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ADbstract

- arrays, pointers, copy semantics, elements access, references

- Next lecture: parameterization of a type with a type (templates),
and range checking (exceptions).
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Overview

m Vector revisited
m How are they implemented?

m Pointers and free store

m Destructors memory layout: |Code
m Copy constructor and copy assignment

Static data
= Arrays Free store
B Array and pointer problems
m Changing size
m Templates Stack

m Range checking and exceptions
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Reminder

- Why look at the vector implementation?
- To see how the standard library vector really works

- To introduce basic concepts and language features
- Free store (heap)

- Copying
- Dynamically growing data structures

- To see how to directly deal with memory

- To see the technigues and concepts you need to understand C
- Including the dangerous ones

- To demonstrate class design techniques
- To see examples of “neat” code and good design
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vector

Il a very simplified vector of doubles (as far as we got in chapter 17):

class vector {
int sz; I the size

double* elem; // pointer to elements

public:
vector(int s) :sz(s), elem(new double|s]) { } /I constructor
/I new allocates memory
~vector() { delete| | elem; } Il destructor
// deletef] deallocates memory
double get(int n) { return elem|n]; } /] access: read

void set(int n, double v) { elem[n]=v;} // access: write

int size() const { return sz; } /] the number of elements

33
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A problem

- Copy doesn’t work as we would have hoped (expected?)
void f(int n)
{
vector v(n); I/ define a vector
vector v2 = v; // what happens here?
/[ what would we like to happen?

vector v3;
v3 =V, /[ what happens here?

/[ what would we like to happen?
...

}
. Ideally: v2 and v3 become copies of v (that Is, = makes copies)

- And all memory is returned to the free store upon exit from f()

- That’s what the standard vector does,
- but it's not what happens for our still-too-simple vector
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Naive copy 1nitialization (the default)

void f(int n)
d
vector vi(n);
vector v2 = vl; /] initialization:
/I by default, a copy of a class copies its members

/] so sz and elem are copied

vy1:

V2:

Disaster when we leave f()!
vl s elements are deleted twice (by the destructor)
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Naive copy assignment (the default)
void f(int n)
{
vector v1(n);
vector v2(4);
v2 = vl /[ assignment :
I/ by default, a copy of a class copies its members
// so sz and elem are copied

Disaster when we leave f()!
vl s elements are deleted twice (by the destructor)
memory leak: v2’ s elements are not deleted
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Copy constructor (initialization)

class vector {
Int sz;
double* elem;
public:
vector(const vector&) ;// copy constructor: define copy
/...

%

vector::vector(const vector& a)

:sz(a.sz), elem(new double[a.sz])

// allocate space for elements, then initialize them (by copying)
{

for (int1=0; i<sz; ++i) elem[i] = a.elem]i];

}
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Copy with copy constructor

void f(int n)
d

vector vl(n);
vector v2 =vl; Il copy using the copy constructor
//"a for loop copies each value from vl into v2

The destructor correctly deletes all elements (once only)
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Copy assignment

class vector {
Int sz;
double* elem;
public:
vector& operator=(const vector& a); // copy assignment: define copy I ...

1

X=a,

Memory leak? (no)

Operator = must copy a’ s elements
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Copy assignment

vector& vector::operator=(const vector& a)
/I like copy constructor, but we must deal with old elements
// make a copy of a then replace the current sz and elem with a’s

{
double* p = new double[a.sz]; /[ allocate new space
for (int1=0; i<a.sz; ++i) p[i] = a.elem[i]; // copy elements
delete[ ] elem; // deallocate old space
SZ = a.sz; /] set new size
elem = p; // set new elements
return *this; /I return a self-reference
// The this pointer is explained in Lecture 19
// and in 17.10
}
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Copy with copy assignment

void f(int n)
d

vector vl(n);

vector v2(4);

v2 =vl; /I assignment

h

delete[ ]d by =

NO
memory
Leak
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Copy terminology

- Shallow copy: copy only a pointer so that the two pointers now
refer to the same object

- What pointers and references do

- Deep copy: copy the pointer and also what It points to so that
the two pointers now each refer to a distinct object

- What vector, string, etc. do
- Requires copy constructors and copy assignments for container classes

Copy of x:

y- Copy of y:

Shallow copy Deep copy
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Deep and shallow copy

o

vector<int> vl; -

v1.push_back(2);
v1.push_ back(4);
vector<int>v2 =v1; // deep copy (V2 gets its own copy of v1’s elements)
v2[0] = 3; [/ v1[0] is still 2

int b =9; r2: rl: b: -

int& rl1 =b:
int& r2 =r1; // shallow copy (F2 refers to the same variable as r1)
2=7: Il b becomes 7
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The computer’'s memory

- As a program sees it memory layour: [Code
- Local variables “lives on the stack” e
- Global variables are “static data” R
- The executable code are in “the code section”
Stack
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Arrays

- Arrays don’t have to be on the free store

char ac[7]; // global array — “lives” forever — “in static storage”
Int max = 100;
Int aifmax];

Int f(int n)

{
char Ic[20]; //local array — “lives” until the end of scope — on stack
Int li[60];
double Ix[n]; //error: a local array size must be known at compile time

// vector<double> Ix(n); would work
...

}
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Address of: &

- You can get a pointer to any object
- not just to objects on the free store

It a;
char ac[20];
. pc:

i p E
void f(int n)
| 1

Int* p = &Db; // pointer to individual variable

p = &a,;

char* pc = ac; // the name of an array names a pointer to its first element

pc = &acl0]; // equivalent to pc = ac

pc = &ac[n]; /I pointer to ac’s nt" element (starting at 0™)

/[ warning: range is not checked

/...

