AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AilaAegn 15: Alavuopata kail EAeUBepn AtToBRKeuoN

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete

Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn siocayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete

XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete

HY-150 Ilpoypoappaticpnog
CS-150 Programming

Lecture 15:
Vector and Free store

G. Papagiannakis

HY150 Programming, University of Crete

ADbstract

- VVector Is not just the most useful standard container,

- It IS also provides examples of some of the most
Important/powerful/ interesting implementation technigues.

- In this and the following lectures, we go through a series of
Increasingly sophisticated vector implementations,

- seeing classical problems related to use of memory and providing
solutions.

- Here, we discuss free store (heap storage) management, and
pointers.

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 5

Overview

ﬁ\/ ector revisited \

®m How are they implemented?
m Pointers and free store
m Allocation (new)

B Access

m Arrays and subscripting: []

m Dereferencing: *

\l Deallocation (delete) /

m Destructors

m Copy constructor and copy assignment
B Arrays

m Array and pointer problems

B Changing size

m Templates

m Range checking and exceptions

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 6

Vector

- VVector Is the most useful container
- Simple
- Compactly stores elements of a given type
- Efficient access
- Expands to hold any number of elements
- Optionally range-checked access
- How Is that done?

- That Is, how Is vector implemented?
- We'll answer that gradually, feature after feature

 Vector Is the default container

- prefer vector for storing elements unless there's a good reason
not to

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 7

Building from the ground up

mThe hardware provides memory and addresses

m Low level

m Untyped

m Fixed-sized
m No checking

m As fast as the hardware architects can make it

mThe application builder needs something like a vector
m Higher-level operations
m Type checked
W Size varies (as we get more data)
B Run-time checking

m Close-to optimally fast

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 8

Building from the ground up

- At the lowest level, close to the hardware, life’s simple and brutal
- You have to program everything yourself
- You have no type checking to help you
- Run-time errors are found when data is corrupted or the program crashes
- We want to get to a higher level as quickly as we can
-« To become productive and reliable
- To use a language “fit for humans”
- Chapter 17-19 basically shows all the steps needed

- The alternative to understanding is to believe in “magic”

- The techniques for building vector are the ones underlying all higher-level work with
data structures

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 9

Vector

- A vector
- Can hold an arbitrary number of elements
- Up to whatever physical memory and the operating system can handle
- That number can vary over time
- E.g. by using push_back()
- Example

vector<double> age(4);
age[0]=.33; age[1]=22.0; age[2]=27.2; age[3]=54.2;

age:

age[0]: age[l]: age[2]: age[3]:

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 10

Vector

Il a very simplified vector of doubles (like vector<double>):
class vector {

Int sz; // the number of elements (“the size”)
double* elem; // pointer to the first element

public:
vector(int s); /Il constructor: allocate s elements,

// let elem point to them
/] store s in sz
Int size() const { returnsz; } //the current size
i
- * means “pointer to” so double* Is a “pointer to double”
- What is a “pointer™?
- how do we make a pointer “point to” elements?
- How do we “allocate” elements?

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 11

Pointer values

- Pointer values are memory addresses
- Think of them as a kind of integer values
- The first byte of memory is 0, the next 1, and so on

0 1 2 p2 *2 2120-1

= A pointer points to an object of a given type
s E.g. a double* points to a double, not to a string

= A pointer’ s type determines how the memory referred to by
the pointer’ s value is used
= E.g. what a double* points to can be added not, say, concatenated

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 12

Vector (constructor)

vector::vector(int s) /] vector's constructor
:SZ(S), / store the size s in sz
elem(new double[s]) // allocate s doubles on the free store
/] store a pointer to those doubles in elem

d
)

Il Note: new does not initialize elements (but the standard vector does)

Free store:

SZ: elem:

Inter

new allocates memory from the free _

store and returns a pointer to the
allocated memory

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 13

The computer’'s memory

- As a program sees it memory layour: [Code
- Local variables “lives on the stack” e
- Global variables are “static data” R
- The executable code are in “the code section”
Stack

