
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 4: Σφάλματα

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 4:

Errors

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

Lecture: Errors, Slide 7 HY150 Programming, University of Crete

Abstract
• When we program, we have to deal with errors. Our most basic

aim is correctness, but we must deal with incomplete problem
specifications, incomplete programs, and our own errors. Here,
we’ll concentrate on a key area: how to deal with unexpected
function arguments. We’ll also discuss techniques for finding
errors in programs: debugging and testing.

Lecture: Errors, Slide 8 HY150 Programming, University of Crete

First computer “bug”…

By computer pioneer Grace Hopper, while she was working with the Mark II tape computer
http://en.wikipedia.org/wiki/Software_bug

Lecture: Errors, Slide 9 HY150 Programming, University of Crete

Overview
• Kinds of errors

• Argument checking

• Error reporting

• Error detection

• Exceptions

• Debugging

• Testing

Lecture: Errors, Slide 10 HY150 Programming, University of Crete

Errors
• “ … I realized that from now on a large part of my life would

be spent finding and correcting my own mistakes.”

• Maurice Wilkes, 1949

• When we write programs, errors are natural and unavoidable;
the question is, how do we deal with them?

• Organize software to minimize errors.

• Eliminate most of the errors we made anyway.

• Debugging

• Testing

• Make sure the remaining errors are not serious.

• My guess is that avoiding, finding, and correcting errors is 95%
or more of the effort for serious software development.

• You can do much better for small programs.

• or worse, if you’re sloppy

Lecture: Errors, Slide 11 HY150 Programming, University of Crete

Your Program

1. Should produce the desired results for all legal inputs

2. Should give reasonable error messages for illegal inputs

3. Need not worry about misbehaving hardware

4. Need not worry about misbehaving system software

5. Is allowed to terminate after finding an error

3, 4, and 5 are true for beginner’s code; often, we have to
worry about those in real software.

Lecture: Errors, Slide 12 HY150 Programming, University of Crete

Sources of errors
• Poor specification

• “What’s this supposed to do?”

• Incomplete programs

• “but I’ll not get around to doing that until tomorrow”

• Unexpected arguments

• “but sqrt() isn’t supposed to be called with -1 as its argument”

• Unexpected input & state

• “but the user was supposed to input an integer”

• Logical errors: Code that simply doesn’t do what it was supposed to
do

• “so fix it!”

Lecture: Errors, Slide 13 HY150 Programming, University of Crete

Kinds of Errors
• Compile-time errors

• Syntax errors

• Type errors

• Link-time errors

• Run-time errors (this is where the fun really starts!)

• Detected by computer (crash)

• Detected by library (exceptions)

• Detected by user code

• Logic errors

• Detected by programmer (code runs, but produces incorrect
output)

Lecture: Errors, Slide 14 HY150 Programming, University of Crete

Compilation-linking to produce an executable program

main() function

Source code

compiler

main() function

& header(s)

Object code

Std_lib_facilities.h

Header files

(definitions, interfaces)

C++ standard

library

Object code

linker

Executable

Application

Lecture: Errors, Slide 15 HY150 Programming, University of Crete

Check your inputs
• Before trying to use an input value, check that it meets your

expectations/requirements

• Function arguments

• Data from input (istream)

Lecture: Errors, Slide 16 HY150 Programming, University of Crete

Bad function arguments
• The compiler helps:

• Number and types of arguments must match

int area(int length, int width)

{

 return length*width;

}

int x1 = area(7);

int x2 = area("seven", 2);

int x3 = area(7, 10);

int x5 = area(7.5, 10);

int x = area(10, -7);

// error: wrong number of arguments

// error: 1st argument has a wrong type

// ok

// ok, but dangerous: 7.5 truncated to 7;

// most compilers will warn you

// this is a difficult case:

// the types are correct,

// but the values make no sense

Lecture: Errors, Slide 17 HY150 Programming, University of Crete

Bad Function Arguments
• So, how about int x = area(10, -7);

• Alternatives

• Just don’t do that

• Rarely a satisfactory answer

• The caller should check

• Hard to do systematically

• The function should check

• Return an “error value” (not general, problematic)

• Set an error status indicator (not general, problematic – don’t do this)

• Throw an exception

• Note: sometimes we can’t change a function that handles
errors in a way we do not like

• Someone else wrote it and we can’t or don’t want to change their
code

Lecture: Errors, Slide 18 HY150 Programming, University of Crete

Bad function arguments

• Why worry?

