AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AilaAegn 16: ZuoTolyieg (arrays)

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete

Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn sicayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete

XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete

HY-150 NpoypapuaTiouog
CS-150 Programming

Lecture 16:
Arrays

G. Papagiannakis

HY150 Programming, University of Crete

ADbstract

- arrays, pointers, copy semantics, elements access, references

- Next lecture: parameterization of a type with a type (templates),
and range checking (exceptions).

HY150 Programming, University of Crete Lecture: Arrays, Slide 5

Overview

m Vector revisited
m How are they implemented?

m Pointers and free store

m Destructors memory layout: |Code
m Copy constructor and copy assignment

Static data
= Arrays Free store
B Array and pointer problems
m Changing size
m Templates Stack

m Range checking and exceptions

HY150 Programming, University of Crete Lecture: Arrays, Slide 6

Reminder

- Why look at the vector implementation?
- To see how the standard library vector really works

- To introduce basic concepts and language features
- Free store (heap)

- Copying
- Dynamically growing data structures

- To see how to directly deal with memory

- To see the technigues and concepts you need to understand C
- Including the dangerous ones

- To demonstrate class design techniques
- To see examples of “neat” code and good design

HY150 Programming, University of Crete Lecture: Arrays, Slide 7

vector

Il a very simplified vector of doubles (as far as we got in chapter 17):

class vector {
int sz; I the size

double* elem; // pointer to elements

public:
vector(int s) :sz(s), elem(new double|s]) { } /I constructor
/I new allocates memory
~vector() { delete| | elem; } Il destructor
// deletef] deallocates memory
double get(int n) { return elem|n]; } /] access: read

void set(int n, double v) { elem[n]=v;} // access: write

int size() const { return sz; } /] the number of elements

33

HY150 Programming, University of Crete Lecture: Arrays, Slide 8

A problem

- Copy doesn’t work as we would have hoped (expected?)
void f(int n)
{
vector v(n); I/ define a vector
vector v2 = v; // what happens here?
/[what would we like to happen?

vector v3;
v3 =V, /[what happens here?

/[what would we like to happen?
...

}
. Ideally: v2 and v3 become copies of v (that Is, = makes copies)

- And all memory is returned to the free store upon exit from f()

- That’s what the standard vector does,
- but it's not what happens for our still-too-simple vector

HY150 Programming, University of Crete Lecture: Arrays, Slide 9

Naive copy 1nitialization (the default)

void f(int n)
d
vector vi(n);
vector v2 = vl; /] initialization:
/I by default, a copy of a class copies its members

/] so sz and elem are copied

vy1:

V2:

Disaster when we leave f()!
vl s elements are deleted twice (by the destructor)

HY150 Programming, University of Crete Lecture: Arrays, Slide 10

Naive copy assignment (the default)
void f(int n)
{
vector v1(n);
vector v2(4);
v2 = vl /[assignment :
I/ by default, a copy of a class copies its members
// so sz and elem are copied

Disaster when we leave f()!
vl s elements are deleted twice (by the destructor)
memory leak: v2’ s elements are not deleted

HY150 Programming, University of Crete Lecture: Arrays, Slide 11

Copy constructor (initialization)

class vector {
Int sz;
double* elem;
public:
vector(const vector&) ;// copy constructor: define copy
/...

%

vector::vector(const vector& a)

:sz(a.sz), elem(new double[a.sz])

// allocate space for elements, then initialize them (by copying)
{

for (int1=0; i<sz; ++i) elem[i] = a.elem]i];

}

HY150 Programming, University of Crete Lecture: Arrays, Slide 12

Copy with copy constructor

void f(int n)
d

vector vl(n);
vector v2 =vl; Il copy using the copy constructor
//"a for loop copies each value from vl into v2

The destructor correctly deletes all elements (once only)

HY150 Programming, University of Crete Lecture: Arrays, Slide 13

Copy assignment

class vector {
Int sz;
double* elem;
public:
vector& operator=(const vector& a); // copy assignment: define copy I ...

1

X=a,

Memory leak? (no)

Operator = must copy a’ s elements

HY150 Programming, University of Crete Lecture: Arrays, Slide 14

Copy assignment

vector& vector::operator=(const vector& a)
/I like copy constructor, but we must deal with old elements
// make a copy of a then replace the current sz and elem with a’s

{
double* p = new double[a.sz]; /[allocate new space
for (int1=0; i<a.sz; ++i) p[i] = a.elem[i]; // copy elements
delete[] elem; // deallocate old space
SZ = a.sz; /] set new size
elem = p; // set new elements
return *this; /I return a self-reference
// The this pointer is explained in Lecture 19
// and in 17.10
}

