AANHNIKH AHMOKPATIA
ANEMNIZTHMIO KPHTHZ

Ewcaymyn octov Ipoypoppnoticno
Introduction to Programming

AlaAegn 23: H C utré 1o mrpiopa tng C++

I". MNaTtrayiavvakng

exnaeveH K an Bov et = EZTTA

@0

i LANS Lt . ATIEMEOY & AAAHTIE "
Eupnmaik Evwan EIAIKH YNMHPEEIA AIAXEIPIEHE
BTt Ko T ¢ 1 euygenEaToSaTn o Ty EAkdbas kot Euposmdis s Evons

HY150 Programming, University of Crete

Adeiec Xpnong

- To TTapoOVv eKTTAIOEUTIKO UAIKO UTTOKEITOI OTNV AdEIA
xpnong Creative Commons Kal €I0IKOTEPA

Avagopa Anuioupyou 3.0 - Mn sicayousvo EAAada
(Attribution 3.0—- Unported GR)

@0

- T'lo eKTodeVTIKO VAIKO, OTTMC EIKOVEC, TOV VTOKEITO GE GAAOV
TUTTOL AOELNC YPNOTNG, N AOELD YPNONC OVOPEPETOL PNTOC.

HY150 Programming, University of Crete

XpNnuotoootTnon

- To mapov eKTodeLTIKO VAIKO £xel avamtuyDel ota mAaicto Tov

EKTTOLOEVTIKOV £PYOL TOL OLOACKOVTA.

- To ¢pyo «Avoikta Akaonuaikd Madqpoata oto Iovemotiuo
Kpntmmo» £xel ypnUaTod0TNGEL LOVO T OVOOIOUOPPMGT] TOV EKTOOEVLTIKOV
VAIKOV.

- To épyo viomotgital 6To mAaicto Tov Emtyeipnoiokod [poypdupotog
«Exmaiocvon kot At Biov MaOnon» kot cuyypnuatodoteital and tnv
Evponaikn ' Evoon (Evporaiko Kowvoviko Taueio) kot amd 0vikong
TOPOLC.

EMIXEIPHZIAKO TPOTPAMMA |

AEYZH KAl AlA BIOY MABHZH ﬂ Ez I-IA
& o : 2007-2013
N [oo v winas
YTIOYPTEIO MAIAEIAT & BPHIKEYMATON, TIOAITIEMOY & ABAHTIIMOY EvPONAIKO KOINGNIKO TAMEID
EvpwmaikiEvwony EIAIKH YMHPEZIA AIAXEIPIZHE

Evpwmaiid Komnvunwid Tapeio
= Me ™n ouyypnpatodornon tng EAAadag kar tng Evpwnaikng Evwong

HY150 Programming, University of Crete

HY-150 Ilpoypoappaticpnog
CS-150 Programming

Lecture 23:

The C programming language
from a C++ perspective

G. Papagiannakis

HY150 Programming, University of Crete

ADbstract

- This lecture gives you the briefest introduction to C from a
C++ point of view. If you need to use this language, read
an introductory book (e.g. K&R). This lecture gives you a
hint what to look for.

- C Is C++'s closest relative, and compatible in many areas,
so much of your C++ knowledge carries over.

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 5

Overview

- C and C++

- Function prototypes

- printf()/scanf()

- Arrays and strings

- Memory management
- Macros

- const

» C/C++ Interoperability

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 6

. —
o
—

i

- Both were “born” in the Computer Science Research Department of
Bell Labs in Murray Hill, NJ

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 7

Modern C and C++ are siblings

1967 - ’

Y .'
I

|
5
\ F
;
i

1978

1980

1985

1989

1998

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 8

C and C++

In this talk, | use “C” to mean “I1SO C89”

- That’s by far the most commonly used definition of C
- Classic C has mostly been replaced (though amazingly not completely)
- C99 is not yet widely used

Source compatibility

- C is (almost) a subset of C++
- Example of excepion: int f(int new, int class, int bool); /* ok in C */

Al OS% all constructs that are both C and C++ have the same meaning (semantics) in
oth languages

- Example of exception: sizeof('a’) /*4inCand1lin C++ */
Link compatibility
- C and C++ program fragments can be linked together in a single program
- And very often are
C++ was designed to be “as close as possible to C, but no closer”
- For ease of transition
- For co-existence
- Most incompatibilities are related to C++’s stricter type checking

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 9

C and C++

m Both defined/controlled by ISO standards committees

B Scparate committees
m Unfortunately, leading to incompatibilities
B Many supported implementations in use
m Available on more platforms than any other languages
mBoth primarily aimed at and are heavily used for hard system
programming tasks, such as
m Operating systems kernels
m Device drivers
® Embedded systems
m Compilers