• You want your programs to be correct

• Typically the writer of a function has no control over how it
is called

• Writing “do it this way” in the manual (or in comments) is no solution –
many people don’t read manuals

• The beginning of a function is often a good place to check

• Before the computation gets complicated

• When to worry?

• If it doesn’t make sense to test every function, test some

Lecture: Errors, Slide 19 HY150 Programming, University of Crete

Link-time Errors

• Unless we somehow have defined area() in another source file

and linked the code generated from that source file to this code,

• the linker will complain that it didn't find a definition of area()

• The definition of area() must have exactly the same types (both

the return type and the argument type)

Lecture: Errors, Slide 20 HY150 Programming, University of Crete

Run-time Errors

Negative values

representing areas…

Lecture: Errors, Slide 21 HY150 Programming, University of Crete

How to report an error
• Return an “error value” (not general, problematic)

int area(int length, int width) // return a negative value for bad input

{

 if(length <=0 || width <= 0) return -1;

 return length*width;

}

• So, “let the caller beware”

 int z = area(x,y);

 if (z<0) error("bad area computation");

 // …

• Problems

• What if I forget to check that return value?

• For some functions there isn’t a “bad value” to return (e.g. max())

Lecture: Errors, Slide 22 HY150 Programming, University of Crete

How to report an error
• Set an error status indicator (not general, problematic, don’t!)

int errno = 0; // used to indicate errors

int area(int length, int width)

{

 if (length<=0 || width<=0) errno = 7; // || means or

 return length*width;

}

• So, “let the caller check”

 int z = area(x,y);

 if (errno==7) error("bad area computation");

 // …

• Problems

• What if I forget to check errno?

• How do I pick a value for errno that’s different from all others?

• How do I deal with that error?

Lecture: Errors, Slide 23 HY150 Programming, University of Crete

Exceptions

• Exception handling is general

• You can’t forget about an exception: the program will

terminate if someone doesn’t handle it (using a try … catch)

• Just about every kind of error can be reported using exceptions

• You still have to figure out what to do about an

exception (every exception thrown in your program)

• Error handling is never really simple

Lecture: Errors, Slide 24 HY150 Programming, University of Crete

How to report an error
• Report an error by throwing an exception in C++

class Bad_area { }; // a class is a user defined type

 // Bad_area is a type to be used as an exception

int area(int length, int width)

{

 if (length<=0 || width<=0) throw Bad_area(); // note the ()

 return length*width;

}

• Catch and deal with the error (e.g., in main())

try {

 int z = area(x,y); // if area() doesn’t throw an exception

} // make the assignment and proceed

catch(Bad_area &b) { // if area() throws Bad_area(), respond

 cerr << "oops! Bad area calculation – fix program\n";

}

Lecture: Errors, Slide 25 HY150 Programming, University of Crete

Out of range

• Try this

vector<int> v(10); // a vector of 10 ints,

 // each initialized to the default value, 0,

 // referred to as v[0] .. v[9]

for (int i = 0; i<v.size(); ++i) v[i] = i; // set values

for (int i = 0; i<=10; ++i) // print 10 values (???)

 cout << "v[" << i << "] == " << v[i] << endl;

• vector’s operator[] (subscript operator) reports a bad index
(its argument) by throwing a Range_error if you use #include
"std_lib_facilities.h"

