY150 Programming, University of Crete Lecture: Types, Slide 9

Input and type

- We read Into a variable
- Here, first name

- A variable has a type
- Here, string

- The type of a variable determines what operations we
can doon it

- Here, cin>>first_name; reads characters until a whitespace
character is seen

- White space: space, tab, newline, ...

HY150 Programming, University of Crete Lecture: Types, Slide 10

String input

/I read first and second name:

Int main()
{
cout << ""please enter your first and second names\n"’;
string first;
string second;
cin >> first >> second; // read two strings
string name = first + ' ' + second; // concatenate strings

// separated by a space
cout << ""Hello, "'<< name << '\n';

/'l left out the #include "'std _lib_facilities.h" to save space and
Il reduce distraction

// Don't forget it in real code

// Similarly, | left out the Windows-specific keep_window_open();

HY150 Programming, University of Crete Lecture: Types, Slide 11

Integers

// read name and age:

Int main()

{
cout << "'please enter your first name and age\n"’;
string first_name,; /] string variable
Int age; // integer variable

cin >> first_ name >>age; // read

cout << ""Hello, " << first_name << " age "' << age << '\n’;

HY150 Programming, University of Crete Lecture: Types, Slide 12

Integers and Strings

e Strings - Integers and floating point numbers
- cin >> reads (until whitespace) - Cin >> reads a number

cout << writes cout << writes

+ concatenates + adds

+= s adds the string s at end +=n increments by the int n

++ IS an error ++ increments by 1

- IS an error - subtracts

‘The type of a variable determines which operations are valid

and what their meanings are for that type
(that's called "overloading" or "operator overloading")

HY150 Programming, University of Crete Lecture: Types, Slide 13

Names

- A name In a C++ program

- Starts with a letter, contains letters, digits, and underscores (only)
- X, number_of elements, Fourier_transform, z2

- Not names:
- 12X
- timetomarket
- main line
- Do not start names with underscores: foo
- those are reserved for implementation and systems entities

- Users can't define names that are taken as keywords
- E.Q.
- Int
. If
- while
- double

HY150 Programming, University of Crete Lecture: Types, Slide 14

Names

- Choose meaningful names

- Abbreviations and acronyms can confuse people
- mtbf, TLA, myw, nbv

- Short names can be meaningful
- when used conventionally:

- X s a local variable
- 11saloop index
- Don't use overly long names
- Ok:

- partial_sum
element_count
staple_partition

- Too long:

- the _number_of elements
remaining free slots in the symbol table

HY150 Programming, University of Crete Lecture: Types, Slide 15

Simple arithmetic

/[do a bit of very simple arithmetic:

int main()
{
cout << "'please enter a floating-point number: **; // prompt for a number
double n; /I floating-point variable
cin >>n;
cout<<''n=="<<n
<<"\nn+l=="<<n+l // "\n" means “a newline”
<< "\nthree times n =="" << 3*n
<< "\ntwice n == " << n+n
<< "\nn squared == "' << n*n
<< "\nhalf of n =="" << n/2
<< "\nsquare root of n =="" << sqrt(n) // library function
<< endl; /[another name for newline

HY150 Programming, University of Crete Lecture: Types, Slide 16

A simple computation

Int main() // Inch to cm conversion
i
const double cm_per_inch =2.54; // number of centimeters per inch
Int length = 1; // length in inches
while (length !'=0) // length == 0 is used to exit the program
{ // a compound statement (a block)

cout << "'Please enter a length in inches: "';
cin >> length;

cout << length << "'In. =
<< cm_per_inch*length << "cm.\n";

