
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 3: Υπολογισμός

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 3:

Computation

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

HY150 Programming, University of Crete

Abstract

Today, I’ll present the basics of computation. In
particular, we’ll discuss expressions, how to iterate

over a series of values (“iteration”), and select
between two alternative actions (“selection”). I’ll

also show how a particular sub-computation can be
named and specified separately as a function. To be
able to perform more realistic computations, I will

introduce the vector type to hold sequences of
values.

Selection, Iteration, Function, Vector

Lecture: Computation, Slide 6 HY150 Programming, University of Crete

Overview

Computation

What is computable? How best to compute it?

Abstractions, algorithms, heuristics, data structures

Language constructs and ideas

Sequential order of execution

Expressions and Statements

Selection

Iteration

Functions

Vectors

Lecture: Computation, Slide 7 HY150 Programming, University of Crete

You already know most of this
• Note:

• You know how to do arithmetic

• d = a+b*c

• You know how to select

“if this is true, do that; otherwise do something else ”

• You know how to “iterate”

• “do this until you are finished”

• “do that 100 times”

• You know how to do functions

• “go ask Joe and bring back the answer”

• “hey Joe, calculate this for me and send me the answer”

• What I will show you today is mostly just vocabulary and syntax for
what you already know

Lecture: Computation, Slide 8 HY150 Programming, University of Crete

Computation

• Input: from keyboard, files, other input devices, other programs, other parts of a
program

• Computation – what our program will do with the input to produce the output.

• Output: to screen, files, other output devices, other programs, other parts of a
program

(input) data (output) data

data

Code, often messy,

often a lot of code

Lecture: Computation, Slide 9 HY150 Programming, University of Crete

Computation
• Our job is to express computations

• Correctly

• Simply

• Efficiently

• One tool is called Divide and Conquer

• to break up big computations into many little ones

• Another tool is Abstraction

• Provide a higher-level concept that hides detail

• Organization of data is often the key to good code

• Input/output formats

• Protocols

• Data structures

• Note the emphasis on structure and organization

• You don’t get good code just by writing a lot of statements

Lecture: Computation, Slide 10 HY150 Programming, University of Crete

Language features
• Each programming language feature exists to express a

fundamental idea

• For example

• + : addition

• * : multiplication

• if (expression) statement else statement ; selection

• while (expression) statement ; iteration

• f(x); function/operation

• …

• We combine language features to create programs

Lecture: Computation, Slide 11 HY150 Programming, University of Crete

Expressions
// compute area:

int length = 20; // the simplest expression: a literal (here, 20)

 // (here used to initialize a variable)

int width = 40;

int area = length*width; // a multiplication

int average = (length+width)/2; // addition and division

The usual rules of precedence apply:

 a*b+c/d means (a*b)+(c/d) and not a*(b+c)/d.

If in doubt, parenthesize. If complicated, parenthesize.

Don’t write “absurdly complicated” expressions:

 a*b+c/d*(e-f/g)/h+7 // too complicated

Choose meaningful names.

Lecture: Computation, Slide 12 HY150 Programming, University of Crete

Expressions

• Expressions are made out of operators and operands

• Operators specify what is to be done

• Operands specify the data for the operators to work with

• Boolean type: bool (true and false)

• Equality operators: = = (equal), != (not equal)

• Logical operators: && (and), || (or), ! (not)

• Relational operators: < (less than), > (greater than), <=, >=

• Character type: char (e.g., 'a', '7', and '@')

• Integer types: short, int, long

• arithmetic operators: +, -, *, /, % (remainder)

• Floating-point types: e.g., float, double (e.g., 12.45 and 1.234e3)

• arithmetic operators: +, -, *, /

Lecture: Computation, Slide 13 HY150 Programming, University of Crete

Common Operators

Lecture: Computation, Slide 14 HY150 Programming, University of Crete

Concise Operators

• For many binary operators, there are (roughly) equivalent

more concise operators

• For example

• a += c means a = a+c

• a *= scale means a = a*scale

• ++a means a += 1

 or a = a+1

• “Concise operators” are generally better to use

 (clearer, express an idea more directly)

Lecture: Computation, Slide 15 HY150 Programming, University of Crete

Conversions

• We can “mix” different types in expressions

• E.g. 2.5 / 2 is a double divided by an int

• Is it integer of floating point division?

• If necessary the compiler converts (“promotes”) int

operands to double or char operands to int

• For example

• double d = 2.5;

• int i=2;

• double d2 = d/i; // d2 == 1.25

• int i2 = d/i; //i2 == 1

Lecture: Computation, Slide 16 HY150 Programming, University of Crete

Statements
• A statement is

• an expression statement is an expression followed by a semicolon, or

• a declaration, or

• a “control statement” that determines the flow of control

• For example
• a = b;

• double d2 = 2.5;

• if (x == 2) y = 4;

• while (cin >> number) numbers.push_back(number);

• int average = (length+width)/2;

• return x;

• If (x == 5) ;

• You may not understand all of these just now, but you will …

Lecture: Computation, Slide 17 HY150 Programming, University of Crete

Selection: if
• Sometimes we must select between alternatives

• For example, suppose we want to identify the larger of two values.

