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                  Χρηματοδότηση 

 

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του 

εκπαιδευτικού έργου του διδάσκοντα. 

-   Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο 

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού 

υλικού.  

-   Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς 

πόρους. 
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Abstract 

Today, I’ll present the basics of computation. In 
particular, we’ll discuss expressions, how to iterate 

over a series of values (“iteration”), and select 
between two alternative actions (“selection”). I’ll 

also show how a particular sub-computation can be 
named and specified separately as a function. To be 
able to perform more realistic computations, I will 

introduce the vector type to hold sequences of 
values. 

 
Selection, Iteration, Function, Vector 
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Overview 

Computation 

What is computable? How best to compute it? 

Abstractions, algorithms, heuristics, data structures 

Language constructs and ideas 

Sequential order of execution 

Expressions and Statements 

Selection  

Iteration 

Functions  

Vectors 
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You already know most of this 
• Note: 

• You know how to do arithmetic  

• d = a+b*c 

• You know how to select 

“if this is true, do that; otherwise do something else ” 

• You know how to “iterate” 

• “do this until you are finished” 

• “do that 100 times” 

• You know how to do functions 

• “go ask Joe and bring back the answer” 

• “hey Joe, calculate this for me and send me the answer” 

 

• What I will show you today is mostly just vocabulary and syntax for 
what you already know 
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Computation 

• Input: from keyboard, files, other input devices, other programs, other parts of a 
program 

• Computation – what our program will do with the input to produce the output. 

• Output: to screen, files, other output devices, other programs, other parts of a 
program 

 

(input) data (output) data 

data 

Code, often messy, 

often a lot of code 
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Computation 
• Our job is to express computations 

• Correctly 

• Simply 

• Efficiently 

• One tool is called Divide and Conquer 

• to break up big computations into many little ones 

• Another tool is Abstraction 

• Provide a higher-level concept that hides detail 

• Organization of data is often the key to good code 

• Input/output formats 

• Protocols 

• Data structures 
 

 

• Note the emphasis on structure and organization 

• You don’t get good code just by writing a lot of statements 
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Language features 
• Each programming language feature exists to express a 

fundamental idea 

• For example 

• +  : addition 

• *  : multiplication 

• if (expression) statement else statement ;  selection 

• while (expression) statement ;   iteration 

• f(x);       function/operation 

• … 

• We combine language features to create programs 
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Expressions 
// compute area: 

int length = 20;  // the simplest expression: a literal (here, 20) 

    // (here used to initialize a variable) 

int width = 40; 

int area = length*width;  // a multiplication 

int average = (length+width)/2; // addition and division  

 

The usual rules of precedence apply: 

 a*b+c/d means (a*b)+(c/d) and not a*(b+c)/d. 

 

If in doubt, parenthesize.  If complicated, parenthesize. 

Don’t write “absurdly complicated” expressions: 

 a*b+c/d*(e-f/g)/h+7  // too complicated 

 

Choose meaningful names. 
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Expressions 

• Expressions are made out of operators and operands 

• Operators specify what is to be done 

• Operands specify the data for the operators to work with 

 

• Boolean type: bool    (true and false) 

• Equality operators: = = (equal),  != (not equal) 

• Logical operators:  && (and), || (or), ! (not) 

• Relational operators:  < (less than), > (greater than), <=, >= 

• Character type: char (e.g., 'a', '7', and '@') 

• Integer types:  short, int, long 

•  arithmetic operators: +, -, *, /, % (remainder) 

• Floating-point types: e.g., float, double (e.g., 12.45 and 1.234e3) 

• arithmetic operators: +, -, *, / 
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Common Operators 
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Concise Operators 

• For many binary operators, there are (roughly) equivalent 

more concise operators 

• For example 

• a += c  means  a = a+c  

• a *= scale  means  a = a*scale 

• ++a   means  a += 1 

    or  a = a+1 

 

• “Concise operators” are generally better to use 

 (clearer, express an idea more directly) 
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Conversions 

• We can “mix” different types in expressions 

• E.g. 2.5 / 2 is a double divided by an int 

• Is it integer of floating point division? 

• If necessary the compiler converts (“promotes”) int 

operands to double or char operands to int 

• For example 

• double d = 2.5; 

• int i=2; 

• double d2 = d/i; // d2 == 1.25 

• int i2 = d/i; //i2 == 1 
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Statements 
• A statement is 

• an expression statement is an expression followed by a semicolon, or 

• a declaration, or 

• a “control statement” that determines the flow of control 

 

• For example 
• a = b; 

• double d2 = 2.5; 

• if (x == 2) y = 4; 

• while (cin >> number) numbers.push_back(number); 

• int average = (length+width)/2; 

• return x; 

• If (x == 5) ; 

 

• You may not understand all of these just now, but you will … 
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Selection: if 
• Sometimes we must select between alternatives 

• For example, suppose we want to identify the larger of two values.  