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 14

The free store

(sometimes called "the heap")
- You request memory "to be allocated" "on the free store" by the new operator

- The new operator returns a pointer to the allocated memory
- A pointer is the address of the first byte of the memory
- For example

- Int* p = new Int; // allocate one uninitialized int
/[Int* means “pointer to int”

- Int* g = new Int[7]; // allocate seven uninitialized ints
/[“an array of 7 ints”

- double* pd = new double[n]; // allocate n uninitialized doubles
- A pointer points to an object of its specified type
- A pointer does not know how many elements it points to

g B
4 ==

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 15

ACCesS

 Individual elements

Int* pl = new Int; I/ get (allocate) a new uninitialized int
INt* p2 = new int(5); // get a new int initialized to 5
INt X = *p2; I/ get/read the value pointed to by p2

I/ (or “get the contents of what p2 points to”)
// in this case, the integer 5
Ity = *p1l;
// undefined: y gets an undefined value; dont do that

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 16

ACCesS

- Arrays (sequences of elements)
Int* p3 = new Int[5]; // get (allocate) 5 ints

Il array elements are numbered 0, 1, 2, ...

pP3[0] =7; [/ write to (“set”) the 15t element of p3

p3[1] = 9;

Int x2 = p3[1]; /I get the value of the 2" element of p3

Int X3 = *p3; // we can also use the dereference operator * for an array

// *p3 means p3[0] (and vice versa)

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 17

Why use free store?

mTo allocate objects that have to outlive the function that
creates them:

mFor example

double* make(int i)

d

return new double[i];

m Another example: vector's constructor

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 18

Pointer values

- Pointer values are memory addresses
- Think of them as a kind of integer values

- The first byte of memory is 0, the next 1, and so on

0 1 2 D2 *p2 2/20-1

// you can see pointer value (but you rarely need/want to):

char* pl = new char('c’); /[allocate a char and initialize it to 'c'

INt* p2 = new Iint(7); /[allocate an int and initialize it to 7

cout << "'pl=="' << pl << " *pl=="" << Fpl << "\n""; [p1l==??7 *pl==c
cout << "'p2==""' << p2 << " Fp2=="" << *p2 << "\n""; [/ p2==27?? *p2=7

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 19

ACCesS

mA pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;

RGN -
p1[0] = 8.2; /I ok

pl[17] =9.4; /I ouch! Undetected error

pl[-4] =2.4; /] ouch! Another undetected error
p2:

double* p2 = new double[100];

*p2=17.3; Il ok

p2[17] =9.4; Il ok

p2[-4] =2.4; /I ouch! Undetected error

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 20

ACCesS

mA pointer does not know the number of elements that 1t's
pointing to

double* p1 = new double; pl: - =-

double* p2 = new double[100];

[O]: [99]:

pl[17] =9.4; // error (obviously) (after the assignment)

pl =p2; Il assign the value of p2 to pl

pl[17]=9.4; // now ok: pl now points to the array of 100 doubles

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 21

ACCesS

mA pointer does know the type ot the object that 1t's
pointing to
int* pil = new int(7);
int* pi2 = pil; Il ok: pi2 points to the same object as pil
double* pd = pil; // error: can't assign an int* to a double*
char* pc = pil; /] error: can't assign an int* to a char*

m There are no implicit conversions between a pointer to one value type to a
pointer to another value type

m However, there are implicit conversions between value types:

pil: Pe-

*pc=8; /] ok: we can assign an int to a char

*pc = *pil; // ok: we can assign an int to a char

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 22

Pointers, arrays, and vector

- Note

- With pointers and arrays we are "touching" hardware directly
with only the most minimal help from the language. Here is
where serious programming errors can most easily be made,
resulting in malfunctioning programs and obscure bugs

- Be careful and operate at this level only when you really need to

- vector Is one way of getting almost all of the flexibility and
performance of arrays with greater support from the language
(read: fewer bugs and less debug time).