• We can do this with an if statement

 if (a<b) // Note: No semicolon here

 max = b;

 else // Note: No semicolon here

 max = a;

• The syntax is

 if (condition)

 statement-1 // if the condition is true, do statement-1

 else

 statement-2 // if not, do statement-2

Lecture: Computation, Slide 18 HY150 Programming, University of Crete

Selection: if-statement examples

Lecture: Computation, Slide 19 HY150 Programming, University of Crete

Selection: switch
• Clearer than many nested if-statements

• A selection based on a comparison of a value against several constants

Lecture: Computation, Slide 20 HY150 Programming, University of Crete

Selection: switch technicalities
• The value on which we switch must be of an integer, char or enumeration type

(cannot switch on a string)

• The values in case labels must be constant expressions (no variables)

• Cannot use same value for two case labels

• Cannot use several case labels for a single case

• Don’t forget to end each case with a break

Lecture: Computation, Slide 21 HY150 Programming, University of Crete

Iteration (while loop)
• The world’s first “real program” running on a stored-program

computer (David Wheeler, Cambridge, May 6, 1949)

// calculate and print a table of squares 0-99:

int main()

{

 int i = 0;

 while (i<100) {

 cout << i << '\t' << square(i) << '\n';

 ++i ; // increment i

 }

}

// (No, it wasn’t actually written in C++ .)

Lecture: Computation, Slide 22 HY150 Programming, University of Crete

Iteration (while loop)
• What it takes

• A loop variable (control variable); here: i

• Initialize the control variable; here: int i = 0

• A termination criterion; here: if i<100 is false, terminate

• Increment the control variable; here: ++i

• Something to do for each iteration; here: cout << …

{

 int i = 0;

 while (i<100) {

 cout << i << '\t' << square(i) << '\n';

 ++i ; // increment i

 }

}

• a sequence of statements inside curly braces: { } is called a block or compound
statement

Lecture: Computation, Slide 23 HY150 Programming, University of Crete

Iteration (for loop)

• Another iteration form: the for loop

• You can collect all the control
information in one place, at the top,
where it’s easy to see

for (int i = 0; i<100; ++i) {

 cout << i << '\t' << square(i) << '\n';

}

That is,

for (initialize; condition ; increment)

controlled statement

Note: what is square(i)?

{
int i = 0;
while (i<100) {
 cout << i << '\t' << square(i) << '\n';
 ++i ; // increment i
}

}

Lecture: Computation, Slide 24 HY150 Programming, University of Crete

Selection

programming

summary

Lecture: Computation, Slide 25 HY150 Programming, University of Crete

Repetition

(iteration)

programming

summary

Lecture: Computation, Slide 26 HY150 Programming, University of Crete

Functions

• But what was square(i)?

• A call of the function square()

int square(int x)

{

 return x*x;

 }

• We define a function when we want to separate a computation
because it

• can be separated as a named sequence of statements

• is logically separate

• makes the program text clearer (by naming the computation)

• is useful in more than one place in our program

• eases testing, distribution of labor, and maintenance

Lecture: Computation, Slide 27 HY150 Programming, University of Crete

Control Flow
int main()

{

 i=0;

 while (i<100)

 {

 square(i)

 }

}

int square(int x)

{

 return x * x;

 }

i<100

i==100

Lecture: Computation, Slide 28 HY150 Programming, University of Crete

Functions
Our function

int square(int x)

{

 return x*x;

}

is an example of

Return_type function_name (Parameter list)

 // (type name, etc.)

{

 // use each parameter in code

 return some_value; // of Return_type

}

Lecture: Computation, Slide 29 HY150 Programming, University of Crete

Another Example
• Earlier we looked at code to find the larger of two values. Here is a

function that compares the two values and returns the larger value.

 int max(int a, int b) // this function takes 2 parameters

 {

if (a<b)

 return b;

else

 return a;

}

int x = max(7, 9); // x becomes 9

int y = max(19, -27); // y becomes 19

int z = max(20, 20); // z becomes 20

Lecture: Computation, Slide 30 HY150 Programming, University of Crete

Data for Iteration - Vector
• To do just about anything of interest, we need a collection of data to work on. We can store this data

in a vector. For example:

// read some temperatures into a vector:

int main()

{

 vector<double> temps; // declare a vector of type double to store
 // temperatures – like 62.4

 double temp; // a variable for a single temperature value

 while (cin>>temp) // cin reads a value and stores it in temp

 temps.push_back(temp); // store the value of temp in the vector

 // … do something …

}

// cin>>temp will return true until we reach the end of file or encounter

// something that isn’t a double: like the word “end”

Lecture: Computation, Slide 31 HY150 Programming, University of Crete

Vector

• Vector is the most useful standard library data type

• a vector<T> holds an sequence of values of type T

• Think of a vector this way

 A vector named v contains 5 elements: {1, 4, 2, 3, 5}:

1 4 2 3 5

5 v:

v’s elements:

v[0] v[1] v[2] v[3] v[4]

size()

