AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AIGAEEN 5. ZuvTa¢n TTPOYPAMMOATOG

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete



Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn siocayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete



XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [ oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY  EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete



HY-150 Ilpoypoppaticuog
CS-150 Programming

Lecture 3:
Writing a program

G. Papagiannakis

HY150 Programming, University of Crete



ADbstract

- This lecture and the next describe the process of designing a
program through the example of a simple “desk calculator.”

HY150 Programming, University of Crete Lecture: Writing, Slide 5



Overview

- Some thoughts on software development
- The i1dea of a calculator

- Using a grammar

- EXpression evaluation

- Program organization

HY150 Programming, University of Crete Lecture: Writing, Slide 6



Building a program

- Analysis

- Refine our understanding of the problem

- Think of the final use of our program

- Design

- Create an overall structure for the program
- Implementation

- Write code

- Debug

. Test

- Go through these stages repeatedly

HY150 Programming, University of Crete Lecture: Writing, Slide 7



Writing a program: Strategy

- What Is the problem to be solved?
- |Is the problem statement clear?
- |Is the problem manageable, given the time, skills, and tools available?
Try breaking it into manageable parts
- Do we know of any tools, libraries, etc. that might help?
- Yes, even this early: iostreams, vector, etc.
Build a small, limited version solving a key part of the problem
- To bring out problems in our understanding, ideas, or tools
- Possibly change the details of the problem statement to make it manageable
If that doesn’t work
- Throw away the first version and make another limited version
- Keep doing that until we find a version that we're happy with
Build a full scale solution
- ldeally by using part of our initial version

HY150 Programming, University of Crete Lecture: Writing, Slide 8



Writing a program: Example

- I'll build a program in stages, making lot of “typical
mistakes” along the way
- Even experienced programmers make mistakes
- Lots of mistakes; it's a necessary part of learning
- Designing a good program is genuinely difficult

- It's often faster to let the compiler detect gross mistakes than to
try to get every detail right the first time

- Concentrate on the important design choices

- Building a simple, incomplete version allows us to experiment
and get feedback

- (ood programs are “grown”

HY150 Programming, University of Crete Lecture: Writing, Slide 9



A simple calculator

- Glven expressions as input from the keyboard, evaluate
them and write out the resulting value

- For example
- EXxpression: 2+2
- Result: 4
- EXxpression: 2+2*3
- Result: 8
- EXxpression: 2+3-25/5
- Result: 0

« Let’s refine this a bit more ...

HY150 Programming, University of Crete Lecture: Writing, Slide 10



Pseudo Code

- A first idea:
Int main()
{
variables // pseudo code
while (get a line) { // what’s a line?

analyze the expression // what does that mean?
evaluate the expression
print the result

}
}

- How do we represent 45+5/7 as data?

- Howdowefind45 + 5 / and 7 inan inputstring?

- How do we make sure that 45+5/7 means 45+(5/7) rather than (45+5)/7?
- Should we allow floating-point numbers (sure!)

- Can we have variables? v=7; m=9; v*m (later)

HY150 Programming, University of Crete Lecture: Writing, Slide 11



A simple calculator

- Wait!
- We are just about to reinvent the wheel!
- Read Chapter 6 for more examples of dead-end approaches

- What would the experts do?
- Computers have been evaluating expressions for 50+ years
- There has to be a solution!

- What did the experts do?
- Reading is good for you

- Asking more experienced friends/colleagues can be far more effective,
pleasant, and time-effective than slogging along on your own

HY150 Programming, University of Crete Lecture: Writing, Slide 12



Expression Grammar

- This is what the experts usually do — write a grammatr:

Expression :
Term
Expression ‘+’ Term e.g., 1+2, (1-2)+3, 2*3+1
Expression ‘> Term

Term:
Primary
Term “*’ Primary e.g.,, 1*2, (1-2)*3.5
Term ‘/ Primary
Term ‘9%’ Primary

Primary :
Number e.g.,1, 35
‘(“ Expression ‘)’ e.g., (1+2*3)
Number :
floating-point literal e.g., 3.14, 0.274el, or 42 — as defined for C++

A program is built out of Tokens (e.g., numbers and operators).

Lecture: Writing, Slide 13

HY150 Programming, University of Crete



A side trip: Grammars

- What's a grammar?

- A set of (syntax) rules for expressions.

- The rules say how to analyze (“parse”) an expression.
Some seem hard-wired into our brains

Example, you know what this means:
. 2*3+4/2
- birds fly but fish swim
You know that this Is wrong:
. 2% +34/2
- fly birds fish but swim
Why is it right/wrong?
How do we know?
How can we teach what we know to a computer?

