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- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του 

εκπαιδευτικού έργου του διδάσκοντα. 

-   Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο 

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού 

υλικού.  
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«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς 
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Abstract 
• This lecture and the next describe the process of designing a 

program through the example of a simple “desk calculator.” 
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Overview 
• Some thoughts on software development 

• The idea of a calculator 

• Using a grammar 

• Expression evaluation 

• Program organization 
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Building a program 

• Analysis 

• Refine our understanding of the problem 

• Think of the final use of our program 

• Design 

• Create an overall structure for the program 

• Implementation 

• Write code 

• Debug 

• Test 

• Go through these stages repeatedly 
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Writing a program: Strategy 

• What is the problem to be solved? 

• Is the problem statement clear? 

• Is the problem manageable, given the time, skills, and tools available? 

• Try breaking it into manageable parts 

• Do we know of any tools, libraries, etc. that might help? 

• Yes, even this early: iostreams, vector, etc. 

• Build a small, limited version solving a key part of the problem 

• To bring out problems in our understanding, ideas, or tools 

• Possibly change the details of the problem statement to make it manageable 

• If that doesn’t work 

• Throw away the first version and make another limited version 

• Keep doing that until we find a version that we’re happy with 

• Build a full scale solution 

• Ideally by using part of our initial version 
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Writing a program: Example 

• I’ll build a program in stages, making lot of  “typical 
mistakes” along the way 

• Even experienced programmers make mistakes 

• Lots of mistakes; it’s a necessary part of learning 

• Designing a good program is genuinely difficult 

• It’s often faster to let the compiler detect gross mistakes than to 
try to get every detail right the first time 

• Concentrate on the important design choices 

• Building a simple, incomplete version allows us to experiment 
and get feedback 

• Good programs are “grown” 
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A simple calculator 
• Given expressions as input from the keyboard, evaluate 

them and write out the resulting value 

• For example 

• Expression: 2+2 

• Result: 4 

• Expression: 2+2*3 

• Result: 8 

• Expression: 2+3-25/5 

• Result: 0 

 

• Let’s refine this a bit more … 
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Pseudo Code 

• A first idea: 
 

int main()   

{ 

 variables   // pseudo code 

 while (get a line) {  // what’s a line? 

  analyze the expression // what does that mean? 

  evaluate the expression 

  print the result 

 } 

} 
 

• How do we represent 45+5/7 as data? 

• How do we find 45   +   5     /    and   7   in an input string? 

• How do we make sure that 45+5/7 means 45+(5/7) rather than (45+5)/7? 

• Should we allow floating-point numbers (sure!) 

• Can we have variables?   v=7; m=9; v*m (later) 
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A simple calculator 

• Wait! 

• We are just about to reinvent the wheel! 

• Read Chapter 6 for more examples of dead-end approaches 

• What would the experts do? 

• Computers have been evaluating expressions for 50+ years 

• There has  to be a solution! 

• What did  the experts do? 

• Reading is good for you 

• Asking more experienced friends/colleagues can be far more effective, 
pleasant, and time-effective than slogging along on your own 
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Expression Grammar 
• This is what the experts usually do – write a grammar: 
 

Expression : 

 Term 

 Expression ‘+’ Term   e.g., 1+2,   (1-2)+3,   2*3+1 

 Expression ‘-’ Term 

 

Term : 

 Primary 

 Term ‘*’ Primary    e.g., 1*2,   (1-2)*3.5 

 Term ‘/’ Primary 

 Term ‘%’ Primary 

 

Primary : 

 Number    e.g., 1,   3.5 

 ‘(‘ Expression ‘)’  e.g., (1+2*3) 

 

Number : 

 floating-point literal  e.g., 3.14, 0.274e1, or 42 – as defined for C++ 

 

A program is built out of Tokens (e.g., numbers and operators). 
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A side trip: Grammars 

• What’s a grammar?   
• A set of  (syntax) rules for expressions. 

• The rules say how to analyze (“parse”) an expression. 

• Some seem hard-wired into our brains 

• Example, you know what this means: 

• 2*3+4/2 

• birds fly but fish swim 

• You know that this is wrong: 

• 2 * + 3 4/2 

• fly birds fish but swim 

• Why is it right/wrong? 

• How do we know? 

• How can we teach what we know to a computer? 
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Grammars – “English” 
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Grammars - expression 
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Grammars - expression 
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Grammars - expression 
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Functions for parsing 
We need functions to match the grammar rules 
 

get() // read characters and compose tokens 

   // calls cin for input 
 

expression() // deal with + and – 

   // calls term() and get() 
 

term () // deal with *, /, and % 

   // calls primary() and get() 
 

primary() // deal with numbers and parentheses 

   // calls expression() and get() 
 

Note: each function deals with a specific part of an expression and leaves 

everything else to other functions – this radically simplifies each function. 
 

