AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AIGAEEN 22. AOKIMNEG

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete



Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn sicayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete



XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [ oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY  EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete



HY-150 Ilpoypoappaticpnog
CS-150 Programming

Lecture 22:
Testing

G. Papagiannakis

HY150 Programming, University of Crete



ADbstract

- This lecture Is an introduction to the design and testing of
program units (such as functions and classes) for
correctness. We discuss the use of interfaces and the
selection of tests to run against them. We emphasize the
Importance of designing systems to simplify testing and
testing from the start. Proving programs correct and

HY150 Programming, University of Crete Lecture: Testing, Slide 5



Overview

mCorrectness, proofs, and testing
mDependencies

BmSystem tests

mTesting GUIs

mResource management

mUnit and system tests

mFinding assumptions that do not hold
mDesign for testing

mPerformance

HY150 Programming, University of Crete Lecture: Testing, Slide 6



Correctness

- Questions to ask about a program
- Is your program correct?
- What makes you think so?
- How sure are you?
- Why?
- Would you fly in a plane that depended on that code?

- You have to be able to reason about your code to have any real
certainty

- Programming is generally unsystematic
- Debugging is generally unsystematic
- What are you willing to bet that you found the last bug?

- Related interesting questions
- Could the program run forever if the hardware didn’t fail?
- Does it always deliver its results in a reasonable time?

HY150 Programming, University of Crete Lecture: Testing, Slide 7



Proofs

- S0 why not just prove mathematically that our program is
correct?

It's often too hard and/or takes too long

Sometimes proofs are wrong too (even proofs produced by computers or by
experts!).

Computer arithmetic isn’t the same as “real” math—remember the rounding
and overflow errors we saw (due to finite and limited precision)?

So we do what we can: follow good design principles, test, test, and then test
some more!

HY150 Programming, University of Crete Lecture: Testing, Slide 8



Testing

- “A systematic way to search for errors”

- Real testers use a lot of tools
- Unit test frameworks
- Static code analysis tools
- Fault injection tools

- When done well, testing is a highly skilled and most valuable
activity

- “Test early and often”
- Whenever you write a function or a class, think of how you might test it
- Whenever you make a significant change, re-test
- Before you ship (even after the most minor change), re-test

HY150 Programming, University of Crete Lecture: Testing, Slide 9



Testing

- Some useful sets of values to check (especially boundary cases):
- the empty set
- small sets
- large sets
- sets with extreme distributions
- sets where “what is of interest” happens near the ends
- sets with duplicate elements
- sets with even and with odd number of elements
- some sets generated using random numbers

HY150 Programming, University of Crete Lecture: Testing, Slide 10



Primitive test harness for binary search()

intal[]={1,2,3,58,13,21};

If (binary_search(al,al+sizeof(al)/sizeof(*al),1) == false)
cout << "1 failed";

If (binary_search(al,al+sizeof(al)/sizeof(*al),5) == false)
cout << "'2 failed",;

If (binary_search(al,al+sizeof(al)/sizeof(*al),8) == false)
cout << "3 failed",;

If (binary_search(al,al+sizeof(al)/sizeof(*al),21) == false)
cout << "'4 failed",;

If (binary_search(al,al+sizeof(al)/sizeof(*al),-7) == true)
cout << "'5 failed",;

If (binary_search(al,al+sizeof(al)/sizeof(*al),4) == true)
cout << "'6 failed",;

If (binary_search(al,al+sizeof(al)/sizeof(*al),22) == true)
cout << "'7 failed",;

HY150 Programming, University of Crete Lecture: Testing, Slide 11



A Better Test (still primitive)

Put the variables into a data file, e.g., with a format of
{277{123581321}0}

meaning

{test number value {sequence} result}

l.e., test #27 calls our binary search to look for the value 7 in the sequence {
12358 1321} and checks that the result is O (false, that is, not found).

Now It’s (relatively) easy to write lots of test cases, or even write another
program to generate a data file with lots of (random) cases.