B Communications systems

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 10

C and C++

- Here we
- assume you know C++ and how to use It
- describe the differences between C and C++
- describe how to program using the facilities offered by C

- Our ideal of programming and our techniques remain the same, but the tool
available to express our ideas change

- describe a few C “traps and pitfalls”
- don’t go into all the details from the book

- Compatibility details are important, but rarely interesting

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 11

C and C++

- C++ Is a general-purpose programming language with a
bias towards systems programming that

[IS a better C]

- Supports data abstraction

- SUp ct-oriented programming
- SUp IC programming

s Functions and structs
= Machine model (basic types and operations)
= Compilation and linkage model i

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 12

I\/Iissing In C (from a C++ perspective)

- Classes and member functions
- Use struct and global functions
- Derived classes and virtual functions
- Use struct , global functions, and pointers to functions
-« You can do OOP in C, but not cleanly, and why would you want to?
-« You can do GP in C, but why would you want to?
- Templates and inline functions
- Use macros
- EXxceptions
- Use error-codes, error-return values, etc.
- Function overloading
- Give each function a separate name
- new/delete
- Use malloc()/free()
- References
- Use pointers
- const in constant expressions
- Use macros

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 13

I\/Iissing In C (from a C++ perspective)

- With no classes, templates, and exceptions, C can't
provide most C++ standard library facilities

- Containers

- vector, map, set, string, etc.

- Use arrays and pointers

- Use macros (rather than parameterization with types)
- STL algorithms

- sort(), find(), copy(), ...

- Not many alternatives

- use gsort() where you can

- Write your own, use 3" party libraries
- lostreams

- Use stdio: printf(), getch(), etc.

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 14

C and C++

Lots of useful code is written in C
- Very few language features are essential

- In principle, you don’t need a high-level language, you could write everything in assembler (but
why would you want to do that?)

Emulate high-level programming techniques
- As directly supported by C++ but not C

Write in the C subset of C++
- Compile in both languages to ensure consistency

Use high compiler warning levels to catch type errors
Use “lint” for large programs
- A “lint” is a consistency checking program

C and C++ are equally efficient
- If you think you see a difference, suspect differences in default optimizer or linker settings

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 15

Functions

m There can be only one function of a given name

m Function argument type checking 1s optional

m There are no references (and therefore no pass-by-reference)
B There are no member functions

m There are no inline functions (except in C99)

m There 1s an alternative function definition syntax

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 16

Function prototypes

(function argument checking is optional)

[* avoid these mistakes — use a compiler option that enforces C++ rules */

Int g(int); [* prototype — like C++ function declaration */

int h(); /[* not a prototype — the argument types are unspecified */

Int f(p,b) char* p; char b; /* old style definition — not a prototype */

{/*...*}

Int my_fct(int a, double d, char* p) /* new style definition — a prototype */

{
f0); [* ok by the compiler! But gives wrong/unexpected results */
f(d,p); /* ok by the compiler! But gives wrong/unexpected results */
h(d); /* ok by the compiler! But may give wrong/unexpected results */
ff(d); [* ok by the compiler! But may give wrong/unexpected results */
a(p); I* error: wrong type */
g(); [* error: argument missing */

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 17

P ri ntf() — many people’s favorite C function

Format string
/* no iostreams — use stdio */

#include<stdio.h> /[* defines int printf(const char* format, 4 */

Int main(void)

{
printf(*'"Hello, world\n"");

return 0; Arguments to be formatted

}
void f(double d, char* s, int i, char ch) /
{

printf(*'double %g strt %I char %c\n'}, d, s, i, ch);
printf go7f %s\n¥, i); erron/

g %s i
/

}

. Formatting characters
Format strings

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 18

scanf() and friends

/* the most popular input functions from <stdio.h>: */
Int i = getchar(); /* note int, not char;
getchar() returns EOF when it reaches end of file */
p = gets(); [* read "\n' terminated line into char array pointed to by p */

void f(int* pi, char* pc, double* pd, char* ps)

{ /* read Into variables whose addresses are passed as pointers: */
scanf(*'%i %c %g %s", pi, pc, pd, ps);
I* %s skips initial whitespace and Is terminated by whitespace */

}
Int i; char c; double d; char s[100]; f(&l, &c, &d, s); /* call to assignto I, ¢, d, and s */

. Don’t eVer use gets() or scanf(**%s")!
- Consider them poisoned
- They are the source of many security violations
- An overflow is easily arranged and easily exploitable
- Use getchar()

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 19

printf() and scanf() are not type safe

double d = 0;
Ints =0;
printf("'d: %d , s: %s\n"', d, 9); /* compiles and runs

\ the result might surprise you */
“s” for “string”

“d” for “decimal”, not “double”

« Though error-prone, printf() is convenient for built-in types
« printf() formats are not extensible to user-defined types
« E.g. no %M for My_type values
« Beware: a printf () with a user-supplied format string is a cracker tool

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 20

Arrays and pointers

- Defined almost exactly as in C++

- In C, you have to use them essentially all the time
- because there Is no vector, map, string, etc.

