
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 22: Δοκιμές

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 22:

Testing

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

Lecture: Testing, Slide 5 HY150 Programming, University of Crete

Abstract

• This lecture is an introduction to the design and testing of

program units (such as functions and classes) for

correctness. We discuss the use of interfaces and the

selection of tests to run against them. We emphasize the

importance of designing systems to simplify testing and

testing from the start. Proving programs correct and

performance problems are also briefly considered.

Lecture: Testing, Slide 6 HY150 Programming, University of Crete

Overview
Correctness, proofs, and testing

Dependencies

System tests

Testing GUIs

Resource management

Unit and system tests

Finding assumptions that do not hold

Design for testing

Performance

Lecture: Testing, Slide 7 HY150 Programming, University of Crete

Correctness

• Questions to ask about a program
• Is your program correct?

• What makes you think so?

• How sure are you?

• Why?

• Would you fly in a plane that depended on that code?

• You have to be able to reason about your code to have any real
certainty
• Programming is generally unsystematic

• Debugging is generally unsystematic

• What are you willing to bet that you found the last bug?

• Related interesting questions
• Could the program run forever if the hardware didn’t fail?

• Does it always deliver its results in a reasonable time?

Lecture: Testing, Slide 8 HY150 Programming, University of Crete

Proofs

• So why not just prove mathematically that our program is
correct?

• It’s often too hard and/or takes too long

• Sometimes proofs are wrong too (even proofs produced by computers or by
experts!).

• Computer arithmetic isn’t the same as “real” math—remember the rounding
and overflow errors we saw (due to finite and limited precision)?

• So we do what we can: follow good design principles, test, test, and then test
some more!

Lecture: Testing, Slide 9 HY150 Programming, University of Crete

Testing

• “A systematic way to search for errors”

• Real testers use a lot of tools

• Unit test frameworks

• Static code analysis tools

• Fault injection tools

• …

• When done well, testing is a highly skilled and most valuable
activity

• “Test early and often”

• Whenever you write a function or a class, think of how you might test it

• Whenever you make a significant change, re-test

• Before you ship (even after the most minor change), re-test

Lecture: Testing, Slide 10 HY150 Programming, University of Crete

Testing

• Some useful sets of values to check (especially boundary cases):

• the empty set

• small sets

• large sets

• sets with extreme distributions

• sets where “what is of interest” happens near the ends

• sets with duplicate elements

• sets with even and with odd number of elements

• some sets generated using random numbers

Lecture: Testing, Slide 11 HY150 Programming, University of Crete

Primitive test harness for binary_search()

int a1[] = { 1,2,3,5,8,13,21 };

if (binary_search(a1,a1+sizeof(a1)/sizeof(*a1),1) == false)

 cout << "1 failed";

if (binary_search(a1,a1+sizeof(a1)/sizeof(*a1),5) == false)

 cout << "2 failed";

if (binary_search(a1,a1+sizeof(a1)/sizeof(*a1),8) == false)

 cout << "3 failed";

if (binary_search(a1,a1+sizeof(a1)/sizeof(*a1),21) == false)

 cout << "4 failed";

if (binary_search(a1,a1+sizeof(a1)/sizeof(*a1),-7) == true)

 cout << "5 failed";

if (binary_search(a1,a1+sizeof(a1)/sizeof(*a1),4) == true)

 cout << "6 failed";

if (binary_search(a1,a1+sizeof(a1)/sizeof(*a1),22) == true)

 cout << "7 failed";

Lecture: Testing, Slide 12 HY150 Programming, University of Crete

A Better Test (still primitive)

Put the variables into a data file, e.g., with a format of

{ 27 7 { 1 2 3 5 8 13 21} 0 }

meaning

{test_number value {sequence} result}

i.e., test #27 calls our binary_search to look for the value 7 in the sequence {
1 2 3 5 8 13 21} and checks that the result is 0 (false, that is, not found).

Now it’s (relatively) easy to write lots of test cases, or even write another
program to generate a data file with lots of (random) cases.