HY150 Programming, University of Crete Lecture: Writing, Slide 14



Grammars — "English”

Parsing a simple English sentence

Sentence :
Noun Verb Sentence

Sentence Conjundion Sentence

Conuncton
ﬂEnd'l'l
“or” Sentence Conjuncion Senitenice

“but” 4 4 3

Moun :
“hards"
“fish™
T

-§

Verb MNoun Verb
&

Verb :
“rules” “birds™ “fly" “but" “f1sh"™ “gwim
n:ﬂ:r_'ﬂ

. m

Wl

HY150 Programming, University of Crete Lecture: Writing, Slide 15



Grammars - expression

Parsing the number 2
Expression: Expression
Term
Expression “+" Term
Expression =" Term
Term: Term
Primary 1-
Term “*™ Primary Primary
Term “7 Primary i
Term “%" Primary
Primary: DMumber
MNumber [
“(" Expression “)"
MNumber: floating-point-literal
Hoating-point-literal ,T
2

HY150 Programming, University of Crete Lecture: Writing, Slide 16



Grammars - expression

Parsing the expression 2 + 3

Expression
4
Exp%ﬁﬂ;m: Exprn.l.ssi-:-u
Expression “+" Term T
Expression “-" Term Temm Term
Term: T T
Primary Pri Py
Term “*" Primary i i
Term “™ Primary
Term “%" Primary
Primary: Mumber Mumber
Mumber ] !
*(" Empression *)
Mumber:
foating-point-literal
2 + &

HY150 Programming, University of Crete Lecture: Writing, Slide 17



Grammars - expression

Parsing the expression 45 + 11.5 % 7

Etprisai-:-n
epocason: Exprission et
Expression “+" Term r I
Expression “-" “lerm Term Term
Term: r T
Primary Primary j '
Term **" Primary Ay Frimary Primary
“Term %/ Primary
“Term “%” Primary
Primary: MNumber Mumber MNumber
MNumber & A [
“(" Expression “)"
MNumber:
Hoaung-point-hiteral
45 + 11.5 o 7

HY150 Programming, University of Crete Lecture: Writing, Slide 18



Functions for parsing

We need functions to match the grammar rules

get() // read characters and compose tokens
// calls cin for input

expression() // deal with + and —
// calls term() and get()

term () /[ deal with *, /, and %
/[ calls primary() and get()

primary() // deal with numbers and parentheses
/[ calls expression() and get()

Note: each function deals with a specific part of an expression and leaves
everything else to other functions — this radically simplifies each function.

Analogy: a group of people can deal with a complex problem by each person

hanc"m Sggy problems in his/her own specialty, leaving the rest for

HY150 Programming, University of Crete Lecture: Writing, Slide 19



Function Return Types

- What should the parser functions return?
- How about the result?

Token get(); // read characters and compose tokens
double expression(); // deal with + and —

Il return the sum (or difference)
double term (); /[ deal with *, /, and %

// return the product (or ...)
double primary(); /[ deal with numbers and parentheses

// return the value

« What Is a Token?

HY150 Programming, University of Crete Lecture: Writing, Slide 20



mE \\Vhat Is a token?
5|

- We want to see input as a stream of tokens
- We read characters 1 + 4*(4.5-6) (That’s 13 characters incl. 2 spaces)
- 9 tokens in that expression: 1 + 4 * (45 - 6 )
- 6 kinds of tokens in that expression: number + * ( - )
- We want each token to have two parts
- A “Kind”; e.g., number
- Avalue;e.g., 4
- We need a type to represent this “Token” idea
- We'll build that in the next lecture, but for now:
- get_token() gives us the next token from input
- t.kind gives us the kind of the token

- t.value gives us the value of the token

HY150 Programming, University of Crete Lecture: Writing, Slide 21



Dealing with + and -

Expression:
Term

Expression ‘+" Term // Note: every Expression starts with a Term
Expression -* Term

double expression() // read and evaluate: 1 1+2.5 1+2+3.14 etc.
{
double left = term(); I/ get the Term
while (true) {
Token t = get_token(); Il get the next token...
switch (t.kind) { Il ... and do the right thing with it
case '+': left +=term(); break;
case '-':  left -=term(); break;
default: return left; /] return the value of the expression
}