5
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Arrays (often) convert to pointers

void f(int pi[]) // equivalent to void f(int* pi)
{
inta[]={1,2,3,4};
iIntb[]=a; //error:copy isnt defined for arrays

b = pi; /[ error: copy isn't defined for arrays. Think of a
/[ (non-argument) array name as an immutable pointer
pi = a; // ok: but it doesn’t copy: pi how points to a’s first element

/[ 1s this a memory leak? (maybe)
Int* p = a; /Il p points to the first element of a
Int* g =pi; // qpoints to the first element of a

}
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Arrays don’t know their own size

void f(int pi[ ], int n, char pc[ ])
// equivalent to void f(int* pi, int n, char* pc)
/[ warning: very dangerous code, for illustration only,
I/ never “hope” that sizes will always be correct

{
char buf1[200];

strcpy(bufl,pc); // copy characters from pc into bufl
/I strcpy terminates when a "\O' character is found
// hope that pc holds less than 200 characters
strncpy(bufl,pc,200); // copy 200 characters from pc to bufl
/[ padded if necessary, but final "\O' not guaranteed
Int buf2[300]; // you can't say char buf2[n]; n is a variable
If (300 < n) error("'not enough space"’);

for (int 1=0; i<n; ++1) buf2[i] = pi}i];_ // hope that pi really has space for
/[ ints; it might have less
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Why bother with arrays?

« It’s all that C has

- In particular, C does not have vectors
- There is a lot of C code “out there”
- Here “a lot” means N*1B lines
- There is a lot of C++ code in C style “out there”
- Here “a lot” means N*100M lines
- You'll eventually encounter code full of arrays and pointers

- They represent primitive memory in C++ programs

- We need them (mostly on free store allocated by new) to implement better
container types

- Avoid arrays whenever you can

- They are the largest single source of bugs in C and (unnecessarily) in C++ programs

- They are among the largest sources of security violations (usually (avoidable)
buffer overflows)
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Types of memory

vector glob(10); // global vector — “lives” forever

vector* some_fct(int n)

{
vector v(n); // local vector — “lives” until the end of scope
vector* p = new vector(n); /I free-store vector — “lives” until we delete it
/...
return p;

}

void ()
{

vector* pp =some_fct(17);
...
delete pp; /I deallocate the free-store vector allocated in some_fct()

}
- It’s easy to forget to delete free-store allocated objects
- S0 avoid new/delete when you can

HY150 Programming, University of Crete Lecture: Arrays, Slide 26



Initialization syntax
(array’s one advantage over vector)

char ac[ | = ""Hello, world"'; // array of 13 chars, not 12 (the compiler
/[ counts them and then adds a null
// character at the end

char* pc = "Howdy""; /[ pc points to an array of 6 chars

char* pp ={'H’, '0o', 'w', 'd", 'y*, 0 }; // another way of saying the same

Intai[]={1,2,3,4,5,6}; /[ array of 6 ints
// not 7 — the “add a null character at the end”
// rule is for literal character strings only
Int ai2[100] ={0,1,2,3,4,5,6,7,8,9 }; // the last 90 elements are initialized to 0
double ad3[100] ={ }; // all elements initialized to 0.0
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Vector (primitive access)

I/ a very simplified vector of doubles:

vector v(10);
for (int 1=0; i<v.size(); ++i) { /I pretty ugly:
v.set(l,1);

cout << v.get(i);

for (int 1=0; i<v.size(); ++i) { I/ we're used to this:
v[i]=i;

cout << v[i];

10/ —  -0.0[1.0/2.0/3.0/4.0/5.0/6.0/7.0/8.0/9.0
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Vector (we could use pointers for access)

I/ a very simplified vector of doubles:
class vector {

Int sz, / the size
double* elem; /[ pointer to elements
public:
vector(int s) :sz(s), elem(new double[s]) { } // constructor
/...

double* operator| J(int n) { return &elem([n]; } // access: return pointer

%

vector v(10);
for (int i1=0; i<v.size(); ++i1) { // works, but still too ugly:
*V[i] =1; // means *(v[i]), that is return a pointer to
// the i!" element, and dereference it
cout << *v[i];

} 110/ —  -0.0/1.0/2.0/3.0/4.0/5.0/6.0/7.0/8.0/9.0
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VecCtor (we use references for access)

I/ a very simplified vector of doubles:
class vector {

Int sz, /I the size
double* elem; // pointer to elements
public:
vector(int s) :sz(s), elem(new double[s]) { } // constructor
B

double& operator| J(int n) { return elem[n]; } // access: return reference

%

vector v(10);

for (int i1=0; i<v.size(); ++1) { // works and looks right!
v[i] =1; /1 v[i] returns a reference to the it element
cout << v[i];

10 —  -0.0[1.0/2.0/3.0/4.0/5.0/6.0/7.08.0/9.0|
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Pointer and reference

« You can think of a reference FS an automaticaijl¥ dereferenced
Immutable pointer, or as an alternative name for an object

- Assignment to a pointer changes the pointer’s value
- Assignment to a reference changes the object referred to
- You cannot make a reference refer to a different object

Inta = 10;
Int* p=&a; //youneed & to get a pointer
*n="7,; // assign to a through p

// you need * (or [ ]) to get to what a pointer points to
Int x1=*p; //readathroughp

INt&r =a; // r 1s a synonym for a
r=9; /[ assign to a through r

INt X2 =r; // read a through r
p = &x1, // you can make a pointer point to a different object
r = &x1,; /I error: you can't change the value of a reference
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Next lecture

- We'll see how we can change vector’s implementation to better
allow for changes in the number of elements. Then we’ll modify
vector to take elements of an arbitrary type and add range

checking. That'll imply looking at templates and revisiting
exceptions.
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