AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

Ai1dAegn 3: YITOAOYIONOG

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete

Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn sicayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete

XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete

HY-150 Ilpoypoappaticuog
CS-150 Programming

Lecture 3:
Computation

G. Papagiannakis

HY150 Programming, University of Crete

ADbstract

Today, I'll present the basics of computation. In
particular, we'll discuss expressions, how to iterate
over a series of values (“iteration™), and select
between two alternative actions (“selection”®). I'll
also show how a particular sub-computation can be
named and specified separately as a function. To be
able to perform more realistic computations, | will
Introduce the type to hold sequences of
values.

Selection, Iteration, Function, VVector

HY150 Programming, University of Crete

Overview

mComputation
®m What 1s computable? How best to compute it?

B Abstractions, algorithms, heuristics, data structures

manguage constructs and 1deas
B Sequential order of execution
m Expressions and Statements
m Sclection
m [teration
m Functions

m Vectors

HY150 Programming, University of Crete Lecture: Computation, Slide 6

You already know most of this

- Note:

- You know how to do arithmetic
- d=atb*c
 You know how to select
“If this Is true, do that; otherwise do something else ”
- You know how to “iterate”
- “do this until you are finished”
- “do that 100 times”
- You know how to do functions
- “go ask Joe and bring back the answer”
- “hey Joe, calculate this for me and send me the answer”

- What | will show you today is mostly just vocabulary and syntax for
what you already know

HY150 Programming, University of Crete Lecture: Computation, Slide 7

Computation

(input) data ~ (output) data

- Input: from keyboard, files, other input devices, other programs, other parts of a
program
- Computation — what our program will do with the input to produce the output.

- Output: to screen, files, other output devices, other programs, other parts of a
program

Lecture: Computation, Slide 8

HY150 Programming, University of Crete

Computation

Our job is to express computations

- Correctly

« Simply

- Efficiently

One tool is called Divide and Conquer

- to break up big computations into many little ones
Another tool Is Abstraction

- Provide a higher-level concept that hides detail

Organization of data iIs often the key to good code
- Input/output formats

« Protocols
Code Code Code

. I e ¢}
Data structures nput e 1/0 ™ 1/0 . utput

- — — — e ——————————————————————————

Note the emphasis on structure and organization
- You don’t get good code just by writing a lot of statements

HY150 Programming, University of Crete Lecture: Computation, Slide 9

Language features

- Each programming language feature exists to express a
fundamental idea

- For example
- + :addition
- * > multiplication
- If (expression) statement else statement ; selection
- while (expression) statement ; iteration
- f(x); function/operation

- We combine language features to create programs

HY150 Programming, University of Crete Lecture: Computation, Slide 10

EXxpressions

/[compute area:

int length = 20; I/ the simplest expression: a literal (here, 20)

/I (here used to initialize a variable)

int width = 40;
Int area = length*width; /[a multiplication
Int average = (length+width)/2; // addition and division

The usual rules of precedence apply:

a*b+c/d means (a*b)+(c/d) and not a*(b+c)/d.

If in doubt, parenthesize. If complicated, parenthesize.
Don’t write “absurdly complicated” expressions:

a*b+c/d*(e-f/g)/h+7 // too complicated

Choose meaningful names.

HY150 Programming, University of Crete Lecture: Computation, Slide 11

EXxpressions

- EXxpressions are made out of operators and operands
- Operators specify what is to be done
- Operands specify the data for the operators to work with

- Boolean type: bool (true and false)
- Equality operators: = = (equal), !'= (not equal)
- Logical operators: && (and), || (or), ! (not)
- Relational operators: < (less than), > (greater than), <=, >=
- Character type: char (e.g.,'a",'7"',and'@")
- Integer types: short, int, long
- arithmetic operators: +, -, *, /, % (remainder)
- Floating-point types: e.g., float, double (e.g., 12.45 and 1.234e3)
- arithmetic operators: +, -, *, /

HY150 Programming, University of Crete Lecture: Computation, Slide 12

Common Operators

Name

Comment

f(a)
++lval
~=~lval
la

-a
a'b
a/b
a%b
a+b
a-b
out<<hb
in>>b
a<b
a<=b
a>b

function call
pre-increment
pre-decrement

not

unary minus
multiply

divide

modulo (remainder)
add

subtract

write b to out

read fromininto b
less than

less than or equal
greater than
greater than or equal
equal

not equal

logical and

logical or
assignment

compound assignment

HY150 Programming, University of Crete

pass a to f as an argument

increment and use the incremented value
decrement and use the decremented value
result is bool

only for integer types

where out is an ostream
where in is an istream
result is bool

result is bool

result is bool

result is bool

not to be confused with =
result is bool

result is bool

result is bool

not to be confused with ==
Ival = Ival*a; also for /, %, +, -

Lecture: Computation, Slide 13

Concise Operators

- For many binary operators, there are (roughly) equivalent
more concise operators

- For example

- a+t=Cc means a=atc
- a*=scale means a = a*scale
- ++a means a+=1

or a=atl

- “Concise operators” are generally better to use
(clearer, express an idea more directly)

HY150 Programming, University of Crete Lecture: Computation, Slide 14

Conversions

- We can “mix” different types in expressions
- E.9. 2.5/ 2 is a double divided by an int

- Is it integer of floating point division?