Analogy: a group of people can deal with a complex problem by each person 

handling only problems in his/her own specialty, leaving the rest for 
colleagues. 
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Function Return Types 

• What should the parser functions return?  

• How about the result? 
 

 

Token get();  // read characters and compose tokens 

double expression(); // deal with + and – 

    //  return the sum (or difference) 

double term (); // deal with *, /, and % 

    //  return the product (or …) 

double primary(); // deal with numbers and parentheses 

    // return the value 
 

 

• What is a Token? 
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What is a token? 

• We want to see input as a stream of tokens 

• We read characters 1 + 4*(4.5-6)   (That’s 13 characters incl. 2 spaces) 

• 9 tokens in that expression:    1   +   4   *   (   4.5   -   6   ) 

• 6 kinds of tokens in that expression:   number    +    *    (    -    ) 

• We want each token to have two parts 

• A “kind”; e.g., number 

• A value; e.g., 4 

• We need a type to represent this “Token” idea 

• We’ll build that in the next lecture, but for now: 

• get_token() gives us the next token from input 

• t.kind gives us the kind of the token 

• t.value gives us the value of the token 

+ number 

4.5 
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Dealing with + and - 

Expression: 

 Term 

 Expression ‘+’ Term // Note: every Expression starts with a Term 

 Expression ‘-’ Term 
 

 

double expression() // read and evaluate: 1   1+2.5   1+2+3.14  etc. 

{ 

 double left = term();    // get the Term 

 while (true) { 

  Token t = get_token();  // get the next token… 

  switch (t.kind) {   // … and do the right thing with it 

  case '+':     left += term(); break; 

  case '-':     left -= term(); break; 

  default:     return left;  // return the value of the expression 

  } 

 } 

} 
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Dealing with *, /, and % 
double term() // exactly like expression(), but for *, /, and  % 

{ 

 double left = primary();   // get the Primary 

 while (true) { 

  Token t = get_token();  // get the next Token… 

  switch (t.kind) {  

  case '*':     left *= primary(); break; 

  case '/':     left /= primary(); break; 

  case '%':   left %= primary(); break; 

  default:     return left;  // return the value 

  } 

 } 

} 
 

• Oops: doesn’t compile 

• % isn’t defined for floating-point numbers 
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Dealing with * and / 
Term : 

 Primary 

 Term ‘*’ Primary  // Note: every Term starts with a Primary 

 Term ‘/’ Primary 

 

double term() // exactly like expression(), but for *, and / 

{ 

 double left = primary();   // get the Primary 

 while (true) { 

  Token t = get_token();  // get the next Token 

  switch (t.kind) {  

  case '*':     left *= primary(); break; 

  case '/':     left /= primary(); break; 

  default:     return left;  // return the value 

  } 

 } 

} 
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Dealing with divide by 0 
double term() // exactly like expression(), but for * and  / 

{ 

 double left = primary();   // get the Primary 

 while (true) { 

  Token t = get_token(); // get the next Token 

  switch (t.kind) {  

  case '*': 

   left *= primary(); 

   break; 

  case '/': 

  { double d = primary(); 

   if  (d==0) error("divide by zero"); 

   left /= d; 

   break; 

  } 

  default:   

   return left; // return the value 

  } 

 } 

} 
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Dealing with numbers and parentheses 

 double primary() // Number or ‘(‘ Expression ‘)’ 

{ 

 Token t = get_token(); 

 switch (t.kind) { 

 case '(':          // handle ‘(’expression ‘)’ 

 { double d = expression(); 

  t = get_token(); 

  if (t.kind != ')') error("')' expected"); 

  return d; 

 } 

 case '8':  // we use ‘8’ to represent the “kind” of a number 

  return t.value; // return the number’s value 

 default: 

  error("primary expected"); 

 } 

} 
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Program organization 

• Who calls who? (note the loop) 

primary() 

expression() 

term() 

main() 

istream 

cin 

>> 

error() Token 

ostream 

cout 

<< 

get_token() 
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The program 
#include "std_lib_facilities.h" 

 

// Token stuff (explained in the next lecture) 

 

double expression(); // declaration so that primary() can call  expression() 

 

double primary() { /* … */ } // deal with numbers and parentheses 

double term() { /* … */ } // deal with * and / (pity about %) 

double expression() { /* … */ } // deal with + and – 

 

int main() { /* … */ }  // on next slide 
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The program – main() 

int main() 

try { 

 while (cin) 

   cout << expression() << '\n'; 

 keep_window_open();  // for some Windows versions 

} 

catch (runtime_error& e) { 

 cerr << e.what() << endl; 

 keep_window_open (); 

 return 1; 

} 

catch (…) { 

 cerr << "exception \n"; 

 keep_window_open (); 

 return 2; 

} 
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A mystery 

• 2 

•   

• 3 

• 4 

• 2   an answer 

• 5+6 

• 5   an answer 

• X 

• Bad token  an answer (finally, an expected answer) 
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A mystery 
• 1 2 3 4+5 6+7 8+9 10 11 12 

• 1   an answer 

• 4   an answer 

• 6   an answer 

• 8   an answer 

• 10   an answer 

 

• Aha! Our program “eats” two out of three inputs 

• How come? 

