AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

Ai1aAedn 20: NAwooeg Kai 1davika

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete

Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn sicayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete

XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete

HY-150 IIpoypappatiopnog
CS-150 Programming

Lecture 20:
Ideals & Languages

G. Papagiannakis

HY150 Programming, University of Crete

ADbstract

- This 1s a very brief and very selective history of software
as It relates to programming, and especially as it relates to
programming languages and C++. The aim Is to give a
background and a perspective to the ideas presented In this
course.

- We would have loved to talk about operating systems, data
bases, networking, the web, scripting, etc., but you'll have
to find those important and useful areas of software and
programming in other courses.

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 5

Overview

- ldeals
- AIms, heroes, techniques

- Languages and language designers
- Early languages to C++

(There iIs so much more than
what we can cover)

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 6

History and 1deas

- One opinion

- History Is bunk
- Another opinion

- He who does not know history is condemned to repeat it
- Our view

- There can be no professionalism without history
- If you know too little of the background of your field you are gullible
- History is littered with plausible ideas that didn’t work
- “I have a bridge I'd like to sell you”
- |ldeas and ideals are crucial for practical use
- And they are the real “meat” of history

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 7

What Is a programming language?

- A tool for instructing machines

- A notation for algorithms

- A means for communication among programmers

- A tool for experimentation

- A means for controlling computer-controlled gadgets
- A means for controlling computerized devices

- A way of expressing relationships among concepts

- A means for expressing high-level designs

« All of the above!
« And more

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 8

Portability

Type safety

Precisely defined

High performance

Ability to concisely express ideas
Anything that eases debugging
Anything that cases testing
Access to all system resources
Platform independence

Runs on all platforms

Stability over decades

Prompt improvements in response to changes in application arcas

Ease of learning
Small

Support for popular programming styles (e.g., object-oriented program-

ming and generic programming)

Whatever helps analysis of programs

Lots of facilities

Supported by a large community

Supportive of novices (students, learners)

Comprehensive facilities for experts (e.g., infrastructure builders)
Lots of software development tools available

Lots of software components available (e.g., libraries)

Supported by an open software community

Supported by major platform vendors (Microsoft, IBM, etc.)

Desirable
properties of
programming

languages

Lecture: Ideals & Languages, Slide 9

Greek heroes

- Every culture and profession must have ideals and heroes

- Physics: Newton, Einstein, Bohr, Feynman
- Math: Euclid, Euler, Hilbert

- Medicine: Hippocrates, Pasteur, Fleming

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 10

Geek heroes

» Brian Kernighan = Dennis Ritchie
- Programmer and writer = Designer and original
extraordinaire implementer of C

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 11

Another geek hero

- Kristen Nygaard

- Co-Inventor (with Ole-
Johan Dahl) of Simula67/
and of object-oriented
Programming and object-
oriented design

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 12

Yet another geek hero

- Alex Stepanov

- Inventor of the STL and
generic programming
pioneer

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 13

Two extremes

- Academic beauty/perfection/purity
- Commercial expediency

- The pressures towards both are immense

- Both extremes must be avoided for serious progress to occur

- Both extremes encourage overstatement of results (hype) and
understatement (or worse) of alternatives and ancestor languages

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 14

|deals

mThe fundamental aims of good design
mRepresent 1deas directly 1n code
B Represent independent ideas independently 1in code
B Represent relationships among 1deas directly in code
m Combine 1deas expressed 1n code freely

®m where and only where combinations make sense
mFrom these follow
mCorrectness
m Maintainability
m Performance
mApply these to the widest possible range of applications

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 15

ldeals have practical uses

- During the start of a project, review them to get ideas

- When you are stuck late at night, step back and see
where your code has most departed from the ideals —
this Is where the bugs are most likely to lurk and the
design problems are most likely to occur

- Don't just keep looking in the same place and trying the same
techniques to find the bug

- “The bug is always where you are not looking — or you would have found
it already”

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 16

ldeals are personal

- Chose yours well

- "C++ 1s a general purpose programming language designed to
make programming more enjoyable for the serious
programmer.”, B. Stroustrup

- ”’the best thing about the Alto 1s that i1t doesn't run faster at
night.”, D. Knuth

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 17

Styles/paradigms

- Procedural programming

- Data abstraction

- ODbject-oriented programming
- Generic programming

- Functional programming, Logic programming, rule-based
programming, constraints-based programming, aspect-
oriented programming, ...