- If necessary the compiler converts (“promotes”) Int
operands to double or char operands to Int

- For example

- doubled =2.5;

. Inti=2;
- doubled2=d/i; //d2==1.25
- Inti2 =d/i; I2==1

HY150 Programming, University of Crete Lecture: Computation, Slide 15

Statements

. A statement Is
- an expression statement is an expression followed by a semicolon, or
- adeclaration, or
- a “control statement” that determines the flow of control

- For example
- a=Db;
- double d2 = 2.5;
- If(x==2)y=4;
- while (cin >> number) numbers.push_back(number);
- Int average = (length+width)/2;
. return x;
- If (x==5);

- You may not understand all of these just now, but you will ...

HY150 Programming, University of Crete Lecture: Computation, Slide 16

Selection: 1If

« Sometimes we must select between alternatives
- For example, suppose we want to identify the larger of two values.
« \We can do this with an if statement

If (a<b) // Note: No semicolon here
max = b;

else /[Note: No semicolon here
max = a;

- The syntax Is
If (condition)
statement-1 // if the condition is true, do statement-1

else
statement-2 // if not, do statement-2

HY150 Programming, University of Crete Lecture: Computation, Slide 17

Selection: If-statement examples

int main()

{
inta=0;
inth=0;

cout << "Please enter two integers\n";
cin>>a>>bh;

if (a<b) // condition
// 1st alternative (taken if condition is true):

cout<<"max("<<a<<","<<b<<")is" << b <<"\n'";

else

// 2nd alternative (taken if condition is false):
cout<<"max("<<a<<","<<b<<")is"<<a<<"\n";

int main()

{
const double cm_per_inch = 2.54; // number of centimeters in an inch
int length=1; // length in inches or centimeters
char unit=""; // a space is not a unit

cout<< "Please enter a length followed by a unit (c ori):\n";
cin >> length >> unit;

if (unit=="1")

cout << length << "in == " << cm_per_inch*length << "cm\n";
else if (unit =='¢')

cout << length << "cm == " << length/cm_per_inch << "in\n";
else

cout << "Sorry, | don’t know a unit called '" << unit << ""\n";

HY150 Programming, University of Crete Lecture: Computation, Slide 18

Selection: switch

- Clearer than many nested if-statements
- A selection based on a comparison of a value against several constants

int main()
{
const double cm_per_inch = 2.54; // number of centimeters in an inch
int length =1; // length in inches or centimeters
char unit="'a';
cout<< "Please enter a length followed by a unit (c or i):\n";
cin >> length >> unit;
switch (unit) {
case 'i':
cout << length << "in ==" << cm_per_inch*length << "cm\n";
break;
case 'c':
cout << length << "cm == " << length/cm_per_inch << "in\n";
break;
default:
cout << "Sorry, | don’t know a unit called " << unit << ""\n";
break;

HY150 Programming, University of Crete Lecture: Computation, Slide 19

Selection: switch technicalities

- The value on which we switch must be of an integer, char or enumeration type
(cannot switch on a string)

- The values in case labels must be constant expressions (no variables)
- Cannot use same value for two case labels

i const charn="'n';
- Cannot use several case labels for a single case const char m = '?';

cout << "Do you like fish?\n";
char a;

cin >> a;

switch (a) {

" case n:
/l define alternatives: .

- Don’t forget to end each case with a break

int main() // case labels must be constants

{

inty="y'"; // this is going to cause trouble break;
case y: // error: variable in case label
n...
break;
case m:
-
break;
case 'n': // error: duplicate case label (n's value is 'n")
s
break;
default:
'
break;

HY150 Programming, University of Crete Lecture: Computation, Slide 20

Iteration (while loop)

- The world’s first “real program” running on a stored-program
computer (David Wheeler, Cambridge, May 6, 1949)

// calculate and print a table of squares 0-99:

int main() 0 0

1 1

{ 2 4

Inti=0; 3 9
while (i<100) { s 16

cout << 1 << '\t' << square(l) << '\n';

++i; //increment i 99 9801

}
}

// (No, it wasn't actually written in C++ ©))

HY150 Programming, University of Crete Lecture: Computation, Slide 21

Iteration (while loop)