HY150 Programming, University of Crete Lecture: Arrays, Slide 15

Copy with copy assignment

void f(int n)
d

vector vl(n);

vector v2(4);

v2 =vl; /I assignment

h

delete[]d by =

NO
memory
Leak

HY150 Programming, University of Crete Lecture: Arrays, Slide 16

Copy terminology

- Shallow copy: copy only a pointer so that the two pointers now
refer to the same object

- What pointers and references do

- Deep copy: copy the pointer and also what It points to so that
the two pointers now each refer to a distinct object

- What vector, string, etc. do
- Requires copy constructors and copy assignments for container classes

Copy of x:

y- Copy of y:

Shallow copy Deep copy

HY150 Programming, University of Crete Lecture: Arrays, Slide 17

Deep and shallow copy

o

vector<int> vl; -

v1.push_back(2);
v1.push_ back(4);
vector<int>v2 =v1; // deep copy (V2 gets its own copy of v1’s elements)
v2[0] = 3; [/ v1[0] is still 2

int b =9; r2: rl: b: -

int& rl1 =b:
int& r2 =r1; // shallow copy (F2 refers to the same variable as r1)
2=7: Il b becomes 7

HY150 Programming, University of Crete Lecture: Arrays, Slide 18

The computer’'s memory

- As a program sees it memory layour: [Code
- Local variables “lives on the stack” e
- Global variables are “static data” R
- The executable code are in “the code section”
Stack

HY150 Programming, University of Crete Lecture: Arrays, Slide 19

Arrays

- Arrays don’t have to be on the free store

char ac[7]; // global array — “lives” forever — “in static storage”
Int max = 100;
Int aifmax];

Int f(int n)

{
char Ic[20]; //local array — “lives” until the end of scope — on stack
Int li[60];
double Ix[n]; //error: a local array size must be known at compile time

// vector<double> Ix(n); would work
...

}

HY150 Programming, University of Crete Lecture: Arrays, Slide 20

Address of: &

- You can get a pointer to any object
- not just to objects on the free store

It a;
char ac[20];
. pc:

i p E
void f(int n)
| 1

Int* p = &Db; // pointer to individual variable

p = &a,;

char* pc = ac; // the name of an array names a pointer to its first element

pc = &acl0]; // equivalent to pc = ac

pc = &ac[n]; /I pointer to ac’s nt" element (starting at 0™)

/[warning: range is not checked

/...

5

HY150 Programming, University of Crete Lecture: Arrays, Slide 21

Arrays (often) convert to pointers

void f(int pi[]) // equivalent to void f(int* pi)
{
inta[]={1,2,3,4};
iIntb[]=a; //error:copy isnt defined for arrays

b = pi; /[error: copy isn't defined for arrays. Think of a
/[(non-argument) array name as an immutable pointer
pi = a; // ok: but it doesn’t copy: pi how points to a’s first element

/[1s this a memory leak? (maybe)
Int* p = a; /Il p points to the first element of a
Int* g =pi; // qpoints to the first element of a

}

HY150 Programming, University of Crete Lecture: Arrays, Slide 22

Arrays don’t know their own size

void f(int pi[], int n, char pc[])
// equivalent to void f(int* pi, int n, char* pc)
/[warning: very dangerous code, for illustration only,
I/ never “hope” that sizes will always be correct

{
char buf1[200];

strcpy(bufl,pc); // copy characters from pc into bufl
/I strcpy terminates when a "\O' character is found
// hope that pc holds less than 200 characters
strncpy(bufl,pc,200); // copy 200 characters from pc to bufl
/[padded if necessary, but final "\O' not guaranteed
Int buf2[300]; // you can't say char buf2[n]; n is a variable
If (300 < n) error("'not enough space"’);

for (int 1=0; i<n; ++1) buf2[i] = pi}i];_ // hope that pi really has space for
/[ints; it might have less

HY150 Programming, University of Crete Lecture: Arrays, Slide 23

Why bother with arrays?

« It’s all that C has

- In particular, C does not have vectors
- There is a lot of C code “out there”
- Here “a lot” means N*1B lines
- There is a lot of C++ code in C style “out there”
- Here “a lot” means N*100M lines
- You'll eventually encounter code full of arrays and pointers

- They represent primitive memory in C++ programs

- We need them (mostly on free store allocated by new) to implement better
container types

- Avoid arrays whenever you can

- They are the largest single source of bugs in C and (unnecessarily) in C++ programs

- They are among the largest sources of security violations (usually (avoidable)
buffer overflows)

HY150 Programming, University of Crete Lecture: Arrays, Slide 25

Types of memory

vector glob(10); // global vector — “lives” forever

vector* some_fct(int n)

{
vector v(n); // local vector — “lives” until the end of scope
vector* p = new vector(n); /I free-store vector — “lives” until we delete it
/...
return p;

