
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 5: Σύνταξη προγράμματος

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 5:

Writing a program

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

Lecture: Writing, Slide 5 HY150 Programming, University of Crete

Abstract
• This lecture and the next describe the process of designing a

program through the example of a simple “desk calculator.”

Lecture: Writing, Slide 6 HY150 Programming, University of Crete

Overview
• Some thoughts on software development

• The idea of a calculator

• Using a grammar

• Expression evaluation

• Program organization

Lecture: Writing, Slide 7 HY150 Programming, University of Crete

Building a program

• Analysis

• Refine our understanding of the problem

• Think of the final use of our program

• Design

• Create an overall structure for the program

• Implementation

• Write code

• Debug

• Test

• Go through these stages repeatedly

Lecture: Writing, Slide 8 HY150 Programming, University of Crete

Writing a program: Strategy

• What is the problem to be solved?

• Is the problem statement clear?

• Is the problem manageable, given the time, skills, and tools available?

• Try breaking it into manageable parts

• Do we know of any tools, libraries, etc. that might help?

• Yes, even this early: iostreams, vector, etc.

• Build a small, limited version solving a key part of the problem

• To bring out problems in our understanding, ideas, or tools

• Possibly change the details of the problem statement to make it manageable

• If that doesn’t work

• Throw away the first version and make another limited version

• Keep doing that until we find a version that we’re happy with

• Build a full scale solution

• Ideally by using part of our initial version

Lecture: Writing, Slide 9 HY150 Programming, University of Crete

Writing a program: Example

• I’ll build a program in stages, making lot of “typical
mistakes” along the way

• Even experienced programmers make mistakes

• Lots of mistakes; it’s a necessary part of learning

• Designing a good program is genuinely difficult

• It’s often faster to let the compiler detect gross mistakes than to
try to get every detail right the first time

• Concentrate on the important design choices

• Building a simple, incomplete version allows us to experiment
and get feedback

• Good programs are “grown”

Lecture: Writing, Slide 10 HY150 Programming, University of Crete

A simple calculator
• Given expressions as input from the keyboard, evaluate

them and write out the resulting value

• For example

• Expression: 2+2

• Result: 4

• Expression: 2+2*3

• Result: 8

• Expression: 2+3-25/5

• Result: 0

• Let’s refine this a bit more …

Lecture: Writing, Slide 11 HY150 Programming, University of Crete

Pseudo Code

• A first idea:

int main()

{

 variables // pseudo code

 while (get a line) { // what’s a line?

 analyze the expression // what does that mean?

 evaluate the expression

 print the result

 }

}

• How do we represent 45+5/7 as data?

• How do we find 45 + 5 / and 7 in an input string?

• How do we make sure that 45+5/7 means 45+(5/7) rather than (45+5)/7?

• Should we allow floating-point numbers (sure!)

• Can we have variables? v=7; m=9; v*m (later)

Lecture: Writing, Slide 12 HY150 Programming, University of Crete

A simple calculator

• Wait!

• We are just about to reinvent the wheel!

• Read Chapter 6 for more examples of dead-end approaches

• What would the experts do?

• Computers have been evaluating expressions for 50+ years

• There has to be a solution!

• What did the experts do?

• Reading is good for you

• Asking more experienced friends/colleagues can be far more effective,
pleasant, and time-effective than slogging along on your own

Lecture: Writing, Slide 13 HY150 Programming, University of Crete

Expression Grammar
• This is what the experts usually do – write a grammar:

Expression :

 Term

 Expression ‘+’ Term e.g., 1+2, (1-2)+3, 2*3+1

 Expression ‘-’ Term

Term :

 Primary

 Term ‘*’ Primary e.g., 1*2, (1-2)*3.5

 Term ‘/’ Primary

 Term ‘%’ Primary

Primary :

 Number e.g., 1, 3.5

 ‘(‘ Expression ‘)’ e.g., (1+2*3)

Number :

 floating-point literal e.g., 3.14, 0.274e1, or 42 – as defined for C++

A program is built out of Tokens (e.g., numbers and operators).