• The default behavior can differ

Lecture: Errors, Slide 26 HY150 Programming, University of Crete

Exceptions – for now

• For now, just use exceptions to terminate programs gracefully,
like this

 int main()

 try

 {

 // …

 }

 catch (out_of_range&) { // out_of_range exceptions

 cerr << "oops – some vector index out of range\n";

 }

 catch (…) { // all other exceptions

 cerr << "oops – some exception\n";

 }

Lecture: Errors, Slide 27 HY150 Programming, University of Crete

A function error()
Here is a simple error() function as provided in std_lib_facilities.h

This allows you to print an error message by calling error()

 It works by disguising throws, like this:

 void error(string s) // one error string

 {

 cerr << s << endl;

 throw runtime_error(s);

 }

 void error(string s1, string s2) // two error strings

 {

 error(s1 + s2); // concatenates

 }

Lecture: Errors, Slide 28 HY150 Programming, University of Crete

Using error()

• Example

 cout << "please enter integer in range [1..10]\n";

 int x = -1; // initialize with unacceptable value (if possible)

 cin >> x;

 if (!cin) // check that cin read an integer

 error("didn’t get a value");

 if (x < 1 || 10 < x) // check if value is out of range

 error("x is out of range");

 // if we get this far, we can use x with confidence

Lecture: Errors, Slide 29 HY150 Programming, University of Crete

How to look for errors

• When you have written (drafted?) a program, it’ll have

errors (commonly called “bugs”)

• It’ll do something, but not what you expected

• How do you find out what it actually does?

• How do you correct it?

• This process is usually called “debugging”

Lecture: Errors, Slide 30 HY150 Programming, University of Crete

Debugging
• How not to do it

while (program doesn’t appear to work) { // pseudo code

 Randomly look at the program for something that “looks odd”

 Change it to “look better”

}

• Key question

How would I know if the program actually worked correctly?

Lecture: Errors, Slide 31 HY150 Programming, University of Crete

Program structure
• Make the program easy to read so that you have a chance of

spotting the bugs

• Comment!!! very important for your assignments

• Explain design ideas

• Use meaningful names

• Indent

• Use a consistent layout

• Your IDE tries to help (but it can’t do everything)

• You are the one responsible

• Break code into small functions

• Try to avoid functions longer than a page

• Avoid complicated code sequences

• Try to avoid nested loops, nested if-statements, etc.

(But, obviously, you sometimes need those)

• Use library facilities

Lecture: Errors, Slide 32 HY150 Programming, University of Crete

First get the program to compile

• Is every string literal terminated?

 cout << "Hello, << name << '\n'; // oops!

• Is every character literal terminated?

 cout << "Hello, " << name << '\n; // oops!

• Is every block terminated?

 if (a>0) { /* do something */

 else { /* do something else */ } // oops!

• Is every set of parentheses matched?

 if (a // oops!

 x = f(y);

• The compiler generally reports this kind of error “late”

• It doesn’t know you didn’t mean to close “it” later

Lecture: Errors, Slide 33 HY150 Programming, University of Crete

First get the program to compile

• Is every name declared?

• Did you include needed headers? (e.g., std_lib_facilities.h)

• Is every name declared before it’s used?

• Did you spell all names correctly?

int count; /* … */ ++Count; // oops!

char ch; /* … */ Cin>>c; // double oops!

• Did you terminate each expression statement with a
semicolon?
x = sqrt(y)+2 // oops!

z = x+3;

Lecture: Errors, Slide 34 HY150 Programming, University of Crete

Debugging
• Carefully follow the program through the specified sequence of

steps

• Pretend you’re the computer executing the program

• Or use your compiler debugger: e.g. gdb or the Visual Studio Debugger

• Does the output match your expectations?

• If there isn’t enough output to help, add a few debug output statements

cerr << "x == " << x << ", y == " << y << '\n’;

• Be very careful

• See what the program specifies, not what you think it should say

• That’s much harder to do than it sounds

• for (int i=0; 0<month.size(); ++i) { // oops!