HY150 Programming, University of Crete Lecture: Testing, Slide 12



Dependencies

Basically we want every function to:
mhave well-defined inputs

mhave well-defined results

® including any modifications to input parameters

B 1n a determinate amount of time (no infinite loops, please)

mnot have dependencies on objects that are not its explicit inputs

m Hard to achieve in real life

mnot use more resources than are available and appropriate

m E.g., time, memory, internet bandwidth, files, and locks

HY150 Programming, University of Crete Lecture: Testing, Slide 13



Dependencies

How many dependencies can you spot Iin this nonsense function?

Int do_dependent(int a, int& b) // messy function
/[ undisciplined dependencies

Int val ;
cin>>val;
vec[val] += 10;
cout << a;
b++;

return b;

HY150 Programming, University of Crete Lecture: Testing, Slide 14



Resource Management

What resources (memory, files, etc.) acquired may not always be
properly released in this nonsense function?

void do_resourcesl(int a, int b, const char*s) // messy function
// undisciplined resource use

{

FILE* f = fopen(s,"'r""); // open file (C style)

INt* p = new int[a]; // allocate some memory

If (b<=0) throw Bad_arg(); // maybe throw an exception

INt* g = new Iint[b]; // allocate some more memory

delete[ ] p; // deallocate the memory pointed to by p
}

HY150 Programming, University of Crete Lecture: Testing, Slide 15



Better Resource Management

// less messy function
void do_resources2(int a, int b, const string& s)

{

Istream is(s.c_str(),"'r""); // open file

vector<int>vl(a); // create vector (owning memory)

if (b<=0) throw Bad_arg(); // maybe throw an exception

vector<int> v2(b); // create another vector (owning memory)
}

Can do_resources2() leak anything?

HY150 Programming, University of Crete Lecture: Testing, Slide 16



L_oOopsS

Most errors occur at the ends, I.€., at the first case or the
last case. Can you spot 3 problems in this code? 4? 5?

Int do_loop(vector<int>& vec) // messy function
// undisciplined loop
{
Int i;
Int sum;
while(i<=vec.size()) sum+=V[i];
return sum;

}

HY150 Programming, University of Crete Lecture: Testing, Slide 17



Buffer Overflow

- Really a special type of loop error, e.g., “storing more bytes than
will fit” into an array—where do the “extra bytes” go? (probably

not a good place)
- The premiere tool of virus writers and “crackers” (evil hackers)

- Some vulnerable functions (best avoided):
. gets, scanf // these are the worst: avoid!
- sprintf
- strcat
. strcpy

HY150 Programming, University of Crete Lecture: Testing, Slide 18



Buffer overflow

- Don’t avoid unsafe functions just as a fetish
Understand what can go wrong and don’t just write equivalent code

Even unsafe functions (e.g. strcpy()) have uses

if you really want to copy a zero terminated string, you can’t do better than strcpy() — just be sure about your “strings”
(How?)

char buffMAX];
char* read_line() // harmless? Mostly harmless? Avoid like the plague?

{
inti=0;
char ch;
while (cin.get(ch) && ch!="\n") buf(i++)=ch;
buf[i+1]=0;
return buf;

HY150 Programming, University of Crete Lecture: Testing, Slide 19



Buffer overflow

- Don'’t avoid unsafe functions just as a fetish
- Understand what can go wrong and don’t just write equivalent code

- Write simple and safe code

string buf;

getline(cin,buf); // buf expands to hold the newline terminated input

HY150 Programming, University of Crete Lecture: Testing, Slide 20



Branching

- In If and switch statements

- Are all alternatives covered?