• We can do this with an if statement 

   if (a<b)  // Note:  No semicolon here 

     max = b; 

  else  // Note:  No semicolon here 

     max = a; 

 

• The syntax is 

  if (condition) 

      statement-1 // if the condition is true, do statement-1 

  else 

      statement-2 // if not, do statement-2 
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Selection: if-statement examples 
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Selection: switch 
• Clearer than many nested if-statements 

• A selection based on a comparison of a value against several constants 
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Selection: switch technicalities 
• The value on which we switch must be of an integer, char or enumeration type 

(cannot switch on a string) 

• The values in case labels must be constant expressions (no variables) 

• Cannot use same value for two case labels 

• Cannot use several case labels for a single case 

• Don’t forget to end each case with a break 
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Iteration (while loop)  
• The world’s first “real program” running on a stored-program 

computer (David Wheeler, Cambridge, May 6, 1949) 

 

// calculate and print a table of squares 0-99: 

int main() 

{ 

 int i = 0; 

 while (i<100) { 

  cout << i << '\t' << square(i) << '\n'; 

  ++i ; // increment i 

 } 

} 

// (No, it wasn’t actually written in C++ .) 
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Iteration (while loop) 
• What it takes 

• A loop variable (control variable);  here: i 

• Initialize the control variable;      here: int i = 0 

• A termination criterion;   here: if  i<100 is false, terminate 

• Increment the control variable; here: ++i 

• Something to do for each iteration;  here: cout << … 

{  

 int i = 0; 

 while (i<100)  { 

  cout << i << '\t' << square(i) << '\n'; 

  ++i ; // increment i 

 } 

} 

• a sequence of statements inside curly braces: { } is called a block or compound 
statement 
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Iteration (for loop) 

• Another iteration form: the for loop 

• You can collect all the control 
information in one place, at the top, 
where it’s easy to see 

 
for (int i = 0; i<100; ++i) { 

 cout << i << '\t' << square(i) << '\n'; 

}      

 

That is, 

for (initialize; condition ; increment )  

controlled statement  

 

Note: what is square(i)? 

{  
int i = 0; 
while (i<100)  { 
 cout << i << '\t' << square(i) << '\n'; 
 ++i ; // increment i 
} 

} 
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Selection 

programming 

summary 
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Repetition 

(iteration) 

programming 

summary 
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Functions 

• But what was square(i)? 

• A call of the function square() 

int square(int x) 

{ 

  return x*x; 

 } 

• We define a function when we want to separate a computation 
because it 

• can be separated as a named sequence of statements 

• is logically separate 

• makes the program text clearer (by naming the computation) 

• is useful in more than one place in our program 

• eases testing, distribution of labor, and maintenance 
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Control Flow 
int main() 

{ 

      i=0; 

 

 while (i<100)  

 { 

 

   

  square(i)  

  

 } 

} 

int square(int x) 

{ 

  

 

 return x * x; 

 } 

i<100 

i==100 
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Functions 
Our function 

int square(int x) 

{ 

 return x*x; 

} 

is an example of 

Return_type  function_name ( Parameter list )  

     // (type name, etc.) 

{ 

 // use each parameter in code 

 return some_value;  // of Return_type 

} 
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Another Example 
• Earlier we looked at code to find the larger of two values. Here is a 

function that compares the two values and returns the larger value.  

  int max(int a, int b)  // this function takes 2 parameters 

  { 

if (a<b) 

     return b; 

else 

     return a; 

} 

 

int x = max(7, 9); // x becomes 9 

int y = max(19, -27); // y becomes 19 

int z = max(20, 20); // z becomes 20 
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Data for Iteration - Vector 
• To do just about anything of interest, we need a collection of data to work on. We can store this data 

in a vector.  For example: 

 

// read some temperatures into a vector: 

int main() 

{ 

 vector<double> temps;  // declare a vector of type double to store   
    // temperatures – like 62.4 

 double temp;   // a variable for a single temperature value 

 while (cin>>temp)    // cin reads a value and stores it in temp  

      temps.push_back(temp);  // store the value of temp in the vector 

 // … do something … 

} 

// cin>>temp  will return true until we reach the end of file or encounter  

// something that isn’t a double: like the word “end” 
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Vector 

• Vector is the most useful standard library data type 

• a vector<T> holds an sequence of values of type T 

• Think of a vector this way 

  A vector named v contains 5 elements: {1, 4, 2, 3, 5}: 

1 4 2 3 5 

5 v: 

v’s elements: 

v[0] v[1] v[2] v[3] v[4] 

size() 
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Growing a vector 
vector<int> v; // start off empty 

 

 

 

 

v.push_back(1); // add an element with the value 1 

 

 

 

 

v.push_back(4); // add an element with the value 4 at end (“the back”) 

 

 

 

 