Lecture: Testing, Slide 13 HY150 Programming, University of Crete

Dependencies

Basically we want every function to:

have well-defined inputs

have well-defined results

 including any modifications to input parameters

 in a determinate amount of time (no infinite loops, please)

not have dependencies on objects that are not its explicit inputs

 Hard to achieve in real life

not use more resources than are available and appropriate

 E.g., time, memory, internet bandwidth, files, and locks

Lecture: Testing, Slide 14 HY150 Programming, University of Crete

Dependencies

How many dependencies can you spot in this nonsense function?

int do_dependent(int a, int& b) // messy function

 // undisciplined dependencies

{

 int val ;

 cin>>val;

 vec[val] += 10;

 cout << a;

 b++;

 return b;

}

Lecture: Testing, Slide 15 HY150 Programming, University of Crete

Resource Management

What resources (memory, files, etc.) acquired may not always be
properly released in this nonsense function?

void do_resources1(int a, int b, const char* s) // messy function

 // undisciplined resource use

{

 FILE* f = fopen(s,"r"); // open file (C style)

 int* p = new int[a]; // allocate some memory

 if (b<=0) throw Bad_arg(); // maybe throw an exception

 int* q = new int[b]; // allocate some more memory

 delete[] p; // deallocate the memory pointed to by p

}

Lecture: Testing, Slide 16 HY150 Programming, University of Crete

Better Resource Management

// less messy function

void do_resources2(int a, int b, const string& s)

{

 istream is(s.c_str(),"r"); // open file

 vector<int>v1(a); // create vector (owning memory)

 if (b<=0) throw Bad_arg(); // maybe throw an exception

 vector<int> v2(b); // create another vector (owning memory)

}

Can do_resources2() leak anything?

Lecture: Testing, Slide 17 HY150 Programming, University of Crete

Loops

Most errors occur at the ends, i.e., at the first case or the
last case. Can you spot 3 problems in this code? 4? 5?

int do_loop(vector<int>& vec) // messy function

 // undisciplined loop

{

 int i;

 int sum;

 while(i<=vec.size()) sum+=v[i];

 return sum;

}

Lecture: Testing, Slide 18 HY150 Programming, University of Crete

Buffer Overflow

• Really a special type of loop error, e.g., “storing more bytes than
will fit” into an array—where do the “extra bytes” go? (probably
not a good place)

• The premiere tool of virus writers and “crackers” (evil hackers)

• Some vulnerable functions (best avoided):

• gets, scanf // these are the worst: avoid!

• sprintf

• strcat

• strcpy

• …

Lecture: Testing, Slide 19 HY150 Programming, University of Crete

Buffer overflow
• Don’t avoid unsafe functions just as a fetish

• Understand what can go wrong and don’t just write equivalent code

• Even unsafe functions (e.g. strcpy()) have uses

• if you really want to copy a zero terminated string, you can’t do better than strcpy() – just be sure about your “strings”
(How?)

char buf[MAX];

char* read_line() // harmless? Mostly harmless? Avoid like the plague?

{

 int i = 0;

 char ch;

 while (cin.get(ch) && ch!='\n') buf(i++)=ch;

 buf[i+1]=0;

 return buf;

}

Lecture: Testing, Slide 20 HY150 Programming, University of Crete

Buffer overflow

• Don’t avoid unsafe functions just as a fetish

• Understand what can go wrong and don’t just write equivalent code

• Write simple and safe code

string buf;

getline(cin,buf); // buf expands to hold the newline terminated input

Lecture: Testing, Slide 21 HY150 Programming, University of Crete

Branching

• In if and switch statements

• Are all alternatives covered?

• Are the right actions associated with the right conditions?

• Be careful with nested if and switch statements

• The compiler ignores your indentation

• Each time you nest you must deal with all possible alternatives

• Each level multiplies the number of alternatives (not just add)

• For switch statements

• remember the default case and to break after each other case

• unless you really meant to “fall through”

Lecture: Testing, Slide 22 HY150 Programming, University of Crete

Branching test (if)

Lecture: Testing, Slide 23 HY150 Programming, University of Crete

Branching test (switch)

Lecture: Testing, Slide 24 HY150 Programming, University of Crete

System Tests

• Do unit tests first, then combinations of units, and so on, till we get to
the whole system

• Ideally, in isolation from other parts of the system

• Ideally, in a repeatable fashion

• What about testing GUI based applications?

• Control inversion makes GUI testing difficult

• Human behavior is not exactly repeatable

• Timing, forgetfulness, boredom, etc.