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 23

VecCtor (construction and primitive access)

Il a very simplified vector of doubles:
class vector {
Int sz; I the size
double* elem; // a pointer to the elements

public:
vector(int s) :sz(s), elem(new double[s]) { } // constructor
double get(int n) { return elem[n]; } /[access: read
void set(int n, double v) { elem[n]=v; } /[access: write
Int size() const { return sz; } // the current size

};

vector v(10);

for (int i1=0; i<v.size(); ++i) { v.set(i,i); cout << v.get(i) <<'"; }

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 24

A problem: memory leak

double™* calc(int result_size, int max)

{

double* p = new double[max]; // allocate another max doubles
/I 1.e., get max doubles from the free store

double™* result = new double[result_size];
/I ... use p to calculate results to be put in result ...
return result;

}

double* r = calc(200,100); // oops! We “forgot”to give the memory
// allocated for p back to the free store

- Lack of de-allocation iusuall called "memory leaks™) can be a
serious problem in real-world programs

° ,IA [?(rogram that must run for a long time can't afford any memory
eaks

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 25

A problem: memory leak

double™* calc(int result_size, int max)
{
Int* p = new double[max]; // allocate another max doubles
/'1.e., get max doubles from the free store
double™* result = new double[result_size];
/I ... use p to calculate results to be put in result ...
delete[] p; // de-allocate (free) that array

I/ 1.e., give the array back to the free store
return result;

}

double* r = calc(200,100);
I/ use r
delete[] r; /I easy to forget

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 26

Memory leaks

- A program that needs to run "forever" can't afford any memory leaks
- An operating system is an example of a program that "runs forever"

- If a function leaks 8 bytes every time it is called, how many days can it run
before it has leaked/lost a megabyte?

- Trick question: not enough data to answer, but about 130,000 calls
- All memory is returned to the system at the end of the program
- If you run using an operating system (Windows, Unix, whatever)

- Program that runs to completion with predictable memory usage may leak
without causing problems

- 1.e., memory leaks aren't "good/bad" but they can be a problem in
specific circumstances

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 27

Memory leaks

- Another way to get a memory _

leak 15t vahie

void f() P-
{
double* p = new double[27];
...
p = new double[42];
...
delete[] p;

/[15t array (of 27 doubles) leaked

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 28

Memory leaks

- How do we systematically and simply avoid memory
leaks?

- don't mess directly with new and delete

- Use vector, etc.
- Or use a garbage collector

- A garbage collector is a program the keeps track of all of your allocations
and returns unused free-store allocated memory to the free store (not
covered in this course; see http://www.research.att.com/~bs/C++.html)

- Unfortunately, even a garbage collector doesn’t prevent all leaks

HY150 Programming, University of Crete

Lecture: Vector & Free Store, Slide 29

A problem: memory leak

void f(int x)
{
vector v(x); // define a vector
I/ (which allocates x doubles on the free store)
Il ...usev ...

I/ give the memory allocated by v back to the free store
// but how? (vector's elem data member is private)

}

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 30

Vector (destructor)

/[a very simplified vector of doubles:
class vector {
Int sz; /I the size
double* elem; // a pointer to the elements
public:
vector(int s) // constructor: allocates/acquires memory
:sz(s), elem(new double[s]) { }

~vector() // destructor: de-allocates/releases memory
{ delete[] elem; }
...

%

- Note: this is an example of a general and important technique:
- acquire resources in a constructor
« release them in the destructor

- Examples of resources: memory, files, locks, threads, sockets

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 31

A problem: memory leak

void f(int x)
{

Int* p = new Iint[x]; // allocate x Ints
vector v(X); // define a vector (which allocates another x ints)

/[...usepandv ...
delete[| p; // deallocate the array pointed to by p
// the memory allocated by v is implicitly deleted here by vector's destructor

}

- The delete now looks verbose and ugly
- How do we avoid forgetting to delete[| p?