- Are the right actions associated with the right conditions?
- Be careful with nested if and switch statements

- The compiler ignores your indentation
- Each time you nest you must deal with all possible alternatives
- Each level multiplies the number of alternatives (not just add)

« For switch statements
- remember the default case and to break after each other case

- unless you really meant to “fall through”

HY150 Programming, University of Crete Lecture: Testing, Slide 21



Branching test (if)

void do_branchi(int x, inty) // messy function
// undisciplined use of if

{
if (x<0) {
if (y<0)
cout << "very negative\n";
else
cout << "somewhat negative\n";
}
else if (x>0) {
if (y<0)
cout << "very positive\n";
else
cout << "somewhat positive\n";
}
}

HY150 Programming, University of Crete Lecture: Testing, Slide 22



Branching test (switch)

void do_branchi1(int x, inty) // messy function
// undisciplined use of switch
{
if (y<0 && y<=3)
switch (x) {
case 1:
cout << "one\n";
break;
case 2:
cout << "two\n";
case 3:
cout << "three\n";

HY150 Programming, University of Crete Lecture: Testing, Slide 23



System Tests

- Do unit tests first, then combinations of units, and so on, till we get to
the whole system

- Ideally, in isolation from other parts of the system
- ldeally, in a repeatable fashion

- What about testing GUI based applications?
Control inversion makes GUI testing difficult

- Human behavior is not exactly repeatable
- Timing, forgetfulness, boredom, etc.
- Humans still needed at some point (only a human can evaluate “look and feel”)

- Simulate user input from a test script
- That way a test harness script takes the place of the human for many tests

- An excellent application of “layering” with well-defined interfaces between the layers

- Allows for portability of applications across GUI systems
- A GUI is often used as a lock-in mechanism

HY150 Programming, University of Crete Lecture: Testing, Slide 24



Testing Classes

m A type of unit test
B but most class objects have state

m Classes often depend on interactions among member functions

m A base class must be tested in combination with its derived classes
m Virtual functions
m Construction/initialization is the combined responsibility of several classes

m Private data is really useful here (beware of protected data members)

m Take our Shape class as an example:
m Shape has several functions

m A Shape has a mutable state (we can add points, change color, etc.); that 1s, the effect of one
function can affect the behavior of another function

m Shape has virtual functions; that is, the behavior of a Shape depends on what (if any) class
has been derived from it

m Shape is not an algorithm (why not?)

mA cha%l)ge to a Shape can have an effect on the screen (so maybe we still need a human
tester:

HY150 Programming, University of Crete Lecture: Testing, Slide 25



Testing a Shape (through a Line)

Line In(Point(10,10), Point(100, 100));
In.draw(); // see if it appears

/l check the points:

if (In.number_of_points() != 2) cerr << "wrong number of points";
if (In.point(0)!=Point(10,10)) cerr<< "wrong point 1";

if (In.point(1)!=Point(100,100)) cerr<< "wrong point 2";

for (int i=0; i<10; ++i) { /] see if it moves
In.move(i+5,i+5); for (int i=0; i<10; ++i) { // see if it moves back to where it started
In.draw(); In.move(i-5,i-5);

} In.draw();

}
if (point(0)!=Point(10,10)) cerr<< "wrong point 1 after move";
if (point(1)!=Point(100,100)) cerr<< "wrong point 2 after move";

for (inti=0; i<100; ++i) { //see if the color changes correctly
In.set_color(Color(i*100));
if (In.color() !=i*100) cerr << "bad set_color";
In.draw();

}

for (inti=0; i<100; ++i) { // see if the style changes correctly
In.set_style(Line_style(i*5));
if (In.style() !=i*5) cerr << "bad set_style";
In.draw();

HY150 Programming, University of Crete Lecture: Testing, Slide 26



Finding assumptions that do not hold

- For example, illegal input arguments
- Should never happen, but it does
- Check before each call or at the beginning of the function

- Depending on which code we can modify
- E.g., sgrt first checks that its argument is a non-negative value

- That can be difficult/problematic:
- Consider binary search(a,b,v); //is v in [a:b)
- For forward iterators (e.g., for a list), we can’t test if a<b — no < operation
- For random-access iterators ,we can’t check if a and b are part of the same sequence
- The only perfect solution involves a run-time checking library

