AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AilaAegn 9: Por) Eio6dou/Ecodou

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete

Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn siocayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete

XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete

HY-150 IIpoypappatiopnog
CS-150 Programming

Lecture 9:
Input/Output streams

G. Papagiannakis

HY150 Programming, University of Crete

ADbstract

- We get data from files, sensors, web connections, etc.,
which we want to analyze, print, graph, etc. Sometimes,
we want to produce such data.

- In this lecture, we look at C++’s basic mechanisms for

reading and writing streams of data.

- We also discuss an interesting — apparently trivial —
problem: how to read an integer.

Lecture: 1/O Streams, Slide 5

HY150 Programming, University of Crete

Overview

mFundamental I/O concepts

mFiles
m Opening
m Reading and writing streams

m[/O errors

mReading a single integer

i < /O system > -

HY150 Programming, University of Crete Lecture: 1/O Streams, Slide 6

Input and Output

data source:

data destination:

»
>

HY150 Programming, University of Crete Lecture: 1/O Streams, Slide 7

The stream model

“somewhere”

« AN ostream

- turns values of various types into character sequences
- sends those characters somewhere
- E.g., console, file, main memory, another computer

HY150 Programming, University of Crete Lecture: 1/O Streams, Slide 8

The stream model

“somewhere”

- An istream
- turns character sequences into values of various types

- gets those characters from somewhere
- E.g., console, file, main memory, another computer

HY150 Programming, University of Crete Lecture: 1/O Streams, Slide 9

The stream model

- Reading and writing

- Of typed entities
- << (output) and >> (input) plus other operations
- Type safe
- Formatted
- Typically stored (entered, printed, etc.) as text
- But not necessarily (see binary streams in chapter 11)

- Extensible
- You can define your own 1/O operations for your own types

- A stream can be attached to any 1/O or storage device

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 10

Files

- We turn our computers on and off

- The contents of our main memory Is transient

- We like to keep our data

- S0 we keep what we want to preserve on disks and similar permanent
storage

- A file Is a sequence of bytes stored in permanent storage
« A file has a name
« The data on a file has a format

« We can read/write a file if we know i1ts name and format

HY150 Programming, University of Crete Lecture: 1/O Streams, Slide 11

A file

- At the fundamental level, a file Is a sequence of bytes
numbered from O upwards

- Other notions can be supplied by programs that interpret a
“file format”

- For example, the 6 bytes "123.45" might be interpreted as the floating-
point number 123.45

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 12

« General model

i Pa—

lostreams

Objects

Files (of various types)

(sequences of bytes)

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 13

Files

- Toread a file
- We must know its name
- We must open it (for reading)
- Then we can read
- Then we must close it
- That is typically done implicitly
- To write a file
- We must name it
- We must open it (for writing)
- Or create a new file of that name
- Then we can write it
- We must close it
- That is typically done implicitly

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 14

Opening a file for reading

...
int main()
{
cout << "'Please enter input file name: "*;
string name;
cin >> name;
ifstream ist(name.c_str()); / ifstream is an“input stream from a file”
I/ ¢_str() gives a low-level (“system”
I/ or C-style) string from a C++ string
// defining an ifstream with a name string
I/ opens the file of that name for reading
If (list) error(*'can’t open input file **, name);
-

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 15

Opening a file for writing

s

cout << ""Please enter name of output file: "';

cin >> name;

ofstream ofs(name.c_str()); // ofstream is an “output stream from a file”
// defining an ofstream with a name string
// opens the file with that name for writing

If (1ofs) error(*'can’t open output file **, name);

...

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 16

Remember

« Sometimes students want to read to a file or write from a file —
this causes errors

- We read in from an input stream (ist >>)
- \We write out to an output stream (ost <<)
- It's like a piece of paper:

- Reading is getting information from the paper

- Writing Is putting information on the paper

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 17

Reading from a file

- Suppose a file contains a sequence of pairs representing
hours and temperature readings

0 60.7
160.6
2 60.3
359.22

- The hours are numbered o..23
- No further format is assumed
- Maybe we can do better than that (but not just now)
- Termination
- Reaching the end of file terminates the read
- Anything unexpected in the file terminates the read
- Eg.¢

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 18

Reading a file

struct Reading { // a temperature reading
int hour; // hour after midnight [0:23]
double temperature;
Reading(int h, double t) :hour(h), temperature(t) { }

vector<Reading> temps; // create a vector to store the readings

Int hour;

double temperature;

while (ist >> hour >> temperature) { // read
If (hour <0 || 23 <hour) error(**hour out of range™); Il check
temps.push_back(Reading(hour,temperature)); /[store
}

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 19

1/0 error handling

- Sources of errors
- Human mistakes
- Files that fail to meet specifications
- Specifications that fail to match reality
- Programmer errors
- Eftc.