}
}

- A while-statement repeatedly executes until its condition becomes false

HY150 Programming, University of Crete Lecture: Types, Slide 17

Types and literals

- Built-in types - Boolean literals
- Boolean type - true false
- bool - Character literals
- Character types - 'a', 'x,, 4", "\n",'®’
+ char - Integer literals
- Integer types - 0, 1,123, -6, 0x34, 0xa3
+int - Floating point literals
et 0nt and long . 1.2,13.345, 3,-0.54, 1.2e3, . 3F, .3F
+ Floating-point types . String literals "asdf"
> el “Howdy, all y‘all!”
B ! C lex literals
: - Com
- Standard-library types P
_ - complex<double>(12.3,99)
. string

- complex<float>(1.3F)
- complex<Scalar>

HY150 Programming, University of Crete Lecture: Types, Slide 18

Types

- C++ provides a set of types

- E.g. bool, char, int, double
- Called “built-in types”

« C++ programmers can define new types
- Called “user-defined types”
- We'll get to that eventually

- The C++ standard library provides a set of types
- E.g. string, vector, complex

- Technically, these are user-defined types
- they are built using only facilities available to every user

HY150 Programming, University of Crete Lecture: Types, Slide 19

Declaration and initialization

inta=717; Ny -

intb=9;

char c="'a'; C:
double x = 1.2;

string s1 = "Hello, world";

string s2 ="1.2";

HY150 Programming, University of Crete Lecture: Types, Slide 20

ODbjects

- An object Is some memory that can hold a value of a given type

- A variable Is a named object
- A declaration names an object

Inta=7; a
char ¢ = "x'; C:
complex<double>z(1.0,2.0); |

string s = ""qwerty'’; Z.

Lecture: Types, Slide 21

HY150 Programming, University of Crete

Type safety

- Language rule: type safety

- Every object will be used only according to its type
- A variable will be used only after it has been initialized
- Only operations defined for the variable's declared type will be applied

° Evlery operation defined for a variable leaves the variable with a valid
value

- |deal: static type safety
- A program that violates type safety will not compile
- The compiler reports every violation (in an ideal system)
- ldeal: dynamic type safety

- If you write a program that violates type safety it will be
detected at run time

- Some code (typically "the run-time system") detects every violation not
found by the compiler (in an ideal system)

HY150 Programming, University of Crete Lecture: Types, Slide 22

Type safety

- Type safety Is a very big deal

- Try very hard not to violate it

- “when you program, the compiler is your best friend”

- But it won't feel like that when it rejects code you're sure is correct

- C++ Is not (completely) statically type safe

- No widely-used language is (completely) statically type safe

- Being completely statically type safe may interfere with your ability to express ideas
« C++ Is not (completely) dynamically type safe

- Many languages are dynamically type safe

- Being completely dynamically type safe may interfere with the ability to express ideas
and often makes generated code bigger and/or slower

- Most of what you’ll be taught here is type safe
- We'll specifically mention anything that is not

HY150 Programming, University of Crete Lecture: Types, Slide 23

Assignment and increment

a.

I/ changing the value of a variable

Inta=71, /[a variable of type int called a -

// initialized to the integer value 7

a=09; // assignment: now change a's value to 9 -
a = ata; /[assignment: now double a's value -
a+=2; // increment a's value by 2 -
++a; // increment a's value (by 1) -

HY150 Programming, University of Crete Lecture: Types, Slide 24

A type-safety violation
(“implicit narrowing”)

// Beware: C++ does not prevent you from trying to put a large value
// into a small variable (though a compiler may warn)

int main()

{
char c = a;
intb =c; C: -

if (a!=D) /[= means “not equal”

cout << "oops!: " <<a<<"I=" << p << "\n';
else
cout << "Wow! We have large characters\n'’;

}

- Try It to see what value b gets on your machine

HY150 Programming, University of Crete Lecture: Types, Slide 25

A type-safety violation (Uninitialized variables)

// Beware: C++ does not prevent you from trying to use a variable
I/ before you have initialized it (though a compiler typically warns)

Int main()

{
Int X; Il x gets a “random” initial value
char c; /Il ¢ gets a “random” initial value

double d; //dgetsa “random”initial value
/[—not every bit pattern is a valid floating-point value
double dd =d; // potential error: some implementations