. §canniﬂ% Bhe entire seﬂuence to verify it’s sorted is much more work than actually
oing the binary searc

- The purpose of binary_search() is to be faster than linear search

- Sometimes, check in “debug/test mode” only
- Leave (only) affordable tests in production code

HY150 Programming, University of Crete Lecture: Testing, Slide 27



Design for Testing

Use well-defined interfaces

- S0 that you can write tests for the use of these interfaces
- Define invariants, pre- and post conditions

Have a way of representing operations as text

- S0 that they can be stored, analyzed and replayed

Embed tests of unchecked assumptions (assertions) in the calling and/or
called code

- to catch bad arguments before system testing

Minimize dependencies and keep dependencies explicit
- To make it easier to reason about the code

Have a clear resource management strategy

This will also minimize debugging!

HY150 Programming, University of Crete Lecture: Testing, Slide 28



Debugging

- Is a technique and attitude
- Please revisit Lecture 4 notes

- Both debugging and testing catch bugs, but are they the same?
+ No!
- Debugging 1s ad hoc

- Debugging is concerned on removing known bugs and implementing
features

- Usually we like testing but we hate debugging!

« Good early unit testing and design for testing minimizes
debugging!

HY150 Programming, University of Crete Lecture: Testing, Slide 29



Performance

- Is 1t efficient enough?
- Note: Not “Is it as efficient as possible?”

- Computers are fast: You'll have to do millions of operations to
even notice (without using tools)

- Accessing permanent data (on disc) repeatedly can be noticed
- Accessing the web repeatedly can be noticed

- Time “interesting” test cases

- €.g., using time or clock()
- Repeat >3 times; should be £ 10% to be believable

Lecture: Testing, Slide 30

HY150 Programming, University of Crete



Performance

- What's wrong with this?
for (int 1=0; i<strlen(s); ++1) {
// do something with s]i]

}
- It was part of an internet message log analyzer

- Used for files with many thousands of long log lines

HY150 Programming, University of Crete Lecture: Testing, Slide 31



T1iming
- How do we know if a piece of code is fast enough?

- How do you know how long an operation takes?

- What if you want to measure something that takes just
milliseconds?

- What 1f you want to do your own, more detailed, measurements
of a part of a program?

HY150 Programming, University of Crete Lecture: Testing, Slide 32



Using clock()

#include <ctime>
#include <iostream>

using namespace std;

int main(){

int n = 10000000; // repeat do_somenting() n times

clock t tl = clock(); // start time

if (t1 ==clock _t(-1)){ I/ clock_t(-1) means “clock() didn't work”
cerr << ''sorry, no clock\n"';
exit(1);

}

for (int 1 = 0; i<n; i++) do_something(); // timing loop

clock _t t2 = clock(); // end time

if (t2 ==clock_t(-1)) {
cerr << ''sorry, clock overflow\n"";
exit(2);
}
cout << "'do_something() " << n << " times took "'
<< double(t2-t1)/CLOCKS PER _SEC << " seconds " /[ scale result
<< " (measurement granularity:
<< CLOCKS PER_SEC << " of asecond)\n""; }

HY150 Programming, University of Crete Lecture: Testing, Slide 33



Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: Testing, Slide 34



Thank you!

s *
* * dyen gzny wowvwvia zne yviwsrnc I
EE=] " Jnpéypoppa yo v avimuén

YNOYPTEIO MAIAEIAE & BPHIZKEYMATAN. MOAITIZMOY & ABAHTIZMOY
EIAIKH YNMHPEZIA AIAXEIPIZHE

ENIXEIPHEIAKO MPOTPAMMA
@ Pl EKMAIAEYZH KAI AIA BIOY MAGHEH 5= EXTNA
]

Evpwmaikn ‘Evwon
Evpwmndiké Kowwviké Tapeio . . e
Me tn ouyxpnparodoétnon tng EAAGSag kal tneg Evpwnaikng Evwong

HY150 Programming, University of Crete Lecture: Testing, Slide 35