- 1ostream reduces all errors to one of four states
good() //the operation succeeded
eof() // we hit the end of input (“end of file”)
fail() // something unexpected happened
bad() // something unexpected and serious happened

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 20

Sample integer read “failure”

Ended by “terminator character”
- 12345*

- State is fail()

Ended by format error

- 123456

- State is fail()

Ended by “end of file”

- 12345end of file

- 12345 Control-Z (Windows)
- 12345 Control-D (Unix)

- State 1s eof()

Something really bad

- Disk format error

- State is bad()

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 21

1/0 error handling

void fill_vector(istreamé& ist, vector<int>& v, char terminator)

{ // read integers from ist into v until we reach eof() or terminator
inti=0;
while (ist >> 1) v.push_back(i); // read and store in v until “some failure”
If (ist.eof()) return; /I fine: we found the end of file

If (ist.bad()) error(*'ist is bad""); // stream corrupted; let’s get out of here!

If (ist.fail()) { // clean up the mess as best we can and report the problem

Ist.clear(); // clear stream state, so that we can look for terminator
char c;

ISt>>C; // read a character, hopefully terminator
If (c !=terminator) { // unexpected character

Ist.unget(); // put that character back
Ist.clear(ios_base::failbit); /] set the state back to fail()

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 22

Throw an exception for bad()

// How to make ist throw if it goes bad:

Ist.exceptions(ist.exceptions()|ios_base::badbit);
/[can be read as

Il “set ist’s exception mask to whatever it was plus badbit”

// or as “throw an exception if the stream goes bad”

Given that, we can simplify our input loops by no longer checking for bad

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 23

Simplified input loop

void fill_vector(istream& ist, vector<int>& v, char terminator)

{ /] read integers from ist into v until we reach eof() or terminator
inti=0;
while (ist >> i) v.push_back(i);
if (ist.eof()) return; // fine: we found the end of file

/] not good() and not bad() and not eof(), ist must be fail()

ist.clear(); Il clear stream state
char c;
ist>>c; /] read a character, hopefully terminator

if (¢ !=terminator) { // ouch: not the terminator, so we must fail
ist.unget(); /[l maybe my caller can use that character
ist.clear(ios base::failbit); /I set the state back to fail()

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 24

Reading a single value

Il first simple and flawed attempt:

cout << ""Please enter an integer in the range 1 to 10 (inclusive):\n"';

intn=0;
while (cin>>n) { /] read
if (1<=n && n<=10) break; Il check range
cout << "Sorry, "
<<n

<< " is not in the [1:10] range; please try again\n"';

B Three kinds of problems are possible
m the user types an out-of-range value
B getting no value (end of file)

m the user types something of the wrong type (here, not an integer)

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 25

Reading a single value

- What do we want to do In those three cases?
- handle the problem in the code doing the read?

- throw an exception to let someone else handle the
problem (potentially terminating the program)?

- Ignore the problem?

- Reading a single value
- Is something we often do many times
- We want a solution that’s very simple to use

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 26

Handle everything: What a mess!

cout << "'Please enter an integer in the range 1 to 10 (inclusive):\n"";
intn=0;
while (n==0) {
cin >>n;
if (cin) {// we got an integer; now check it:
if (1<=n && n<=10) break;
cout << *'Sorry, " << n << ' isnot in the [1:10] range; please try again\n';
}
else if (cin.fail()) { // we found something that wasnt an integer
cin.clear(); // wed like to look at the characters
cout << "'Sorry, that was not a number; please try again\n';

char ch;
while (cin>>ch && lisdigit(ch)) ; // throw away non-digits
if (cin) error(*'no input™); /[we didnt find a digit: give up
cin.unget(); /I put the digit back, so that we can read the number
}
else

error(*'no input™); // eof or bad: give up

}
Il 'if we get here nisin [1:10]

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 27

The mess: trying to do everything at once

- Problem: We have all mixed together
- reading values
- prompting the user for input
- Writing error messages
- skipping past “bad” input characters
- testing the Input against a range

- Solution: Split it up into logically separate parts

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 28

What do we want?