• Humans still needed at some point (only a human can evaluate “look and feel”)

• Simulate user input from a test script

• That way a test harness script takes the place of the human for many tests

• An excellent application of “layering” with well-defined interfaces between the layers

• Allows for portability of applications across GUI systems

• A GUI is often used as a lock-in mechanism

Lecture: Testing, Slide 25 HY150 Programming, University of Crete

Testing Classes
A type of unit test

 but most class objects have state

 Classes often depend on interactions among member functions

A base class must be tested in combination with its derived classes

 Virtual functions

 Construction/initialization is the combined responsibility of several classes

 Private data is really useful here (beware of protected data members)

Take our Shape class as an example:

 Shape has several functions

 A Shape has a mutable state (we can add points, change color, etc.); that is, the effect of one
function can affect the behavior of another function

 Shape has virtual functions; that is, the behavior of a Shape depends on what (if any) class
has been derived from it

 Shape is not an algorithm (why not?)

 A change to a Shape can have an effect on the screen (so maybe we still need a human
tester?)

Lecture: Testing, Slide 26 HY150 Programming, University of Crete

Testing a Shape (through a Line)

Lecture: Testing, Slide 27 HY150 Programming, University of Crete

Finding assumptions that do not hold

• For example, illegal input arguments
• Should never happen, but it does

• Check before each call or at the beginning of the function
• Depending on which code we can modify

• E.g., sqrt first checks that its argument is a non-negative value

• That can be difficult/problematic:
• Consider binary_search(a,b,v); // is v in [a:b)

• For forward iterators (e.g., for a list), we can’t test if a<b – no < operation

• For random-access iterators ,we can’t check if a and b are part of the same sequence

• The only perfect solution involves a run-time checking library

• Scanning the entire sequence to verify it’s sorted is much more work than actually
doing the binary search

• The purpose of binary_search() is to be faster than linear search

• Sometimes, check in “debug/test mode” only
• Leave (only) affordable tests in production code

Lecture: Testing, Slide 28 HY150 Programming, University of Crete

Design for Testing

• Use well-defined interfaces

• so that you can write tests for the use of these interfaces

• Define invariants, pre- and post conditions

• Have a way of representing operations as text

• so that they can be stored, analyzed and replayed

• Embed tests of unchecked assumptions (assertions) in the calling and/or
called code

• to catch bad arguments before system testing

• Minimize dependencies and keep dependencies explicit

• To make it easier to reason about the code

• Have a clear resource management strategy

This will also minimize debugging!

Lecture: Testing, Slide 29 HY150 Programming, University of Crete

Debugging
• Is a technique and attitude

• Please revisit Lecture 4 notes

• Both debugging and testing catch bugs, but are they the same?

• No!

• Debugging is ad hoc

• Debugging is concerned on removing known bugs and implementing

features

• Usually we like testing but we hate debugging!

• Good early unit testing and design for testing minimizes

debugging!

Lecture: Testing, Slide 30 HY150 Programming, University of Crete

Performance

• Is it efficient enough?

• Note: Not “Is it as efficient as possible?”

• Computers are fast: You’ll have to do millions of operations to
even notice (without using tools)

• Accessing permanent data (on disc) repeatedly can be noticed

• Accessing the web repeatedly can be noticed

• Time “interesting” test cases

• e.g., using time or clock()

• Repeat ≥3 times; should be ± 10% to be believable

Lecture: Testing, Slide 31 HY150 Programming, University of Crete

Performance

• What’s wrong with this?

 for (int i=0; i<strlen(s); ++i) {

 // do something with s[i]

 }

• It was part of an internet message log analyzer

• Used for files with many thousands of long log lines

Lecture: Testing, Slide 32 HY150 Programming, University of Crete

Timing
• How do we know if a piece of code is fast enough?

• How do you know how long an operation takes?

• What if you want to measure something that takes just

milliseconds?

• What if you want to do your own, more detailed, measurements

of a part of a program?

Lecture: Testing, Slide 33 HY150 Programming, University of Crete

Using clock()
#include <ctime>

#include <iostream>

 using namespace std;

int main(){

int n = 10000000; // repeat do_somenting() n times

clock_t t1 = clock(); // start time

if (t1 = = clock_t(-1)) { // clock_t(-1) means “clock() didn't work”

 cerr << "sorry, no clock\n";

 exit(1);

}

for (int i = 0; i<n; i++) do_something(); // timing loop

clock_t t2 = clock(); // end time

if (t2 = = clock_t(-1)) {

 cerr << "sorry, clock overflow\n";

 exit(2);

}

cout << "do_something() " << n << " times took "

 << double(t2-t1)/CLOCKS_PER_SEC << " seconds " // scale result

 << " (measurement granularity: "

 << CLOCKS_PER_SEC << " of a second)\n"; }

Lecture: Testing, Slide 34 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

Lecture: Testing, Slide 35 HY150 Programming, University of Crete

Thank you!