• for(int i = 0; i<=max; ++j) { // oops! (twice)

Lecture: Errors, Slide 35 HY150 Programming, University of Crete

Debugging
• When you write the program, insert some checks (“sanity checks”) that

variables have “reasonable values”

• Function argument checks are prominent examples of this

if (number_of_elements<0)

 error("impossible: negative number of elements");

if (largest_reasonable<number_of_elements)

 error("unexpectedly large number of elements");

if (x<y) error("impossible: x<y");

• Design these checks so that some can be left in the program even after
you believe it to be correct

• It’s almost always better for a program to stop than to give wrong results

Lecture: Errors, Slide 36 HY150 Programming, University of Crete

Debugging
• Pay special attention to “end cases” (beginnings and ends)

• Did you initialize every variable?
• To a reasonable value

• Did the function get the right arguments?
• Did the function return the right value?

• Did you handle the first element correctly?
• The last element?

• Did you handle the empty case correctly?
• No elements

• No input

• Did you open your files correctly?
• more on this in chapter 11

• Did you actually read that input?
• Write that output?

Lecture: Errors, Slide 37 HY150 Programming, University of Crete

Debugging

• “If you can’t see the bug, you’re looking in the wrong
place”
• It’s easy to be convinced that you know what the problem is and

stubbornly keep looking in the wrong place

• Don’t just guess, be guided by output

• Work forward through the code from a place you know is right

• so what happens next? Why?

• Work backwards from some bad output

• how could that possibly happen?

• Once you have found “the bug” carefully consider if fixing
it solves the whole problem

• It’s common to introduce new bugs with a “quick fix”

• “I found the last bug”
• is a programmer’s joke

Lecture: Errors, Slide 38 HY150 Programming, University of Crete

Note

• Error handling is fundamentally more difficult and messy than
“ordinary code”

• There is basically just one way things can work right

• There are many ways that things can go wrong

• The more people use a program, the better the error handling
must be

• If you break your own code, that’s your own problem

• And you’ll learn the hard way

• If your code is used by your friends, uncaught errors can cause you to lose
friends

• If your code is used by strangers, uncaught errors can cause serious grief

• And they may not have a way of recovering

Lecture: Errors, Slide 39 HY150 Programming, University of Crete

Pre-conditions
• What does a function require of its arguments?

• Such a requirement is called a pre-condition

• Sometimes, it’s a good idea to check it

int area(int length, int width) // calculate area of a rectangle

 // length and width must be positive

{

 if (length<=0 || width <=0) throw Bad_area();

 return length*width;

}

Lecture: Errors, Slide 40 HY150 Programming, University of Crete

Post-conditions
What must be true when a function returns?

Such a requirement is called a post-condition

int area(int length, int width) // calculate area of a rectangle

 // length and width must be positive

{

 if (length<=0 || width <=0) throw Bad_area();

 // the result must be a positive int that is the area

 // no variables had their values changed

 return length*width;

}

Lecture: Errors, Slide 41 HY150 Programming, University of Crete

Pre- and post-conditions

• Always think about them

• If nothing else write them as comments

• Check them “where reasonable”

• Check a lot when you are looking for a bug

• This can be tricky

• How could the post-condition for area() fail after the pre-

condition succeeded (held)?

Lecture: Errors, Slide 42 HY150 Programming, University of Crete

Testing
• How do we test a program?

• Be systematic

• “pecking at the keyboard” is okay for very small programs and for

very initial tests, but is insufficient for real systems

• Think of testing and correctness from the very start

• When possible, test parts of a program in isolation

• E.g., when you write a complicated function write a little program that simply

calls it with a lot of arguments to see how it behaves in isolation before putting it

into the real program

• We’ll return to this question in Lecture 13

Lecture: Errors, Slide 43 HY150 Programming, University of Crete

The next lecture
• In the next two lectures, we’ll discuss the design and

implementation of a complete small program – a simple “desk

calculator.”

Lecture: Errors, Slide 44 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

Lecture: Errors, Slide 45 HY150 Programming, University of Crete

Thank you!