Lecture: Writing, Slide 14 HY150 Programming, University of Crete

A side trip: Grammars

• What’s a grammar?
• A set of (syntax) rules for expressions.

• The rules say how to analyze (“parse”) an expression.

• Some seem hard-wired into our brains

• Example, you know what this means:

• 2*3+4/2

• birds fly but fish swim

• You know that this is wrong:

• 2 * + 3 4/2

• fly birds fish but swim

• Why is it right/wrong?

• How do we know?

• How can we teach what we know to a computer?

Lecture: Writing, Slide 15 HY150 Programming, University of Crete

Grammars – “English”

Lecture: Writing, Slide 16 HY150 Programming, University of Crete

Grammars - expression

Lecture: Writing, Slide 17 HY150 Programming, University of Crete

Grammars - expression

Lecture: Writing, Slide 18 HY150 Programming, University of Crete

Grammars - expression

Lecture: Writing, Slide 19 HY150 Programming, University of Crete

Functions for parsing
We need functions to match the grammar rules

get() // read characters and compose tokens

 // calls cin for input

expression() // deal with + and –

 // calls term() and get()

term () // deal with *, /, and %

 // calls primary() and get()

primary() // deal with numbers and parentheses

 // calls expression() and get()

Note: each function deals with a specific part of an expression and leaves

everything else to other functions – this radically simplifies each function.

Analogy: a group of people can deal with a complex problem by each person

handling only problems in his/her own specialty, leaving the rest for
colleagues.

Lecture: Writing, Slide 20 HY150 Programming, University of Crete

Function Return Types

• What should the parser functions return?

• How about the result?

Token get(); // read characters and compose tokens

double expression(); // deal with + and –

 // return the sum (or difference)

double term (); // deal with *, /, and %

 // return the product (or …)

double primary(); // deal with numbers and parentheses

 // return the value

• What is a Token?

Lecture: Writing, Slide 21 HY150 Programming, University of Crete

What is a token?

• We want to see input as a stream of tokens

• We read characters 1 + 4*(4.5-6) (That’s 13 characters incl. 2 spaces)

• 9 tokens in that expression: 1 + 4 * (4.5 - 6)

• 6 kinds of tokens in that expression: number + * (-)

• We want each token to have two parts

• A “kind”; e.g., number

• A value; e.g., 4

• We need a type to represent this “Token” idea

• We’ll build that in the next lecture, but for now:

• get_token() gives us the next token from input

• t.kind gives us the kind of the token

• t.value gives us the value of the token

+ number

4.5

Lecture: Writing, Slide 22 HY150 Programming, University of Crete

Dealing with + and -

Expression:

 Term

 Expression ‘+’ Term // Note: every Expression starts with a Term

 Expression ‘-’ Term

double expression() // read and evaluate: 1 1+2.5 1+2+3.14 etc.

{

 double left = term(); // get the Term

 while (true) {

 Token t = get_token(); // get the next token…

 switch (t.kind) { // … and do the right thing with it

 case '+': left += term(); break;

 case '-': left -= term(); break;

 default: return left; // return the value of the expression

 }

 }

}

Lecture: Writing, Slide 23 HY150 Programming, University of Crete

Dealing with *, /, and %
double term() // exactly like expression(), but for *, /, and %

{

 double left = primary(); // get the Primary

 while (true) {

 Token t = get_token(); // get the next Token…

 switch (t.kind) {

 case '*': left *= primary(); break;

 case '/': left /= primary(); break;

 case '%': left %= primary(); break;

 default: return left; // return the value

 }

 }

}

• Oops: doesn’t compile

• % isn’t defined for floating-point numbers

Lecture: Writing, Slide 24 HY150 Programming, University of Crete

Dealing with * and /
Term :