• Let’s have a look at expression() 
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Dealing with + and - 

Expression: 

 Term 

 Expression ‘+’ Term // Note: every Expression starts with a Term 

 Expression ‘-’ Term 
 

 

double expression() // read and evaluate: 1   1+2.5   1+2+3.14  etc. 

{ 

 double left = term();    // get the Term 

 while (true) { 

  Token t = get_token();  // get the next token… 

  switch (t.kind) {   // … and do the right thing with it 

  case '+':     left += term(); break; 

  case '-':     left -= term(); break; 

  default:     return left;  // <<< doesn’t use “next token” 

  } 

 } 

} 
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Dealing with + and - 

• So, we need a way to “put back” a token! 
• Back into what? 

• “the input,” of course; that is, we need an input stream of tokens 
 

 

double expression() // deal with + and - 

{ 

 double left = term();   

 while (true) { 

  Token t = ts.get();      // get the next token from a “token stream” 

  switch (t.kind) {   

  case '+':     left += term(); break; 

  case '-':     left -= term(); break; 

  default:     ts.putback(t);  // put the unused token back 

       return left; 

  } 

 } 

} 
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Dealing with * and / 
• Now make the same change to term() 

 

double term() // deal with * and  / 

{ 

 double left = primary();    

 while (true) { 

  Token t = ts.get(); // get the next Token from input 

  switch (t.kind) {  

  case '*': 

   // deal with * 

  case '/': 

   // deal with / 

  default: 

   ts.putback(t); // put unused token back into input stream 

   return left; 

  } 

 } 

} 
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The program 

• It “sort of works” 

• That’s not bad for a first try 

• Well, second try 

• Well, really, the fourth try; see the book 

• But “sort of works” is not good enough 

• When the program “sort of works” is when the work (and fun) 

really start 

• Now we can get feedback! 
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Another mystery 
• 2 3 4 2+3 2*3 

• 2   an answer 

• 3   an answer 

• 4   an answer 

• 5   an answer 

 

• What! No “6” ? 

• The program looks ahead one token 

• It’s waiting for the user 

• So, we introduce a “print result” command 

• While we’re at it, we also introduce a “quit” command 
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The main() program 

int main() 

{ 

 double val = 0; 

 while (cin) { 

  Token t = ts.get(); // rather than get_token() 

  if (t.kind == 'q') break;  // ‘q’ for “quit” 

  if (t.kind == ';')   // ‘;’ for “print now” 

   cout <<  val << '\n'; // print result 

  else 

   ts. putback(t); // put a token back into the input stream 

  val = expression(); // evaluate 

 } 

 keep_window_open(); 

} 

// … exception handling … 
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Now the calculator is minimally useful 

• 2; 

• 2   an answer 

• 2+3; 

• 5   an answer 

• 3+4*5; 

• 23   an answer 

• q 
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Next lecture 
• Completing a program 

• Tokens 

• Recovering from errors 

• Cleaning up the code 

• Code review 

• Testing 
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For your assignment 1 
• Study all the notes so far 

• Type-use/Compile/run the provided source code 

• Study the book chapters (if you can) 

 

we want to actively discourage:  

• (1) design the complete program,  

• write all the code,  

• then test it 

• (2) just start coding;  

• add features and reorganize as needed;  

• ship when it looks good  
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For your assignment 1 
• Understanding the problem you would like your program to 

solve is key to a good program – after all, a program that solves 
the wrong problem is of little use, however elegant it may be.  

• Analysis – write a description of what should be done – this is 
called a set of requirements or a specification.  

• Design – an overall structure for the system including which 
parts the implementation should have and how they should 
communicate with each other.  

• Break the problem you want to solve into manageable parts, 
even the smallest program for solving a real problem is large 
enough to be subdivided.  

• Use pseudo-code in the early stages of design when we are not 
yet certain exactly what our notation means.  
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How to pragmatically deal with 

errors 
• Use Lecture 4 notes:  

• C++ exceptions, ways to deal with compile, link and runtime errors 

• Study again the notes + reference pages/book 

• Use the online library: Google! 

• “your term” filetype:cpp  

• E.g. if(cin) filetype:cpp 

• Work together with friends/colleagues 

• Post an error report to the online forum, specifying: 

• Platform + Compiler: e.g. g++, Linux 

• Complete part of the source code that the problem occurs, variable declaration, 
initialization, code fragment that the error occurs etc. 

• Be careful not to disclose the solution to an assignment like that 

• Complete copy of the Compiler/linker/system error messages or warnings 
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Thank you! 