- What logical parts do we what?
- int get_int(int low, int high); // read an int in [low..high] from cin

- int get_int(); /[read an int from cin
// so that we can check the range int

- void skip_to_int(); // we found some “garbage” character
// so skip until we find an int

- Separate functions that do the logically separate actions

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 29

SKiIp “garbage”

void skip_to_int()

{
If (cin.fail()) { // we found something that wasnt an integer
cin.clear(); // wed like to look at the characters
char ch;
while (cin>>ch) { I/ throw away non-digits
If (isdigit(ch)) {
cin.unget(); // put the digit back,
// so that we can read the number
return;
}
}
}
error(*'no input"’); // eof or bad: give up
}

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 30

Get (any) Integer

Int get_int()
{
Intn=0;
while (true) {
If (cin >> n) return n;
cout << "'Sorry, that was not a number; please try again\n';
skip_to_int();

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 31

Get Integer In range

Int get_int(int low, Int high)
{
cout << ""Please enter an integer in the range "'
<< low << " to "' << high << " (inclusive):\n"";
while (true) {
Int n = get_int();
If (low<=n && n<=high) return n;
cout << *'Sorry, "
<<n<<"isnotinthe[" <<low <<":"<< high
<< "] range; please try again\n'';

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 32

Use

Int n = get_int(1,10);

cout << "'n: "" << n << endl:

Int m = get_int(2,300);

cout << ""m: "' << m << endl:

- Problem:

- The “dialog” is built into the read operations

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 33

What do we really want?

/Il parameterize by integer range and “dialog”

Int strength = get_int(1, 10,

"enter strength™,

""Not in range, try again"');
cout << "'strength: "' << strength << endl;

Int altitude = get_int(0, 50000,
"please enter altitude in feet™,
""Not in range, please try again'');
cout << "altitude: " << altitude << ''ft. above sea level\n'’;

- That's often the really important question
- Ask it repeatedly during software development
- As you learn more about a problem and its solution, your answers improve

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 34

Parameterize

int get_int(int low, int high, const string& greeting, const string& sorry)
{
cout << greeting << '": ["" << low << "' << high << ""\n"";
while (true) {
Int n = get_int();
If (low<=n && n<=high) return n;
cout << sorry <<":[" <<low <<':"<<high << "\n"";

}
}

)

- Incomplete parameterization: get_int() still “blabbers’
- “utility functions” should not produce their own error messages
- Serious library functions do not produce error messages at all
- They throw exceptions (possibly containing an error message)

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 35

User-defined output: operator<<()

« Usually trivial

ostream& operator<<(ostreamé& os, const Date& d)

{

return os << '(* << d.year()
<< "' << d.month()

<<''<< d.day() <<)"

- We often use several different ways of outputting a value

- Tastes for output layout and detail vary

HY150 Programming, University of Crete Lecture: /O Streams, Slide 36

Use

void do_some_printing(Date d1, Date d2)
{

cout << d1; // means operator<<(cout,dl) ;

cout << dl1 << d2?;
// means (cout << d1) << d2;
// means (operator<<(cout,dl)) << d2;

// means operator<<((operator<<(cout,dl)), d2) ;

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 37

User-defined input: operator>>()

Istream& operator>>(istream& 1s, Date& dd)
// Read date in format: (year , month , day)
{
inty, d, m;
char chl, ch2, ch3, ch4,
IS >>chl >>y >>ch2 >>m >>ch3 >> d >> ch4;

If (1is) return is; // we didnt get our values, so just leave

If (ch1!="("|| ch2!="," || ch3!="" || ch4!=")") { // oops: format error
Is.clear(ios_base::failbit); // something wrong: set state to fail()
return is; // and leave

}

dd = Date(y,Month(m),d); /[update dd

return is; // and leave with is in the good() state

}

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 38

Next Lecture

Customizing input and output (chapter 11)

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 39

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 40

Thank you!

EMXEIPHZIAKD NMPOTPAMMA

*
« 7 EKMAIAEYZH KAI AA BIOY MAGHEH == EXTNA
pt o Suon seav wowwvia Tre rvwone BN
. =

YNOYPTEIO NAIAEIAL & OPHEKEYMATON. MOAITIEMOY & ABAHTIZMOY
Eupwnaikni ‘Evwon EIAIKH YNHPEZIIA AIAXEIPIIHEZ
Evpwmndiké Kowwviké Tapeio . . e

Me tn ouyxpnuarobsétnon tng EAAdSac kat tne Evpwnaikrig Evwong

HY150 Programming, University of Crete Lecture: I/O Streams, Slide 41