Lecture: Computation, Slide 32 HY150 Programming, University of Crete

Growing a vector
vector<int> v; // start off empty

v.push_back(1); // add an element with the value 1

v.push_back(4); // add an element with the value 4 at end (“the back”)

v.push_back(3); // add an element with the value 3 at end (“the back”)

 v[0] v[1] v[2]

0 v:

3

2

1 1

4 1

3 4 1

v:

v:

v:

Lecture: Computation, Slide 33 HY150 Programming, University of Crete

Vectors
• Once you get your data into a vector you can easily manipulate it:

// compute mean (average) and median temperatures:

int main()

{

 vector<double> temps; // temperatures in Fahrenheit, e.g. 64.6

 double temp;

 while (cin>>temp) temps.push_back(temp); // read and put into vector

 double sum = 0;

 for (int i = 0; i< temps.size(); ++i) sum += temps[i];

 // sums temperatures

 cout << "Mean temperature: " << sum/temps.size() << endl;

 sort(temps.begin(),temps.end());

 cout << "Median temperature: " << temps[temps.size()/2] << endl;

}

Lecture: Computation, Slide 34 HY150 Programming, University of Crete

Combining Language Features
• You can write many new programs by combining

language features, built-in types, and user-defined
types in new and interesting ways.

• So far, we have

• Variables and literals of types bool, char, int, double

• vector, push_back(), [] (subscripting)

• !=, ==, =, +, -, +=, <, &&, ||, !

• max(), sort(), cin>>, cout<<

• if, for, while

• You can write a lot of different programs with these
language features! Let’s try to use them in a slightly different
way…

Lecture: Computation, Slide 35 HY150 Programming, University of Crete

Example – Word List
// “boilerplate” left out

 vector<string> words;

 string s;

 while (cin>>s && s != "quit") // && means AND

 words.push_back(s);

 sort(words.begin(), words.end()); // sort the words we read

 for (int i=0; i<words.size(); ++i)

 cout<<words[i]<< "\n";

 /*

 read a bunch of strings into a vector of strings, sort

 them into lexicographical order (alphabetical order),

 and print the strings from the vector to see what we have.

 */

Lecture: Computation, Slide 36 HY150 Programming, University of Crete

Word list – Eliminate Duplicates
// Note that duplicate words were printed multiple times. For

// example “the the the”. That’s tedious, let’s eliminate duplicates:

 vector<string> words;

 string s;

 while (cin>>s && s!= "quit") words.push_back(s);

 sort(words.begin(), words.end());

 for (int i=1; i<words.size(); ++i)

 if(words[i-1]==words[i])

 “get rid of words[i]” // (pseudocode)

 for (int i=0; i<words.size(); ++i) cout<<words[i]<< "\n";

// there are many ways to “get rid of words[i]”; many of them are messy

// (that’s typical). Our job as programmers is to choose a simple clean

// solution – given constraints – time, run-time, memory.

Lecture: Computation, Slide 37 HY150 Programming, University of Crete

Example (cont.) Eliminate Words!
// Eliminate the duplicate words by copying only unique words:

 vector<string> words;

 string s;

 while (cin>>s && s!= "quit") words.push_back(s);

 sort(words.begin(), words.end());

 vector<string>w2;

 if (0<words.size()) { // Note style { }

 w2.push_back(words[0]);

 for (int i=1; i<words.size(); ++i)

 if(words[i-1]!=words[i])

 w2.push_back(words[i]);

 }

 cout<< "found " << words.size()-w2.size() << " duplicates\n";

 for (int i=0; i<w2.size(); ++i) cout << w2[i] << "\n";

Lecture: Computation, Slide 38 HY150 Programming, University of Crete

Algorithm

• We just used a simple algorithm

• An algorithm is (from Google search)

• “a logical arithmetical or computational procedure that, if correctly
applied, ensures the solution of a problem.” – Harper Collins

• “a set of rules for solving a problem in a finite number of steps, as for
finding the greatest common divisor.” – Random House

• “a detailed sequence of actions to perform or accomplish some task.
Named after an Iranian mathematician, Al-Khawarizmi. Technically, an
algorithm must reach a result after a finite number of steps, …The term
is also used loosely for any sequence of actions (which may or may not
terminate).” – Webster’s

• We eliminated the duplicates by first sorting the vector
(so that duplicates are adjacent), and then copying only
strings that differ from their predecessor into another
vector.

Lecture: Computation, Slide 39 HY150 Programming, University of Crete

Ideal
Basic language features and libraries should be usable in

essentially arbitrary combinations.

We are not too far from that ideal.

 If a combination of features and types make sense, it will probably work.

 The compiler helps by rejecting some absurdities.

Lecture: Computation, Slide 40 HY150 Programming, University of Crete

Things to remember
Sequential order of execution

Expressions and Statements

Selection

 If/else, switch

Iteration

while, for

Functions

Vectors

Vector<string> words;

Lecture: Computation, Slide 41 HY150 Programming, University of Crete

The next lecture
• How to deal with errors

• Read chapter 4

Lecture: Computation, Slide 42 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete

Thank you!

