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ADbstract

Today, I'll present the basics of computation. In
particular, we'll discuss expressions, how to iterate
over a series of values (“iteration™), and select
between two alternative actions (“selection”®). I'll
also show how a particular sub-computation can be
named and specified separately as a function. To be
able to perform more realistic computations, | will
Introduce the type to hold sequences of
values.

Selection, Iteration, Function, VVector

HY150 Programming, University of Crete



Overview

mComputation
®m What 1s computable? How best to compute it?

B Abstractions, algorithms, heuristics, data structures

manguage constructs and 1deas
B Sequential order of execution
m Expressions and Statements
m Sclection
m [teration
m Functions

m Vectors

HY150 Programming, University of Crete Lecture: Computation, Slide 6



You already know most of this

- Note:

- You know how to do arithmetic
- d=atb*c
 You know how to select
“If this Is true, do that; otherwise do something else ”
- You know how to “iterate”
- “do this until you are finished”
- “do that 100 times”
- You know how to do functions
- “go ask Joe and bring back the answer”
- “hey Joe, calculate this for me and send me the answer”

- What | will show you today is mostly just vocabulary and syntax for
what you already know
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Computation

(input) data ~ (output) data

- Input: from keyboard, files, other input devices, other programs, other parts of a
program
- Computation — what our program will do with the input to produce the output.

- Output: to screen, files, other output devices, other programs, other parts of a
program
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Computation

Our job is to express computations

- Correctly

« Simply

- Efficiently

One tool is called Divide and Conquer

- to break up big computations into many little ones
Another tool Is Abstraction

- Provide a higher-level concept that hides detail

Organization of data iIs often the key to good code
- Input/output formats

« Protocols
Code Code Code

. I e ¢}
Data structures nput e 1/0 ™ 1/0 . utput

- — — — e ——————————————————————————

Note the emphasis on structure and organization
- You don’t get good code just by writing a lot of statements
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Language features

- Each programming language feature exists to express a
fundamental idea

- For example
- + :addition
- * > multiplication
- If (expression) statement else statement ; selection
- while (expression) statement ; iteration
- f(x); function/operation

- We combine language features to create programs

HY150 Programming, University of Crete Lecture: Computation, Slide 10



EXxpressions

/[ compute area:

int length = 20; I/ the simplest expression: a literal (here, 20)

/I (here used to initialize a variable)

int width = 40;
Int area = length*width; /[ a multiplication
Int average = (length+width)/2; // addition and division

The usual rules of precedence apply:

a*b+c/d means (a*b)+(c/d) and not a*(b+c)/d.

If in doubt, parenthesize. If complicated, parenthesize.
Don’t write “absurdly complicated” expressions:

a*b+c/d*(e-f/g)/h+7 // too complicated

Choose meaningful names.
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EXxpressions

- EXxpressions are made out of operators and operands
- Operators specify what is to be done
- Operands specify the data for the operators to work with

- Boolean type: bool (true and false)
- Equality operators: = = (equal), !'= (not equal)
- Logical operators: && (and), || (or), ! (not)
- Relational operators: < (less than), > (greater than), <=, >=
- Character type: char (e.g.,'a",'7"',and'@")
- Integer types: short, int, long
- arithmetic operators: +, -, *, /, % (remainder)
- Floating-point types: e.g., float, double (e.g., 12.45 and 1.234e3)
- arithmetic operators: +, -, *, /
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Common Operators

Name

Comment

f(a)
++lval
~=~lval
la

-a
a'b
a/b
a%b
a+b
a-b
out<<hb
in>>b
a<b
a<=b
a>b

function call
pre-increment
pre-decrement

not

unary minus
multiply

divide

modulo (remainder)
add

subtract

write b to out

read fromininto b
less than

less than or equal
greater than
greater than or equal
equal

not equal

logical and

logical or
assignment

compound assignment
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pass a to f as an argument

increment and use the incremented value
decrement and use the decremented value
result is bool

only for integer types

where out is an ostream
where in is an istream
result is bool

result is bool

result is bool

result is bool

not to be confused with =
result is bool

result is bool

result is bool

not to be confused with ==
Ival = Ival*a; also for /, %, +, -
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Concise Operators

- For many binary operators, there are (roughly) equivalent
more concise operators

- For example

- a+t=Cc means a=atc
- a*=scale means a = a*scale
- ++a means a+=1

or a=atl

- “Concise operators” are generally better to use
(clearer, express an idea more directly)
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Conversions

- We can “mix” different types in expressions
- E.9. 2.5/ 2 is a double divided by an int

- Is it integer of floating point division?