}

void ()
{

vector* pp =some_fct(17);
...
delete pp; /I deallocate the free-store vector allocated in some_fct()

}
- It’s easy to forget to delete free-store allocated objects
- S0 avoid new/delete when you can

HY150 Programming, University of Crete Lecture: Arrays, Slide 26

Initialization syntax
(array’s one advantage over vector)

char ac[| = ""Hello, world"'; // array of 13 chars, not 12 (the compiler
/[counts them and then adds a null
// character at the end

char* pc = "Howdy""; /[pc points to an array of 6 chars

char* pp ={'H’, '0o', 'w', 'd", 'y*, 0 }; // another way of saying the same

Intai[]={1,2,3,4,5,6}; /[array of 6 ints
// not 7 — the “add a null character at the end”
// rule is for literal character strings only
Int ai2[100] ={0,1,2,3,4,5,6,7,8,9 }; // the last 90 elements are initialized to 0
double ad3[100] ={ }; // all elements initialized to 0.0

HY150 Programming, University of Crete Lecture: Arrays, Slide 27

Vector (primitive access)

I/ a very simplified vector of doubles:

vector v(10);
for (int 1=0; i<v.size(); ++i) { /I pretty ugly:
v.set(l,1);

cout << v.get(i);

for (int 1=0; i<v.size(); ++i) { I/ we're used to this:
v[i]=i;

cout << v[i];

10/ — -0.0[1.0/2.0/3.0/4.0/5.0/6.0/7.0/8.0/9.0

HY150 Programming, University of Crete Lecture: Arrays, Slide 28

Vector (we could use pointers for access)

I/ a very simplified vector of doubles:
class vector {

Int sz, / the size
double* elem; /[pointer to elements
public:
vector(int s) :sz(s), elem(new double[s]) { } // constructor
/...

double* operator| J(int n) { return &elem([n]; } // access: return pointer

%

vector v(10);
for (int i1=0; i<v.size(); ++i1) { // works, but still too ugly:
*V[i] =1; // means *(v[i]), that is return a pointer to
// the i!" element, and dereference it
cout << *v[i];

} 110/ — -0.0/1.0/2.0/3.0/4.0/5.0/6.0/7.0/8.0/9.0

HY150 Programming, University of Crete Lecture: Arrays, Slide 29

VecCtor (we use references for access)

I/ a very simplified vector of doubles:
class vector {

Int sz, /I the size
double* elem; // pointer to elements
public:
vector(int s) :sz(s), elem(new double[s]) { } // constructor
B

double& operator| J(int n) { return elem[n]; } // access: return reference

%

vector v(10);

for (int i1=0; i<v.size(); ++1) { // works and looks right!
v[i] =1; /1 v[i] returns a reference to the it element
cout << v[i];

10 — -0.0[1.0/2.0/3.0/4.0/5.0/6.0/7.08.0/9.0|

HY150 Programming, University of Crete Lecture: Arrays, Slide 30

Pointer and reference

« You can think of a reference FS an automaticaijl¥ dereferenced
Immutable pointer, or as an alternative name for an object

- Assignment to a pointer changes the pointer’s value
- Assignment to a reference changes the object referred to
- You cannot make a reference refer to a different object

Inta = 10;
Int* p=&a; //youneed & to get a pointer
*n="7,; // assign to a through p

// you need * (or []) to get to what a pointer points to
Int x1=*p; //readathroughp

INt&r =a; // r 1s a synonym for a
r=9; /[assign to a through r

INt X2 =r; // read a through r
p = &x1, // you can make a pointer point to a different object
r = &x1,; /I error: you can't change the value of a reference

HY150 Programming, University of Crete Lecture: Arrays, Slide 31

Next lecture

- We'll see how we can change vector’s implementation to better
allow for changes in the number of elements. Then we’ll modify
vector to take elements of an arbitrary type and add range

checking. That'll imply looking at templates and revisiting
exceptions.

HY150 Programming, University of Crete Lecture: Arrays, Slide 32

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Arrays, Slide 33

Thank you!

s *
* * dyen gzny wowvwvia zne yviwsrnc I
EE=] " Jnpéypoppa yo v avimuén

YNOYPTEIO MAIAEIAE & BPHIZKEYMATAN. MOAITIZMOY & ABAHTIZMOY
EIAIKH YNMHPEZIA AIAXEIPIZHE

ENIXEIPHEIAKO MPOTPAMMA
@ Pl EKMAIAEYZH KAI AIA BIOY MAGHEH 5= EXTNA
]

Evpwmaikn ‘Evwon
Evpwmndiké Kowwviké Tapeio . . e
Me tn ouyxpnparodoétnon tng EAAGSag kal tneg Evpwnaikng Evwong

HY150 Programming, University of Crete Lecture: Arrays, Slide 34