- Remember
- An array doesn’t know how long it is

- There Is no array assignment

- use memcpy()

- A C-style string Is a zero-terminated array

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 21

C-style strings

- In C a string (called a C-string or a C-style string in C++
literature) Is a zero-terminated array of characters

char* p = "asdf";
char s[] = "asdf"’;

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 22

C-style strings

- Comparing strings
#include <string.h>
If (s1==52){ /* do s1 and s2 point to the same array?
(typically not what you want) */

}
If (strcmp(sl,s2) = =0) {/* do sl and s2 hold the same characters? */
}
- Finding the lengths of a string
Int Igt = strlen(s); /* note: goes through the string at run time

looking for the terminating 0 */
- Copying strings
strcpy(sl,s2); /* copy characters from s2 into sl
be sure that s1 can hold that many characters */

HY150 Programming, University of Crete

Lecture: The C Programming Language, Slide 23

C-style strings

- The string copy function strcpy() is the archetypical C
function (found in the ISO C standard library)

- Unless you understand the implementation below, don’t
claim to understand C:

char* strcpy(char *p, const char *q)

{
while (*p++ = *g++);

return p;

- For an explanation see for example K&R or TC++PL

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 24

Standard function libraries

- <stdio.h> printf(), scanf(), etc.
. <string.h> strcmp(), etc.
- <ctype.c> isspace(), etc.
. <stdlib.h> malloc(), etc.

- <math.h> sgrt(), etc.

- Warning: By default, Microsoft tries to force you to use safer, but
non-standard, alternatives to the unsafe C standard library
functions

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 25

Free store: malloc()/free()

#include<stdlib.h>

void f(int n) {
/* malloc() takes a number of bytes as Its argument */
Int* p = (int*)malloc(sizeof(int)*n); /* allocate an array of n ints */
[* ... *l
free(p); /* free() returns memory allocated by malloc() to free store */

}

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 26

Free store: malloc()/free()

- Little compile-time checking
/* malloc() returns a void*. You can leave out the cast of malloc(), but dont */
double* p = malloc(sizeof(int)*n); /[* probably a bug */
- Little run-time checking
Int* q = malloc(sizeof(int)*m); /* m ints */
for (int i=0; i<n; ++i) init(q[i]);
- No Initialization/cleanup

- malloc() doesn’t call constructors
- free() doesn’t call destructors
- Write and remember to use your own init() and cleanup()

- There 1S no way to ensure automatic cleanup

- Don’t use malloc()/free() in C++ programs
- new/delete are as fast and almost always better

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 27

Ta ko
void
B Why does void* convert to T* 1in C but not in C++?

m C needs 1t to save you from casting the result of malloc()

m C++ does not: use new

B Why 1s a void* to T* conversion not type safe?

void f()
d
chari=0;
char j = 0;
char* p = &i;
void* q = p;

int* pp=q; /* unsafe, legal C; errorin C++ */

“pp =-1; [* overwrite memory starting at &i */

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 29

comments

- /[comments were introduced by Bjarne Stroustrup into C++ from

C’s ancestor BCPL when he got really fed up with typing /* ... */
comments

- /[comments are accepted by most C dialects including the new ISO
standard C (C99)

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 30

const

//'Iin C, a const Is never a compile time constant
const int max = 30;

const int x; // const not initialized: ok in C (error in C++)
void f(int v)
{
Int al[max]; //error: array bound not a constant (max is not a constant!)
Int a2[x]; /[error: array bound not a constant (here you see why)
switch (v) {
case 1:
i
case max: // error: case label not a constant
I ...
}

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 31

Instead of const use macros

#define max 30

void f(int v)
{
Int al[max]; // ok
switch (v) {
case 1:
...
case max: // ok
...