- If necessary the compiler converts (“promotes”) Int
operands to double or char operands to Int

- For example

- doubled =2.5;

. Inti=2;
- doubled2=d/i; //d2==1.25
- Inti2 =d/i; I2==1
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Statements

. A statement Is
- an expression statement is an expression followed by a semicolon, or
- adeclaration, or
- a “control statement” that determines the flow of control

- For example
- a=Db;
- double d2 = 2.5;
- If(x==2)y=4;
- while (cin >> number) numbers.push_back(number);
- Int average = (length+width)/2;
. return x;
- If (x==5);

- You may not understand all of these just now, but you will ...
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Selection: 1If

« Sometimes we must select between alternatives
- For example, suppose we want to identify the larger of two values.
« \We can do this with an if statement

If (a<b) // Note: No semicolon here
max = b;

else /[ Note: No semicolon here
max = a;

- The syntax Is
If (condition)
statement-1  // if the condition is true, do statement-1

else
statement-2  // if not, do statement-2
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Selection: If-statement examples

int main()

{
inta=0;
inth=0;

cout << "Please enter two integers\n";
cin>>a>>bh;

if (a<b) // condition
// 1st alternative (taken if condition is true):

cout<<"max("<<a<<","<<b<<")is" << b <<"\n'";

else

// 2nd alternative (taken if condition is false):
cout<<"max("<<a<<","<<b<<")is"<<a<<"\n";

int main()

{
const double cm_per_inch = 2.54; // number of centimeters in an inch
int length=1; // length in inches or centimeters
char unit=""; // a space is not a unit

cout<< "Please enter a length followed by a unit (c ori):\n";
cin >> length >> unit;

if (unit=="1")

cout << length << "in == " << cm_per_inch*length << "cm\n";
else if (unit =='¢')

cout << length << "cm == " << length/cm_per_inch << "in\n";
else

cout << "Sorry, | don’t know a unit called '" << unit << ""\n";
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Selection: switch

- Clearer than many nested if-statements
- A selection based on a comparison of a value against several constants

int main()
{
const double cm_per_inch = 2.54; // number of centimeters in an inch
int length =1; // length in inches or centimeters
char unit="'a';
cout<< "Please enter a length followed by a unit (c or i):\n";
cin >> length >> unit;
switch (unit) {
case 'i':
cout << length << "in ==" << cm_per_inch*length << "cm\n";
break;
case 'c':
cout << length << "cm == " << length/cm_per_inch << "in\n";
break;
default:
cout << "Sorry, | don’t know a unit called " << unit << ""\n";
break;
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Selection: switch technicalities

- The value on which we switch must be of an integer, char or enumeration type
(cannot switch on a string)

- The values in case labels must be constant expressions (no variables)
- Cannot use same value for two case labels

i const charn="'n';
- Cannot use several case labels for a single case const char m = '?';

cout << "Do you like fish?\n";
char a;

cin >> a;

switch (a) {

" case n:
/l define alternatives: .