« What It takes

- A loop variable (control variable); here: i
- Initialize the control variable; here:int1=0
- A termination criterion; here: if 1<100 is false, terminate
« Increment the control variable; here: ++i
- Something to do for each iteration; here: cout << ...
{
Inti=0;

while (i<100) {
cout << I << \t' << square(l) << "\n';

++1; /[Increment |
}
¥
- a sequence of statements inside curly braces: { } is called a block or compound
statement

HY150 Programming, University of Crete Lecture: Computation, Slide 22

Iteration (for loop)

- Another iteration form: the loop

- You can collect all the control
Information in one place, at the top,
where It's easy to see

inti=0;
for (inti = 0; i<100; ++i) { while (i<100) { |
cout << i << \t' << square(i) << '\n’;
cout << 1 <<'\t' << square(i) << \n'; ++i ; /l increment i
}
} }

That is, U

for (initialize; condition ; increment)
controlled statement

Note: what is square(i)?

HY150 Programming, University of Crete Lecture: Computation, Slide 23

Selection

pro grammin g Sequence Selection
if statement switch statement with breaks
Summary v (single selection) (multiple selection)
\l/ lt-]> lil}» -~ break ——
ny | U

V @<

: 0
—== break
v 0
if..else statement
(double selection)
é i L}
b S
' t]
—== break
@ I
default processing

o

HY150 Programming, University of Crete Lecture: Computation, Slide 24

Repetition

(iteration)
programming s

summary

&T

It]

Repetition

do..whi le statement

for statement

]

initialization

—

[t

body —> increment

HY150 Programming, University of Crete

Lecture: Computation, Slide 25

Functions

- But what was square(i)?
- A call of the function square()

Int square(int x)
{

return x*x;

}

- We define a function when we want to separate a computation
because It

- can be separated as a named sequence of statements

- 1s logically separate

- makes the program text clearer (by naming the computation)
- Is useful in more than one place in our program

- eases testing, distribution of labor, and maintenance

HY150 Programming, University of Crete Lecture: Computation, Slide 26

Control Flow

int main()

{ int square(int x)
i50; {
while (i<100)
{ 3 return x * x;
}

i<100 squgreﬁ)/

} §i==100

HY150 Programming, University of Crete Lecture: Computation, Slide 27

Functions

® Our function square(2);

int square(int x) Int vl = square();

{ int v3 = square(1,2); s

int v2 = square;

M =1 " "y,
return x*x; int v4 = square("two");

§
1s an example of

Return_type function name (Parameter list)

Il (type name, etc.)

Il use each parameter in code

return some_value; // of Return_type

HY150 Programming, University of Crete Lecture: Computation, Slide 28

Another Example

- Earlier we looked at code to find the larger of two values. Here is a
function that compares the two values and returns the larger value.

Int max(int a, int b) // this function takes 2 parameters

{
iIf (a<b)

return b;
else

return a;

}

Int x = max(7,9); //xbecomes9
Inty = max(19, -27); //'y becomes 19
Int z = max(20, 20); // z becomes 20

HY150 Programming, University of Crete

Lecture: Computation, Slide 29

Data for Iteration - VVector

- To do just about anything of interest, we need a collection of data to work on. We can store this data
ina . For example:

// read some temperatures into a vector:

Int main()
{
vector<double> temps; I/ declare a vector of type double to store
I/ temperatures — like 62.4
double temp; /[a variable for a single temperature value
while (cin>>temp) // cin reads a value and stores it in temp

temps.push_back(temp); // store the value of temp in the vector

Il ... do something ...

}

I/ cin>>temp will return true until we reach the end of file or encounter

I/ something that isn’t a double: like the word “end”

HY150 Programming, University of Crete Lecture: Computation, Slide 30

Vector

- VVector Is the most useful standard library data type
- avector<T> holds an sequence of values of type T
- Think of a vector this way

A vector named v contains 5 elements: {1, 4, 2, 3, 5}:

size()

vio] Vv[1] v[2] V[3] V[4]

v' s elements:

HY150 Programming, University of Crete Lecture: Computation, Slide 31

Growing a vector

vector<int> v; /[start off empty

v.push_back(1); /[add an element with the value 1

v.push_back(4); /[add an element with the value 4 at end (“the back”)

v.push_back(3); /[add an element with the value 3 at end (“the back”)

v[0] V[1] v[2]

HY150 Programming, University of Crete Lecture: Computation, Slide 32

\Vectors

- Once you get your data into a vector you can easily manipulate it:

// compute mean (average) and median temperatures:

Int main()

{
vector<double> temps; /[temperatures in Fahrenheit, e.g. 64.6
double temp;
while (cin>>temp) temps.push_back(temp); // read and put into vector

double sum = 0;
for (inti = 0; i< temps.size(); ++i) sum += temps[i];
/[sums temperatures

cout << ""Mean temperature: " << sum/temps.size() << endl;
sort(temps.begin(),temps.end());
cout << ""Median temperature: " << temps[temps.size()/2] << endl,

}

HY150 Programming, University of Crete Lecture: Computation, Slide 33

Combining Language Features

- YOUu can write many new programs by combining
language features, built-in types, and user-defined
types In new and interesting ways.