HY150 Programming, University of Crete Lecture: Writing, Slide 22



Dealing with *, /, and %

double term()  // exactly like expression(), but for *, /, and %

{
double left = primary(); /[ get the Primary

while (true) {

Token t = get_token(); Il get the next Token...

switch (t.kind) {
case "*': left *= primary(); break;

case '/':  left /= primary(); break;

case '%": left %= primary(); break;

default: return left; // return the value
}

}
}

- Oops: doesn’t compile
« % isn’t defined for floating-point numbers

HY150 Programming, University of Crete

Lecture: Writing, Slide 23



Dealing with * and /

Term:
Primary

Term “*" Primary /[ Note: every Term starts with a Primary
Term / Primary

double term() Il exactly like expression(), but for *, and /

{

double left = primary(); /[ get the Primary
while (true) {
Token t = get_token(); /l get the next Token
switch (t.kind) {
case '*': left *= primary(); break;
case '/": left /= primary(); break;
default:  return left; // return the value
}
}

HY150 Programming, University of Crete

Lecture: Writing, Slide 24



Dealing with divide by 0

double term() I/ exactly like expression(), but for * and /
{
double left = primary(); I/ get the Primary
while (true) {
Token t = get_token(); Il get the next Token
switch (t.kind) {
case ™"
left *= primary();
break:
case '/":
{ double d = primary();
If (d==0) error("divide by zero");
left /=d;
break:
h
default:
return left; /[ return the value

HY150 Programming, University of Crete Lecture: Writing, Slide 25



Dealing with numbers and parentheses

double primary() // Number or (* Expression )’
{
Token t = get_token();
switch (t.kind) {
case (' // handle ‘("expression )’
{ double d = expression();
t = get_token();
If (t.kind !=")") error(""")" expected"');

return d;

}

case '8": // we use ‘8’ to represent the “kind” of a number
return t.value; // return the number’s value

default:
error(*'primary expected"’);

}

HY150 Programming, University of Crete Lecture: Writing, Slide 26



Program organization

[ Token ]

o~

- Who calls who? (note the loop)

HY150 Programming, University of Crete Lecture: Writing, Slide 27



The program

#include "'std_lib_facilities.h™
I/ Token stuff (explained in the next lecture)
double expression(); // declaration so that primary() can call  expression()

double primary() {/* ... */'} [/ deal with numbers and parentheses
double term() {/* ... */} // deal with * and / (pity about %)

- . Expression:
double expression() { /* ... */ } /] deal with + and — P Sarm
Expression "+" Term /l addition
Expression "-" Term // subtraction
Term:
Int main() {/* ... */} /[ on next slide Primary
Term "*" Primary // multiplication
Term "/" Primary / division
Term "%" Primary /l remainder (modulo)
Primary:
Number
"(" Expression ")" // grouping
Number:

floating-point-literal

HY150 Programming, University of Crete Lecture: Writing, Slide 28



The program — main()

Int main()
try {
while (cin)
cout << expression() << "\n’;
keep_window_open(); // for some Windows versions
}

catch (runtime_error&e) {
cerr << e.what() << endl;
keep_ window_open ();
return 1;

}

catch (...) {
cerr << "‘exception \n"’;
keep_window_open ();
return 2;

}

HY150 Programming, University of Crete Lecture: Writing, Slide 29



A mystery

¢ 2 an answer

« 5 an answer

Bad token an answer (finally, an expected answer)

HY150 Programming, University of Crete Lecture: Writing, Slide 30



A mystery

« 1234+56+78+9101112

- 1 an answer
- 4 an answer
- 6 an answer
- 8 an answer
- 10 an answer

- Aha! Our program “eats” two out of three inputs

« How come?

- Let’s have a look at expression()

HY150 Programming, University of Crete Lecture: Writing, Slide 31



Dealing with + and -

Expression:
Term

Expression ‘+" Term // Note: every Expression starts with a Term
Expression -* Term

double expression() // read and evaluate: 1 1+2.5 1+2+3.14 etc.
{
double left = term(); I/ get the Term
while (true) {
Token t = get_token(); Il get the next token...
switch (t.kind) { Il ... and do the right thing with it
case '+': left +=term(); break;
case '-':  left -=term(); break;
default: return left; [/ <<< doesnt use “next token”
}

HY150 Programming, University of Crete Lecture: Writing, Slide 32



Dealing with + and -

- S0, we need a way to “put back” a token!
- Back into what?
- “the Input,” of course; that is, we need an input stream of tokens

double expression() // deal with + and -

{
double left = term();

while (true) {
Token t = ts.get(); I/ get the next token from a “token stream”
switch (t.kind) {
case '+': left +=term(); break;

case '-':  left -=term(); break;
default: ts.putback(t); // put the unused token back
return left;