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 18

Styles/paradigms

template<class Iter> void draw_all(lter b, Iter e)

{

for_each(b,e,mem_fun(&Shape::draw)); // draw all shapes in [b:e)

}

Point p(100,100);
Shape* a[] = { new Circle(p,50), new Rectangle(p, 250, 250) };

draw_all(a,a+2);

- Which programming styles/paradigms did we use here?
« Procedural, data abstractions, OOP, and GP

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 19

Some fundamentals

- Portability Is good

- Type safety Is good

- High performance is good

- Anything that eases debugging is good
- Access to system resources is good

- Stability over decades is good

- Ease of learning is good

- Small is good

- Whatever helps analysis is good

- Having lots of facilities is good

- You can't have all at the same time: engineering tradeoffs

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 20

Programming languages

« Machine code
« Bits, octal, or at most decimal numbers

- Assembler
- Registers, load, store, integer add, floating point add, ...
- Each new machine had its own assembler

- Higher level languages
- First: Fortran and COBOL

- Rate of language invention
- At least 2000 a decade

- Major languages today
- Really solid statistics are hard to come by
- IDS: about 9 million professional programmers
- COBOL, Fortran, C, C++, C#, Visual Basic, PERL, Java, Javascript
- Ada, C#, PHP, ...

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 21

Early programming
languages

1950s: 1960s: 1970s:
Simula}

_Lisp

[
P

Pascal}

\
\
\
\
N
\
N
N
N
N
N
\
N
N
\
\
\
\
S [

Red==major commercial use
Yellow==will produce important “offspring”

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 22

Mlodern programming
languages

HY150 Programming, University of Crete ecture: ldeals & Languages, Slide 23

Why do we design and evolve languages?

- There are many diverse applications areas

- No one language can be the best for everything

- Programmers have diverse backgrounds and skills

- No one language can be best for everybody

- Problems change

- Over the years, computers are applied in new areas and to new problems

- Computers change

- Over the decades, hardware characteristics and tradeoffs change

- Progress happens
- Over the decades, we learn better ways to design and implement languages

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 24

First modern computer — first compiler

1qug .

A . . i - . : :
m David Wheeler el S g g 4. %j:" | ’%‘fﬁﬂ%fj
. . e ke TG A m -
m University of Cambridge |
m Exceptional problem solver: hardware, software, algorithms, libraries
m First computer science Ph.D. (1951)
m First paper on how to write correct, reusable, and maintainable code (1951)

m (Thesis advisor for Bjarne Stroustrup ©)

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 25

Early languages — 1952

- One language for each machine
- Special features for processor
- Special features for “operating system”
- Most had very assembler-like facilities

- It was easy to understand which instructions would be generated

- No portability of code

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 26

Fortran

- John Backus
- IBM
FORTRAN, the first high level computer language to be developed.
- We did not know what we wanted and how to do it. It just sort of grew.

- The Backus-Naur Form (BNF), a standard notation to describe the syntax
of a high level programming language.

- A functional programming language called FP, which advocates a
mathematical approach to programming.

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 27

Fortran — 1956

- Allowed programmers to write linear algebra much as they found it
In textbooks

- Arrays and loops
- Standard mathematical functions
- libraries
- Users’ own functions
- The notation was largely machine independent

- Fortran code could often be moved from computer to computer with only minor
modification

- This was a huge improvement

- Arguably the largest single improvement in the history of programming
languages

« Continuous evolution: II, IV, 77, 90, Ox

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 28

COBOL

- “Rear Admiral Dr. Grace Murray Hopper (US
Navy) was a remarkable woman who grandly rose
to the challenges of programming the first
computers. During her lifetime as a leader in the
field of software development concepts, she
contributed to the transition from primitive
programming techniques to the use of
sophisticated compilers. She believed that ‘we've
always done it that way’ was not necessarily a
good reason to continue to do so.”

: '\‘i;\:t,\“ 10 {/ AN l r
: WMoTh)in Colay
R :

"—'\(,Y 4*"\‘\ S '1 b\‘(l b_‘lr\‘ f’:dﬁ\'

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 29

Cobol — 1960

- Cobol was (and sometimes still 1s) for business programmers what
Fortran was (and sometimes still is) for scientific programmers

- The emphasis was on data manipulation
- Copying
- Storing and retrieving (record keeping)
- Printing (reports)
- Calculation/computation was seen as a minor matter

- It was hoped/claimed that Cobol was so close to business English
that managers could program and programmers would soon
become redundant

« Continuous evolution: 60, 61, 65, 68, 70, 80, 90, 04

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 30

- John McCarthy

- Stanford University
- Al pioneer

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 31

Lisp — 1960

- List/symbolic processing
- Initially (and often still) interpreted

- Dozens (most likely hundreds) of dialects
- “Lisp has an implied plural”
- Common Lisp
- Scheme

- This family of languages has been (and Is) the mainstay of
artificial intelligence (Al) research

- though delivered products have often been in C or C++

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 32

m Peter Naur

m Danish Technical University and Regnecentralen
m BNF
m Edsger Dijkstra

® Mathematisch Centrum, Amsterdam, Eindhoven University of Technology,
Burroughs Corporation , University of Texas (Austin)

m Mathematical logic in programming, algorithms

m THE operating system

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 33

Algol — 1960

- The breakthrough of modern programming language concepts

- Language description
- BNF; separation of lexical, syntactic, and semantic concerns

- Scope

- Type
- The notion of “general purpose programming language”

- Before that languages were either scientific (e.g., Fortran), business (e.g., Cobol),
string manipulation (e.g., Lisp), simulation, ...