- So far, we have
- Variables and literals of types bool, char, int, double
- vector, push_back(), [] (subscripting)
e Iz == = + - +=, <, &&, ||, !
- max(), sort(), cin>>, cout<<
- If, for, while

- You can write a lot of different programs with these

language features! Let’s try to use them in a slightly different
way...

HY150 Programming, University of Crete Lecture: Computation, Slide 34

Example — Word List

Il “boilerplate” left out

vector<string> words;

string s;

while (cin>>s && s 1= ""quit"") Il && means AND
words.push_back(s);

sort(words.begin(), words.end()); // sort the words we read

for (int i1=0; i<words.size(); ++i)
cout<<words[i]<< "\n"";

/*
read a bunch of strings into a vector of strings, sort
them into lexicographical order (alphabetical order),

and print the strings from the vector to see what we have.
*/

HY150 Programming, University of Crete Lecture: Computation, Slide 35

Word list — Eliminate Duplicates

// Note that duplicate words were printed multiple times. For
I/ example “the the the”. That’s tedious, let’s eliminate duplicates:

vector<string> words;
string s;
while (cin>>s && s!= ""quit™) words.push_back(s);

sort(words.begin(), words.end());

for (int i=1; i<words.size(); ++i)
If(words[i-1]==words[i])
“get rid of words[i]” // (pseudocode)
for (int 1=0; i<words.size(); ++1) cout<<words[i]<< '"\n";

/[there are many ways to “get rid of words[i]”; many of them are messy
/Il (that’s typical). Our job as programmers is to choose a simple clean
/I solution — given constraints — time, run-time, memory.

HY150 Programming, University of Crete Lecture: Computation, Slide 36

Example (cont.) Eliminate Words!

/[Eliminate the duplicate words by copying only unique words:
vector<string> words;
string s;
while (cin>>s && s!=""quit") words.push_back(s);
sort(words.begin(), words.end());
vector<string>w2z;
If (O<words.size()) { // Note style { }
w2.push_back(words[0]);
for (int iI=1; i<words.size(); ++1)
If(words[i-1]'=words[i])
w2.push_back(words|i]);
}
cout<< "found ' << words.size()-w2.size() << ' duplicates\n"’;
for (int 1=0; i<w2.size(); ++1) cout << w2[i] << "\n"";

HY150 Programming, University of Crete Lecture: Computation, Slide 37

Algorithm

- We just used a simple algorithm
- An algorithm is (from Google search)

- “a logical arithmetical or computational procedure that, if correctly
applied, ensures the solution of a problem.” — Harper Collins

- “a set of rules for solving a problem in a finite number of steps, as for
finding the greatest common divisor.” — Random House

- “a detailed sequence of actions to perform or accomplish some task.
Named after an Iranian mathematician, Al-Khawarizmi. Technically, an
algorithm must reach a result after a finite number of steps, ...The term
IS also used loosely for any sequence of actions (which may or may not

terminate).” — Webster’s
- We eliminated the duplicates by first sorting the vector

(so that duplicates are adjacent), and then copying only

strings that differ from their predecessor into another
Vector.

HY150 Programming, University of Crete

Lecture: Computation, Slide 38

|deal

mBasic language features and libraries should be usable 1n
essentially arbitrary combinations.

m We are not too far from that ideal.

m [f a combination of features and types make sense, 1t will probably work.

®m The compiler helps by rejecting some absurdities.

HY150 Programming, University of Crete Lecture: Computation, Slide 39

Things to remember

m Sequential order of execution
B Expressions and Statements

mSclection

m [f/else, switch
W]teration

m while, for
B Functions

mVectors

B Vector<string> words;

HY150 Programming, University of Crete Lecture: Computation, Slide 40

The next lecture

- How to deal with errors
- Read chapter 4

HY150 Programming, University of Crete Lecture: Computation, Slide 41

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Computation, Slide 42

hank you!

EMNIXEIPHEZIAKO MPOTPAMMA
*
Ve EKMAIAEYZH KAI AIA BIOY MAGHEH st EZ nA
o bl Juor sTrv wowwvia Tne yvisre |
* x * ’ = | T
N YNOYPTEIO MAIAEIAL & BPHIKEYMATQN, MOAITIZMOY & ABAHTIZMOY
Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPIZHE

Evpwaié Kowwvié Tapei
vpwme WWVIKGTAHEL Me Tn auyxpnraTessTnon tne EAAGSac kat Tns Eupwnaikris Evwong

HY150 Programming, University of Crete