HY150 Programming, University of Crete Lecture: Writing, Slide 33



Dealing with * and /

- Now make the same change to term()

double term() /[ deal with * and /

{
double left = primary();

while (true) {

Token t =ts.get(); // get the next Token from input
switch (t.kind) {

case "*':
/I deal with *
case '/":
Il deal with /
default:
ts.putback(t); /l put unused token back into input stream
return left;
}

HY150 Programming, University of Crete Lecture: Writing, Slide 34



The program

e It “sort of works”

- That’s not bad for a first try
- Well, second try
- Well, really, the fourth try; see the book

- But “sort of works” is not good enough

- When the program “sort of works” is when the work (and fun)
really start

- Now we can get feedback!

HY150 Programming, University of Crete Lecture: Writing, Slide 35



Another mystery

- 2342+32*3

. 2 an answer
3 an answer
- 4 an answer
5 an answer

- What! No “6" ?
- The program looks ahead one token
- It's waiting for the user

- S0, we Introduce a “print result” command
- While we're at it, we also introduce a “quit” command

HY150 Programming, University of Crete Lecture: Writing, Slide 36



The main() program

Int main()
{
double val = 0;
while (cin) {
Token t = ts.get(); /[ rather than get_token()
If (t.kind =="q") break; I/ g’ for “quit”
If (t.kind==";") /I % for “print now”
cout << val << "\n'; // print result
else
ts. putback(t); // put a token back into the input stream
val = expression(); /[ evaluate
}
keep_window_open();
}

Il ... exception handling ...

HY150 Programming, University of Crete Lecture: Writing, Slide 37



Now the calculator is minimally useful

. 2
- 2 an answer
- 2+3;

* 5 an answer
e 3+4*5;

- 23 an answer

° g

HY150 Programming, University of Crete Lecture: Writing, Slide 38



Next lecture

- Completing a program

Tokens

Recovering from errors

Cleaning up the code

Code review

Testing

HY150 Programming, University of Crete Lecture: Writing, Slide 39



For your assignment 1

- Study all the notes so far
 Type-use/Compile/run the provided source code

- Study the book chapters (if you can)

we want to actively discourage:

« (1) design the complete program,
- write all the code,

« then test it

* (2) just start coding;

- add features and reorganize as needed;

- ship when it looks good

HY150 Programming, University of Crete Lecture: Writing, Slide 40



For your assignment 1

- Understanding the problem you would like your program to
solve 1s key to a good program — after all, a program that solves
the wrong problem 1is of little use, however elegant it may be.

- Analysis — write a description of what should be done — this 1s
called a set of requirements or a specification.

- Design — an overall structure for the system including which
parts the implementation should have and how they should
communicate with each other.

- Break the problem you want to solve into manageable parts,
even the smallest program for solving a real problem 1s large
enough to be subdivided.

- Use pseudo-code in the early stages of design when we are not
yet certain exactly what our notation means.

HY150 Programming, University of Crete Lecture: Writing, Slide 41



How to pragmatically deal with
eIrors

« Use Lecture 4 notes:

- C++ exceptions, ways to deal with compile, link and runtime errors
- Study again the notes + reference pages/book

- Use the online library: Google!
- “your term” filetype:cpp
- E.g. if(cin) filetype:cpp
- Work together with friends/colleagues

- Post an error report to the online forum, specifying:

- Platform + Compiler: e.g. g++, Linux

- Complete part of the source code that the problem occurs, variable declaration,
initialization, code fragment that the error occurs etc.

- Be careful not to disclose the solution to an assignment like that

- Complete copy of the Compiler/linker/system error messages or warnings

HY150 Programming, University of Crete Lecture: Writing, Slide 42



Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Writing, Slide 43



Thank you!

EMNIXEIPHEZIAKO MPOTPAMMA
*
Ve EKMAIAEYZH KAI AIA BIOY MAGHEH st EZ nA
o bl Juor sTrv wowwvia Tne yvisre |
* x * ’ = | T
N YNOYPTEIO MAIAEIAL & BPHIKEYMATQN, MOAITIZMOY & ABAHTIZMOY
Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPIZHE

Evpwaié Kowwvié Tapei
vpwme WWVIKGTAHEL Me Tn auyxpnraTessTnon tne EAAGSac kat Tns Eupwnaikris Evwong

HY150 Programming, University of Crete Lecture: Writing, Slide 44