- Don’t forget to end each case with a break

int main() // case labels must be constants

{

inty="y'"; // this is going to cause trouble break;
case y: // error: variable in case label
n...
break;
case m:
-
break;
case 'n': // error: duplicate case label (n's value is 'n")
s
break;
default:
'
break;
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Iteration (while loop)

- The world’s first “real program” running on a stored-program
computer (David Wheeler, Cambridge, May 6, 1949)

// calculate and print a table of squares 0-99:

int main() 0 0

1 1

{ 2 4

Inti=0; 3 9
while (i<100) { s 16

cout << 1 << '\t' << square(l) << '\n';

++i;  //increment i 99 9801

}
}

// (No, it wasn't actually written in C++ ©))
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Iteration (while loop)

« What It takes

- A loop variable (control variable); here: i
- Initialize the control variable; here:int1=0
- A termination criterion; here: if 1<100 is false, terminate
« Increment the control variable; here: ++i
- Something to do for each iteration; here: cout << ...
{
Inti=0;

while (i<100) {
cout << I << \t' << square(l) << "\n';

++1; /[ Increment |
}
¥
- a sequence of statements inside curly braces: { } is called a block or compound
statement

HY150 Programming, University of Crete Lecture: Computation, Slide 22



Iteration (for loop)

- Another iteration form: the loop

- You can collect all the control
Information in one place, at the top,
where It's easy to see

inti=0;
for (inti = 0; i<100; ++i) { while (i<100) { |
cout << i << \t' << square(i) << '\n’;
cout << 1 <<'\t' << square(i) << \n'; ++i ; /l increment i
}
} }

That is, U

for (initialize; condition ; increment )
controlled statement

Note: what is square(i)?

HY150 Programming, University of Crete Lecture: Computation, Slide 23



Selection

pro grammin g Sequence Selection
if statement switch statement with breaks
Summary v (single selection) (multiple selection)
\l/ lt-]> lil}» -~ break ——
ny | U

V @<

: 0
—==  break
v 0
if..else statement
(double selection)
é i L}
b S
' t]
—==  break
@ I
default processing

o
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Repetition

(iteration)
programming s

summary

&T

It]

Repetition

do..whi le statement

for statement

]

initialization

—

[t

body —> increment

HY150 Programming, University of Crete

Lecture: Computation, Slide 25



Functions

- But what was square(i)?
- A call of the function square()

Int square(int x)
{

return x*x;

}

- We define a function when we want to separate a computation
because It

- can be separated as a named sequence of statements

- 1s logically separate

- makes the program text clearer (by naming the computation)
- Is useful in more than one place in our program

- eases testing, distribution of labor, and maintenance
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Control Flow

int main()

{ int square(int x)
i50; {
while (i<100)
{ 3 return x * x;
}

i<100 squgreﬁ)/

} §i==100
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Functions

® Our function square(2);

int square(int x) Int vl = square();

{ int v3 = square(1,2); s

int v2 = square;

M =1 " "y,
return x*x; int v4 = square("two");

§
1s an example of

Return_type function name ( Parameter list )

Il (type name, etc.)

Il use each parameter in code

return some_value; // of Return_type
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Another Example

- Earlier we looked at code to find the larger of two values. Here is a
function that compares the two values and returns the larger value.

Int max(int a, int b) // this function takes 2 parameters

{
iIf (a<b)

return b;
else

return a;

}

Int x = max(7,9); //xbecomes9
Inty = max(19, -27); //'y becomes 19
Int z = max(20, 20); // z becomes 20
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Data for Iteration - VVector

- To do just about anything of interest, we need a collection of data to work on. We can store this data
ina . For example:

// read some temperatures into a vector:

Int main()
{
vector<double> temps; I/ declare a vector of type double to store
I/ temperatures — like 62.4
double temp; /[ a variable for a single temperature value
while (cin>>temp) // cin reads a value and stores it in temp

temps.push_back(temp); // store the value of temp in the vector

Il ... do something ...

}

I/ cin>>temp will return true until we reach the end of file or encounter

I/ something that isn’t a double: like the word “end”
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Vector

- VVector Is the most useful standard library data type
- avector<T> holds an sequence of values of type T
- Think of a vector this way

A vector named v contains 5 elements: {1, 4, 2, 3, 5}:

size()

vio] Vv[1] v[2] V[3] V[4]

v' s elements:
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Growing a vector

vector<int> v; /[ start off empty

v.push_back(1); /[ add an element with the value 1

v.push_back(4); /[ add an element with the value 4 at end (“the back”)

v.push_back(3); /[ add an element with the value 3 at end (“the back”)

v[0] V[1] v[2]
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\Vectors

- Once you get your data into a vector you can easily manipulate it:

// compute mean (average) and median temperatures:

Int main()

{
vector<double> temps; /[ temperatures in Fahrenheit, e.g. 64.6
double temp;
while (cin>>temp) temps.push_back(temp); // read and put into vector

double sum = 0;
for (inti = 0; i< temps.size(); ++i) sum += temps[i];
/[ sums temperatures

cout << ""Mean temperature: " << sum/temps.size() << endl;
sort(temps.begin(),temps.end());
cout << ""Median temperature: " << temps[temps.size()/2] << endl,

}
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Combining Language Features

- YOUu can write many new programs by combining
language features, built-in types, and user-defined
types In new and interesting ways.

- So far, we have
- Variables and literals of types bool, char, int, double
- vector, push_back(), [ ] (subscripting)
e Iz == = + - +=, <, &&, ||, !
- max( ), sort( ), cin>>, cout<<
- If, for, while

- You can write a lot of different programs with these

language features! Let’s try to use them in a slightly different
way...
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Example — Word List

Il “boilerplate” left out

vector<string> words;

string s;

while (cin>>s && s 1= ""quit"") Il && means AND
words.push_back(s);

sort(words.begin(), words.end()); // sort the words we read

for (int i1=0; i<words.size(); ++i)
cout<<words[i]<< "\n"";

/*
read a bunch of strings into a vector of strings, sort
them into lexicographical order (alphabetical order),

and print the strings from the vector to see what we have.
*/
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Word list — Eliminate Duplicates

// Note that duplicate words were printed multiple times. For
I/ example “the the the”. That’s tedious, let’s eliminate duplicates:

vector<string> words;
string s;
while (cin>>s && s!= ""quit™) words.push_back(s);

sort(words.begin(), words.end());

for (int i=1; i<words.size(); ++i)
If(words[i-1]==words[i])
“get rid of words[i]” // (pseudocode)
for (int 1=0; i<words.size(); ++1) cout<<words[i]<< '"\n";

/[ there are many ways to “get rid of words[i]”; many of them are messy
/Il (that’s typical). Our job as programmers is to choose a simple clean
/I solution — given constraints — time, run-time, memory.
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Example (cont.) Eliminate Words!

/[ Eliminate the duplicate words by copying only unique words:
vector<string> words;
string s;
while (cin>>s && s!=""quit") words.push_back(s);
sort(words.begin(), words.end());
vector<string>w2z;
If (O<words.size()) { // Note style { }
w2.push_back(words[0]);
for (int iI=1; i<words.size(); ++1)
If(words[i-1]'=words[i])
w2.push_back(words|i]);
}
cout<< "found ' << words.size()-w2.size() << ' duplicates\n"’;
for (int 1=0; i<w2.size(); ++1) cout << w2[i] << "\n"";
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Algorithm

- We just used a simple algorithm
- An algorithm is (from Google search)

- “a logical arithmetical or computational procedure that, if correctly
applied, ensures the solution of a problem.” — Harper Collins

- “a set of rules for solving a problem in a finite number of steps, as for
finding the greatest common divisor.” — Random House

- “a detailed sequence of actions to perform or accomplish some task.
Named after an Iranian mathematician, Al-Khawarizmi. Technically, an
algorithm must reach a result after a finite number of steps, ...The term
IS also used loosely for any sequence of actions (which may or may not

terminate).” — Webster’s
- We eliminated the duplicates by first sorting the vector

(so that duplicates are adjacent), and then copying only

strings that differ from their predecessor into another
Vector.
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|deal

mBasic language features and libraries should be usable 1n
essentially arbitrary combinations.

m We are not too far from that ideal.

m [f a combination of features and types make sense, 1t will probably work.

®m The compiler helps by rejecting some absurdities.
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Things to remember

m Sequential order of execution
B Expressions and Statements

mSclection

m [f/else, switch
W ]teration

m while, for
B Functions

mVectors

B Vector<string> words;
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The next lecture

- How to deal with errors
- Read chapter 4
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