 Primary

 Term ‘*’ Primary // Note: every Term starts with a Primary

 Term ‘/’ Primary

double term() // exactly like expression(), but for *, and /

{

 double left = primary(); // get the Primary

 while (true) {

 Token t = get_token(); // get the next Token

 switch (t.kind) {

 case '*': left *= primary(); break;

 case '/': left /= primary(); break;

 default: return left; // return the value

 }

 }

}

Lecture: Writing, Slide 25 HY150 Programming, University of Crete

Dealing with divide by 0
double term() // exactly like expression(), but for * and /

{

 double left = primary(); // get the Primary

 while (true) {

 Token t = get_token(); // get the next Token

 switch (t.kind) {

 case '*':

 left *= primary();

 break;

 case '/':

 { double d = primary();

 if (d==0) error("divide by zero");

 left /= d;

 break;

 }

 default:

 return left; // return the value

 }

 }

}

Lecture: Writing, Slide 26 HY150 Programming, University of Crete

Dealing with numbers and parentheses

 double primary() // Number or ‘(‘ Expression ‘)’

{

 Token t = get_token();

 switch (t.kind) {

 case '(': // handle ‘(’expression ‘)’

 { double d = expression();

 t = get_token();

 if (t.kind != ')') error("')' expected");

 return d;

 }

 case '8': // we use ‘8’ to represent the “kind” of a number

 return t.value; // return the number’s value

 default:

 error("primary expected");

 }

}

Lecture: Writing, Slide 27 HY150 Programming, University of Crete

Program organization

• Who calls who? (note the loop)

primary()

expression()

term()

main()

istream

cin

>>

error() Token

ostream

cout

<<

get_token()

Lecture: Writing, Slide 28 HY150 Programming, University of Crete

The program
#include "std_lib_facilities.h"

// Token stuff (explained in the next lecture)

double expression(); // declaration so that primary() can call expression()

double primary() { /* … */ } // deal with numbers and parentheses

double term() { /* … */ } // deal with * and / (pity about %)

double expression() { /* … */ } // deal with + and –

int main() { /* … */ } // on next slide

Lecture: Writing, Slide 29 HY150 Programming, University of Crete

The program – main()

int main()

try {

 while (cin)

 cout << expression() << '\n';

 keep_window_open(); // for some Windows versions

}

catch (runtime_error& e) {

 cerr << e.what() << endl;

 keep_window_open ();

 return 1;

}

catch (…) {

 cerr << "exception \n";

 keep_window_open ();

 return 2;

}

Lecture: Writing, Slide 30 HY150 Programming, University of Crete

A mystery

• 2

•

• 3

• 4

• 2 an answer

• 5+6

• 5 an answer

• X

• Bad token an answer (finally, an expected answer)

Lecture: Writing, Slide 31 HY150 Programming, University of Crete

A mystery
• 1 2 3 4+5 6+7 8+9 10 11 12

• 1 an answer

• 4 an answer

• 6 an answer

• 8 an answer

• 10 an answer

• Aha! Our program “eats” two out of three inputs

• How come?

• Let’s have a look at expression()

Lecture: Writing, Slide 32 HY150 Programming, University of Crete

Dealing with + and -

Expression:

 Term

 Expression ‘+’ Term // Note: every Expression starts with a Term

 Expression ‘-’ Term

double expression() // read and evaluate: 1 1+2.5 1+2+3.14 etc.

{

 double left = term(); // get the Term

 while (true) {

 Token t = get_token(); // get the next token…

 switch (t.kind) { // … and do the right thing with it

 case '+': left += term(); break;

 case '-': left -= term(); break;

 default: return left; // <<< doesn’t use “next token”

 }

 }

}

Lecture: Writing, Slide 33 HY150 Programming, University of Crete

Dealing with + and -

• So, we need a way to “put back” a token!
• Back into what?