 

v.push_back(3); // add an element with the value 3 at end (“the back”) 

         v[0]  v[1]         v[2] 

0   v: 

3 

2 

1 1 

4 1 

3 4 1 

v: 

v: 

v: 
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Vectors 
• Once you get your data into a vector you can easily manipulate it: 

 

// compute mean (average) and median temperatures: 

int main() 

{ 

 vector<double> temps;  // temperatures in Fahrenheit, e.g. 64.6 

 double temp; 

 while (cin>>temp)  temps.push_back(temp); // read and put into vector 

 

 double sum = 0; 

 for (int i = 0; i< temps.size(); ++i) sum += temps[i];   

      // sums temperatures 

 

 cout << "Mean temperature: " << sum/temps.size() << endl; 

 sort(temps.begin(),temps.end()); 

 cout << "Median temperature: " << temps[temps.size()/2] << endl; 

} 
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Combining Language Features 
• You can write many new programs by combining 

language features, built-in types, and user-defined 
types in new and interesting ways. 

• So far, we have 

• Variables and literals of types bool, char, int, double 

• vector, push_back(), [ ] (subscripting) 

• !=, ==, =, +, -, +=, <, &&, ||, ! 

• max( ), sort( ), cin>>, cout<< 

• if, for, while 

• You can write a lot of different programs with these 
language features! Let’s try to use them in a slightly different 
way… 
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Example – Word List 
// “boilerplate” left out 

 

 vector<string> words; 

 string s; 

 while (cin>>s && s != "quit")   // && means AND 

  words.push_back(s); 
 

 sort(words.begin(), words.end()); // sort the words we read 
 

 for (int i=0; i<words.size(); ++i)  

  cout<<words[i]<< "\n"; 
 

   /* 

     read a bunch of strings into a vector of strings, sort 

     them into lexicographical order (alphabetical order),  

     and print the strings from the vector to see what we have.  

 */ 
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Word list – Eliminate Duplicates 
// Note that duplicate words were printed multiple times.  For 

// example “the the the”.  That’s tedious, let’s eliminate duplicates: 
 

   vector<string> words; 

 string s; 

 while (cin>>s && s!= "quit") words.push_back(s); 

 

 sort(words.begin(), words.end()); 

 

 for (int i=1; i<words.size(); ++i)  

  if(words[i-1]==words[i])  

   “get rid of words[i]”     // (pseudocode) 

 for (int i=0; i<words.size(); ++i) cout<<words[i]<< "\n"; 

 

//    there are many ways to “get rid of words[i]”; many of them are messy 

// (that’s typical).  Our job as programmers is to choose a simple clean  

// solution – given constraints – time, run-time, memory.  
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Example (cont.) Eliminate Words! 
// Eliminate the duplicate words by copying only unique words: 

    vector<string> words; 

 string s; 

 while (cin>>s && s!= "quit")   words.push_back(s); 

 sort(words.begin(), words.end()); 

 vector<string>w2; 

 if (0<words.size()) {   // Note style { } 

  w2.push_back(words[0]); 

  for (int i=1; i<words.size(); ++i)  

   if(words[i-1]!=words[i]) 

                                   w2.push_back(words[i]);  

  } 

 cout<< "found " << words.size()-w2.size() <<  " duplicates\n"; 

 for (int i=0; i<w2.size(); ++i)  cout << w2[i] << "\n"; 
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Algorithm 

• We just used a simple algorithm 

• An algorithm is (from Google search) 

• “a logical arithmetical or computational procedure that, if correctly 
applied, ensures the solution of a problem.” – Harper Collins 

• “a set of rules for solving a problem in a finite number of steps, as for 
finding the greatest common divisor.” – Random House 

• “a detailed sequence of actions to perform or accomplish some task. 
Named after an Iranian mathematician, Al-Khawarizmi. Technically, an 
algorithm must reach a result after a finite number of steps, …The term 
is also used loosely for any sequence of actions (which may or may not 
terminate).” – Webster’s  

• We eliminated the duplicates by first sorting the vector 
(so that duplicates are adjacent), and then copying only 
strings that differ from their predecessor into another 
vector. 
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Ideal 
Basic language features and libraries should be usable in 

essentially arbitrary combinations. 

We are not too far from that ideal. 

 If a combination of features and types make sense, it will probably work. 

 The compiler helps by rejecting some absurdities. 
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Things to remember 
Sequential order of execution 

Expressions and Statements 

Selection 

 If/else, switch 

Iteration 

while, for 

Functions  

Vectors 

Vector<string> words; 
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The next lecture 
• How to deal with errors 

• Read chapter 4 



Lecture:  Computation, Slide 42 HY150 Programming, University of Crete 

Acknowledgements 
 

Bjarne Stroustrup 

 

Programming -- Principles and Practice Using C++ 

 

http://www.stroustrup.com/Programming/ 



HY150 Programming, University of Crete 

Thank you! 