// can’t copy invalid floating-point values
cout<< " x:"<<x<<"cr'"<c<<"d:"<<d<<"\n";

}

- Always initialize your variables — beware: “debug mode™ may initialize (valid
exception to this rule: input variable)

HY150 Programming, University of Crete Lecture: Types, Slide 26

A technical detail

° m rrl;etmory, everything Is just bits; type is what gives meaning to
e bits

(bits/binary) 01100001 is the int 97 is the char 'a'
(bits/binary) 01000001 is the int 65 is the char 'A’
(bits/binary) 00110000 is the int 48 is the char 0"

charc="a’";

cout <<c; /I print the value of character ¢, which is a

Int1=c;

cout <<i; /I print the integer value of the character c, which is 97

« This is just as in “the real world”:
- What does “42” mean?
- You don’t know until you know the unit used

- Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? ...

HY150 Programming, University of Crete Lecture: Types, Slide 27

About Efficiency

- For now, don’t worry about “efficiency”
- Concentrate on correctness and simplicity of code

- C++ Is derived from C, which Is a systems programming language
- C++’s built-in types map directly to computer main memory
- achar is stored in a byte
-« Anintis stored in a word
- A double fits in a floating-point register
- C++’s built-in operations map directly to machine instructions
- An integer + is implemented by an integer add operation
- An integer = is implemented by a simple copy operation

- C++ provides direct access to most of the facilities provided by modern
hardware

- C++ help users build safer, more elegant, and efficient new types
and operations using built-in types and operations.

- E.g., string
- Eventually, we'll show some of how that’s done

HY150 Programming, University of Crete Lecture: Types, Slide 28

A Dbit of philosophy

- One of the ways that programming resembles other kinds of
engineering Is that it involves tradeoffs.

- You must have ideals, but they often conflict, so you must decide
what really matters for a given program.

- Type safety

- Run-time performance

- Ability to run on a given platform

- Ability to run on multiple platforms with same results
- Compatibility with other code and systems

- Ease of construction

- Ease of maintenance

- Don't skimp on correctness or testing
- By default, aim for type safety and portability

HY150 Programming, University of Crete Lecture: Types, Slide 29

Another simple computation

/Il inch to cm and cm to inch conversion:

Int main()
{
const double cm_per_inch = 2.54;
Iint val;
char unit;
while (cin >> val >> unit) { // keep reading
If (unit=="1") //'1" for inch
cout << val <<"'In =="" << val*cm_per_inch << "'cm\n"';
else if (unit=="c") /['c' for cm
cout << val << ''cm =="" << val/cm_per_inch << "in\n"";
else
return O; // terminate on a “bad unit”, e.g. 'q’
}
}

HY150 Programming, University of Crete Lecture: Types, Slide 30

Things to remember

- Input and output In C++
- cout, cin
- Integers and strings
- Types and literals
- Declaration and initialization
« Objects
- Type safety

HY150 Programming, University of Crete Lecture: Types, Slide 31

The next lecture

- Will talk about expressions, statements, debugging, simple error
handling, and simple rules for program construction

- Read Chapter 3

HY150 Programming, University of Crete Lecture: Types, Slide 32

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Types, Slide 33

hank you!

EMNIXEIPHEZIAKO MPOTPAMMA
*
Ve EKMAIAEYZH KAI AIA BIOY MAGHEH st EZ nA
o bl Juor sTrv wowwvia Tne yvisre |
* x * ’ = | T
N YNOYPTEIO MAIAEIAL & BPHIKEYMATQN, MOAITIZMOY & ABAHTIZMOY
Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPIZHE

Evpwaié Kowwvié Tapei
vpwme WWVIKGTAHEL Me Tn auyxpnraTessTnon tne EAAGSac kat Tns Eupwnaikris Evwong

HY150 Programming, University of Crete