- EXxperience shows that we often forget

- Prefer deletes in destructors

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 32

Free store summary

- Allocate using new
- New allocates an object on the free store, sometimes initializes it, and returns a

pointer to it

- Int* pi = new int; // default initialization (none for int)

- char* pc = new char('a"); [/ explicit initialization

- double* pd = new double[10]; // allocation of (uninitialized) array

- New throws a bad_alloc exception if it can't allocate

- Deallocate using delete and delete][]

- delete and delete]] return the memory of an object allocated by new to the free
store so that the free store can use it for new allocations

- delete pi; // deallocate an individual object
- delete pc;// deallocate an individual object
- delete[] pd; // deallocate an array
- Delete of a zero-valued pointer (*the null pointer") does nothing
- char*p=0;
- delete p; // harmless

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 33

vold*

- void* means "pointer to some memory that the compiler doesn't know
the type of"

- We use void* when we want to transmit an address between pieces of
tco?(e that really don't know each other's types — so the programmer has
o0 know

- Example: the arguments of a callback function
- There are no objects of type void

- void v, /I error

- void f(); // £() returns nothing — f() does not return an object of type void
- Any pointer to object can be assigned to a void*

- Int* pi = new int;

- double* pd = new double[10];

- void* pvl = pi;

- void* pv2 = pd;

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 34

vold*
- To use a void* we must tell the compiler what it points to

void f(void* pv)

{
void™* pv2 = pv; // copying is ok (copying is what void*s are for)
double* pd =pv; //error: cannot convert void* to double*
pv =7, // error: you cant dereference a void
// good! The int 7 is not represented like the double 7.0)
pv[2] = 9; // error: you can’s subscript a void*
pv++; // error: you cant increment a void*
INt* pi = static_cast<int*>(pv); I/ ok: explicit conversion
...
}

- A static_cast can be used to explicitly convert to a pointer to object type

- "static_cast" is a deliberately ugly name for an ugly (and dangerous) operation — use it
only when absolutely necessary

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 35

vold*

- void™ Is the closest C++ has to a plain machine address

- Some system facilities require a void™
- Remember FLTK callbacks?

- Address is a void*:
typedef void* Address;

void Lines_window::cb_next(Address,Address)

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 36

Pointers and references |

- Think of a reference as an automatically dereferenced
pointer

- Or as “an alternative name for an object”
- A reference must be Initialized

- The value of a reference cannot be changed after initialization
INtx =7;
Inty =8;
INt* p = &X;
*p=09; /l/luse * to assign to x through p
p=&y; [//ok
INt& r =x; x =10;

r=&y; /lerror (and so is all other attempts to change what r refers to)

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 37

Pointers and references ||

- Pointers example

int x = 10;

int* p = &x; // you need & to get a pointer
‘P=7; // use * to assign to x through p
int x2 = *p; // read x through p

int* p2 = &x2; // get a pointer to another int

p2 =p; // p2 and p both point to x

p = &x2; // make p point to another object

- Equivalent references example

inty=10;
int&r=y; //the & is in the type, not in the initializer

r=7; // assign to y through r (no * needed)

inty2=r; // read y through r (no * needed)

int& r2 =y2; // get a reference to another int

2=r; // the value of y is assigned to y2

r=&y2; // error: you can’t change the value of a reference

// (no assignment of an int* to an int&)

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 38

Next lecture

- The next lecture discusses copying and arrays

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 39

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 40

Thank you!

EMXEIPHZIAKD NMPOTPAMMA

*
« 7 EKMAIAEYZH KAI AA BIOY MAGHEH == EXTNA
pt o Suon seav wowwvia Tre rvwone BN
. =

YNOYPTEIO NAIAEIAL & OPHEKEYMATON. MOAITIEMOY & ABAHTIZMOY
Eupwnaikni ‘Evwon EIAIKH YNHPEZIIA AIAXEIPIIHEZ
Evpwmndiké Kowwviké Tapeio . . e

Me tn ouyxpnuarobsétnon tng EAAdSac kat tne Evpwnaikrig Evwong

HY150 Programming, University of Crete Lecture: Vector & Free Store, Slide 41