• “the input,” of course; that is, we need an input stream of tokens

double expression() // deal with + and -

{

 double left = term();

 while (true) {

 Token t = ts.get(); // get the next token from a “token stream”

 switch (t.kind) {

 case '+': left += term(); break;

 case '-': left -= term(); break;

 default: ts.putback(t); // put the unused token back

 return left;

 }

 }

}

Lecture: Writing, Slide 34 HY150 Programming, University of Crete

Dealing with * and /
• Now make the same change to term()

double term() // deal with * and /

{

 double left = primary();

 while (true) {

 Token t = ts.get(); // get the next Token from input

 switch (t.kind) {

 case '*':

 // deal with *

 case '/':

 // deal with /

 default:

 ts.putback(t); // put unused token back into input stream

 return left;

 }

 }

}

Lecture: Writing, Slide 35 HY150 Programming, University of Crete

The program

• It “sort of works”

• That’s not bad for a first try

• Well, second try

• Well, really, the fourth try; see the book

• But “sort of works” is not good enough

• When the program “sort of works” is when the work (and fun)

really start

• Now we can get feedback!

Lecture: Writing, Slide 36 HY150 Programming, University of Crete

Another mystery
• 2 3 4 2+3 2*3

• 2 an answer

• 3 an answer

• 4 an answer

• 5 an answer

• What! No “6” ?

• The program looks ahead one token

• It’s waiting for the user

• So, we introduce a “print result” command

• While we’re at it, we also introduce a “quit” command

Lecture: Writing, Slide 37 HY150 Programming, University of Crete

The main() program

int main()

{

 double val = 0;

 while (cin) {

 Token t = ts.get(); // rather than get_token()

 if (t.kind == 'q') break; // ‘q’ for “quit”

 if (t.kind == ';') // ‘;’ for “print now”

 cout << val << '\n'; // print result

 else

 ts. putback(t); // put a token back into the input stream

 val = expression(); // evaluate

 }

 keep_window_open();

}

// … exception handling …

Lecture: Writing, Slide 38 HY150 Programming, University of Crete

Now the calculator is minimally useful

• 2;

• 2 an answer

• 2+3;

• 5 an answer

• 3+4*5;

• 23 an answer

• q

Lecture: Writing, Slide 39 HY150 Programming, University of Crete

Next lecture
• Completing a program

• Tokens

• Recovering from errors

• Cleaning up the code

• Code review

• Testing

Lecture: Writing, Slide 40 HY150 Programming, University of Crete

For your assignment 1
• Study all the notes so far

• Type-use/Compile/run the provided source code

• Study the book chapters (if you can)

we want to actively discourage:

• (1) design the complete program,

• write all the code,

• then test it

• (2) just start coding;

• add features and reorganize as needed;

• ship when it looks good

Lecture: Writing, Slide 41 HY150 Programming, University of Crete

For your assignment 1
• Understanding the problem you would like your program to

solve is key to a good program – after all, a program that solves
the wrong problem is of little use, however elegant it may be.

• Analysis – write a description of what should be done – this is
called a set of requirements or a specification.

• Design – an overall structure for the system including which
parts the implementation should have and how they should
communicate with each other.

• Break the problem you want to solve into manageable parts,
even the smallest program for solving a real problem is large
enough to be subdivided.

• Use pseudo-code in the early stages of design when we are not
yet certain exactly what our notation means.

Lecture: Writing, Slide 42 HY150 Programming, University of Crete

How to pragmatically deal with

errors
• Use Lecture 4 notes:

• C++ exceptions, ways to deal with compile, link and runtime errors

• Study again the notes + reference pages/book

• Use the online library: Google!

• “your term” filetype:cpp

• E.g. if(cin) filetype:cpp

• Work together with friends/colleagues

• Post an error report to the online forum, specifying:

• Platform + Compiler: e.g. g++, Linux

• Complete part of the source code that the problem occurs, variable declaration,
initialization, code fragment that the error occurs etc.

• Be careful not to disclose the solution to an assignment like that

• Complete copy of the Compiler/linker/system error messages or warnings

Lecture: Writing, Slide 43 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

Lecture: Writing, Slide 44 HY150 Programming, University of Crete

Thank you!