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 32

Beware of macros

#include ""'my_header.h"

...
Int max(int a, int b) { return a>=b?a:b; } //error: “obscure error message”

- As it happened my header.h contained the macro max from the previous slide so what
the compiler saw was

int 30(int a, int b) { return a>=b%?a:b; }

- No wonder it complained!
- There are tens of thousands of macros in popular header files.
- Always define macros with ALL_CAPS names, e.g.
#define MY_MAX 30
and never give anything but a macro an ALL_CAPS name
- Unfortunately, not everyone obeys the ALL_CAPS convention

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 33

C/C++ Interoperability

- Works because of shared linkage model
- Works because a shared model for simple objects

- built-in types and structs/classes
- Optimal/Efficient

- No behind-the-scenes reformatting/conversions

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 34

Calling C from C++

- Use extern ""C" to tell the C++ compiler to use C calling conventions

/[calling C function from C++:

extern "'C" double sgrt(double); //link as a C function

void my_c_plus_plus_fct()

{
double sr = sqrt(2);

Il ...

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 35

Calling C++ from C

- No special action is needed from the C compiler

/* call C++ function from C: */

int call_f(S* p, inti); /* call f for object pointed to by p with argument i */
struct S* make_S(int x, const char* p); /* make S(x,p) on the free store */

void my_c_fct(int)

{
[* ... %
struct S* p = make_S(17, "*foo"");
int x = call_f(p,i);
[* ... *
}

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 36

Word counting example (C++ version)

#include<map>
#include<string>
#include<iostream>
using namespace std;

Int main()
{
map<string,int> m;
string s;
while (cin>>s) m[s]++; // use getline() if you really want lines
for(map<string,int>::iterator p = m.begin(); p'=m.end(); ++p)
cout << p->first << " : "' << p->second << "\n"";

HY150 Programming, University of Crete

Lecture: The C Programming Language, Slide 37

Word counting example (C version)

/[word_freq.c
/[Walter C. Daugherity

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_WORDS 1000 /* max unigue words to count */
#define MAX_WORD_ LENGTH 100

#define STR(S) #s /* macros for scanf format */
#define XSTR(s) STR(s)

typedef struct record{
char word[MAX_WORD_LENGTH + 1];
Int count;

} record;

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 38

Word counting example (C version)

Int main()
{
Il ... read words and build table ...
gsort(table, num_words, sizeof(record), strcmp);
for(iter=0; iter<num_words; ++iter)
printf(*'%s %d\n"" table[iter].word,table[iter].count);
return EXIT_SUCCESS;

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 39

Word counting example (most of main)

record tablefMAX_ WORDS + 1];
int num_words = 0;
char word[MAX WORD LENGTH + 1];
Int iter;
while(scanf(*'%" XSTR(MAX WORD_ LENGTH) "'s", word) != EOF) {
for(iter = 0; iter < num_words && strcmp(table[iter].word, word); ++iter);
If(iter == num_words) {
strncpy(table[num_words].word, word, MAX WORD LENGTH + 1);
table[num_words++].count = 1;

}

else table[iter].count++;
If(num_words > MAX_WORDS){
printf(*'table is full\n"");
return EXIT_FAILURE;

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 40

Word counting example (C version)

- Comments
- In (some) colloquial C style (not written by BS)
- It's so long and complicated! (my first reaction — BS)

- See, you don’t need any fancy and complicated language features!!! (not my comment —
BS)

- IMHO not a very good problem for using C
- Not an atypical application, but not low-level systems programming

- It's also C++ except that in C++, the argument to gsort() should be cast to its proper
type:

« (int (*)(const void*, const void*))strcmp
- What are those macros doing?
- Maxes out at MAX_ WORD words
- Doesn’t handle words longer than MAX_WORD_LENGTH
- First reads and then sorts

- Inherently slower than the colloquial C++ version (which uses a map)

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 41

More information

Kernighan & Ritchie: The C Programming Language

« The classic

Stroustrup: TC++PL, Appendix B: Compatibility

-« C/C++ incompatibilities, on my home pages

Stroustrup: Learning Standard C++ as a New Language.
- Style and technigue comparisons

- www.research.att.com/~bs/new_learning.pdf

Lots of book reviews: www.accu.org

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 42

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 43

Thank you!

EMXEIPHZIAKD NMPOTPAMMA

*
« 7 EKMAIAEYZH KAI AA BIOY MAGHEH == EXTNA
pt o Suon seav wowwvia Tre rvwone BN
. =

YNOYPTEIO NAIAEIAL & OPHEKEYMATON. MOAITIEMOY & ABAHTIZMOY
Eupwnaikni ‘Evwon EIAIKH YNHPEZIIA AIAXEIPIIHEZ
Evpwmndiké Kowwviké Tapeio . . e

Me tn ouyxpnuarobsétnon tng EAAdSac kat tne Evpwnaikrig Evwong

HY150 Programming, University of Crete Lecture: The C Programming Language, Slide 44