- Never reached major non-academic use

ccuwire: Ideals & Languages, Slide 34

HY150 Programming, University of Crete

Simula

S e

o7/

- Kristen Nygaard and Ole-Johan Dahl
- Norwegian Computing Center

- Oslo University

- The start of object-oriented programming and object-oriented design

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 35

Simula 1967

- Address all applications domains rather then a specific domain
- As Fortran, COBOL, etc. did
- Aims to become a true general-purpose programming language
- Model real-world phenomena in code
- represent ideas as classes and class objects
- represent hierarchical relations as class hierarchies

- Classes, inheritance, virtual functions, object-oriented design

- A program becomes a set of interacting objects rather than a
monolith

- Has major (positive) implications for error rates

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 36

- Dennis Ritchie
- Bell Labs C
- C and helped with Unix

- Ken Thompson
- Bell Labs

« Unix

= Doug Mcliroy

= Bell Labs

= Everybody’s favorite
critic, discussion partner,
and ideas man
(influenced C, C++, Unix,
and much more)

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 37

Bell Labs — Murray Hill

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 38

C-19/8

- (Relatively) high-level programming language for systems
programming

- Very widely used, relatively low-level, weakly typed, systems programming
language

- Associated with Unix and through that with Linux and the open source
movement

- Performance becomes somewhat portable

- Designed and implemented by Dennis Ritchie 19% arne Stroustrup, BTL, 1985
Dennis Ritchie, BTL, 1974
Ken Thompson, BTL, 1972

Martin Richards, Cambridge, 1967
Christopher Strachey, Cambridge, mid-1960s

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 39

- Bjarne Stroustrup
- AT&T Bell labs
- Texas A&M University

- making abstraction techniques affordable and manageable
for mainstream projects

- pioneered the use of object-oriented and generic
programming techniques in application areas where
efficiency Is a premium

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 40

Stroustrup 1deals — in 1980 and still in 2008

- “To make life easier for the serious programmer”
- 1.e., primarily me and my friends/colleagues

- | love writing code
- | like reading code
- | hate debugging CEBIEE'

PROGRAMMING LANGUAGE

BJARNE

- Elegant and efficient code STROUSTRUP
- | really dislike choosing between the two

- Elegance, ef iciencg, and correctness are closely related in many
application domain

- Inelegance/verbosity is a major source of bugs and inefficiencies

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 41

C++— 1985

- C++ IS a general-purpose programming language
with a bias towards systems programming that

- IS a better C

- supports data abstraction
- supports object-oriented programming
- Supports generic programming

1978-89

1979-84

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 42

More information

- More language designer links/photos
- http://www.angelfire.com/tx4/cus/people/

- A few examples of languages:
- http://dmoz.org/Computers/Programming/Languages/

« Textbooks

- Michael L. Scott, Programming Language Pragmatics, Morgan Kaufmann,
2000, ISBN 1-55860-442-1

- Robert W. Sebesta, Concegts of programming languages, Addison-Wesley,
2003, ISBN 0-321-19362-

- History books

- Jean Sammet, Programming Languages: History and Fundamentals, Prentice-
Hall, 1969, ISBN 0-13-729988-5

- Richard L. Wexelblat, History of Programming Languages, Academic Press,
1981, ISBN 0-12-745040-8

- T.J. Bergin and R. G. Gibson, History of Programming Languages — I,
Addison-Wesley, 1996, ISBN 0-201-89502-1

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 43

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 44

Thank you!

EMXEIPHZIAKD NMPOTPAMMA

*
« 7 EKMAIAEYZH KAI AA BIOY MAGHEH == EXTNA
pt o Suon seav wowwvia Tre rvwone BN
. =

YNOYPTEIO NAIAEIAL & OPHEKEYMATON. MOAITIEMOY & ABAHTIZMOY
Eupwnaikni ‘Evwon EIAIKH YNHPEZIIA AIAXEIPIIHEZ
Evpwmndiké Kowwviké Tapeio . . e

Me tn ouyxpnuarobsétnon tng EAAdSac kat tne Evpwnaikrig Evwong

HY150 Programming, University of Crete Lecture: Ideals & Languages, Slide 45

