
HY150 Programming, University of Crete

Εισαγωγή στον Προγραμματισμό

Introduction to Programming

Διάλεξη 23: H C υπό το πρίσμα της C++

Γ. Παπαγιαννάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HY150 Programming, University of Crete

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

χρήσης Creative Commons και ειδικότερα

Αναφορά Δημιουργού 3.0 - Μη εισαγόμενο Ελλάδα

 (Attribution 3.0– Unported GR)

- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

HY150 Programming, University of Crete

 Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

εκπαιδευτικού έργου του διδάσκοντα.

- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο

Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού

υλικού.

- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

HY150 Programming, University of Crete

Lecture 23:

The C programming language
from a C++ perspective

G. Papagiannakis

ΗΥ-150 Προγραμματισμός
CS-150 Programming

Lecture: The C Programming Language, Slide 5 HY150 Programming, University of Crete

Abstract

• This lecture gives you the briefest introduction to C from a

C++ point of view. If you need to use this language, read

an introductory book (e.g. K&R). This lecture gives you a

hint what to look for.

• C is C++’s closest relative, and compatible in many areas,

so much of your C++ knowledge carries over.

Lecture: The C Programming Language, Slide 6 HY150 Programming, University of Crete

Overview
• C and C++

• Function prototypes

• printf()/scanf()

• Arrays and strings

• Memory management

• Macros

• const

• C/C++ interoperability

Lecture: The C Programming Language, Slide 7 HY150 Programming, University of Crete

C and C++

• Both were “born” in the Computer Science Research Department of

Bell Labs in Murray Hill, NJ

Lecture: The C Programming Language, Slide 8 HY150 Programming, University of Crete

Modern C and C++ are siblings

Lecture: The C Programming Language, Slide 9 HY150 Programming, University of Crete

C and C++
• In this talk, I use “C” to mean “ISO C89”

• That’s by far the most commonly used definition of C

• Classic C has mostly been replaced (though amazingly not completely)

• C99 is not yet widely used

• Source compatibility
• C is (almost) a subset of C++

• Example of excepion: int f(int new, int class, int bool); /* ok in C */

• (Almost) all constructs that are both C and C++ have the same meaning (semantics) in
both languages

• Example of exception: sizeof('a') /* 4 in C and 1 in C++ */

• Link compatibility
• C and C++ program fragments can be linked together in a single program

• And very often are

• C++ was designed to be “as close as possible to C, but no closer”
• For ease of transition

• For co-existence

• Most incompatibilities are related to C++’s stricter type checking

Lecture: The C Programming Language, Slide 10 HY150 Programming, University of Crete

C and C++
Both defined/controlled by ISO standards committees

 Separate committees

 Unfortunately, leading to incompatibilities

 Many supported implementations in use

 Available on more platforms than any other languages

Both primarily aimed at and are heavily used for hard system

programming tasks, such as

 Operating systems kernels

 Device drivers

 Embedded systems

 Compilers

 Communications systems

Lecture: The C Programming Language, Slide 11 HY150 Programming, University of Crete

C and C++

• Here we

• assume you know C++ and how to use it

• describe the differences between C and C++

• describe how to program using the facilities offered by C

• Our ideal of programming and our techniques remain the same, but the tool

available to express our ideas change

• describe a few C “traps and pitfalls”

• don’t go into all the details from the book

• Compatibility details are important, but rarely interesting

Lecture: The C Programming Language, Slide 12 HY150 Programming, University of Crete

C:
 Functions and structs

 Machine model (basic types and operations)

 Compilation and linkage model

C and C++

• C++ is a general-purpose programming language with a
bias towards systems programming that

• is a better C

• supports data abstraction

• supports object-oriented programming

• supports generic programming

Lecture: The C Programming Language, Slide 13 HY150 Programming, University of Crete

Missing in C (from a C++ perspective)

• Classes and member functions

• Use struct and global functions

• Derived classes and virtual functions

• Use struct , global functions, and pointers to functions

• You can do OOP in C, but not cleanly, and why would you want to?

• You can do GP in C, but why would you want to?

• Templates and inline functions

• Use macros

• Exceptions

• Use error-codes, error-return values, etc.

• Function overloading

• Give each function a separate name

• new/delete

• Use malloc()/free()

• References

• Use pointers

• const in constant expressions

• Use macros

Lecture: The C Programming Language, Slide 14 HY150 Programming, University of Crete

Missing in C (from a C++ perspective)

• With no classes, templates, and exceptions, C can’t
provide most C++ standard library facilities

• Containers

• vector, map, set, string, etc.

• Use arrays and pointers

• Use macros (rather than parameterization with types)

• STL algorithms

• sort(), find(), copy(), …

• Not many alternatives

• use qsort() where you can

• Write your own, use 3rd party libraries

• Iostreams

• Use stdio: printf(), getch(), etc.

Lecture: The C Programming Language, Slide 15 HY150 Programming, University of Crete

C and C++
• Lots of useful code is written in C

• Very few language features are essential

• In principle, you don’t need a high-level language, you could write everything in assembler (but
why would you want to do that?)

• Emulate high-level programming techniques

• As directly supported by C++ but not C

• Write in the C subset of C++

• Compile in both languages to ensure consistency

• Use high compiler warning levels to catch type errors

• Use “lint” for large programs

• A “lint” is a consistency checking program

• C and C++ are equally efficient

• If you think you see a difference, suspect differences in default optimizer or linker settings

Lecture: The C Programming Language, Slide 16 HY150 Programming, University of Crete

Functions
There can be only one function of a given name

Function argument type checking is optional

There are no references (and therefore no pass-by-reference)

There are no member functions

There are no inline functions (except in C99)

There is an alternative function definition syntax

Lecture: The C Programming Language, Slide 17 HY150 Programming, University of Crete

Function prototypes
(function argument checking is optional)

/* avoid these mistakes – use a compiler option that enforces C++ rules */

int g(int); /* prototype – like C++ function declaration */

int h(); /* not a prototype – the argument types are unspecified */

int f(p,b) char* p; char b; /* old style definition – not a prototype */

{ /* … */ }

int my_fct(int a, double d, char* p) /* new style definition – a prototype */

{

 f(); /* ok by the compiler! But gives wrong/unexpected results */

 f(d,p); /* ok by the compiler! But gives wrong/unexpected results */

 h(d); /* ok by the compiler! But may give wrong/unexpected results */

 ff(d); /* ok by the compiler! But may give wrong/unexpected results */

 g(p); /* error: wrong type */

 g(); /* error: argument missing */

}

Lecture: The C Programming Language, Slide 18 HY150 Programming, University of Crete

printf() – many people’s favorite C function

/* no iostreams – use stdio */

#include<stdio.h> /* defines int printf(const char* format, …); */

int main(void)

{

 printf("Hello, world\n");

 return 0;

}

void f(double d, char* s, int i, char ch)

{

 printf("double %g string %s int %i char %c\n", d, s, i, ch);

 printf("goof %s\n", i); /* uncaught error */

}

Format strings
Formatting characters

Arguments to be formatted

Format string

Lecture: The C Programming Language, Slide 19 HY150 Programming, University of Crete

scanf() and friends
/* the most popular input functions from <stdio.h>: */

int i = getchar(); /* note int, not char;

 getchar() returns EOF when it reaches end of file */

p = gets(); /* read '\n' terminated line into char array pointed to by p */

void f(int* pi, char* pc, double* pd, char* ps)

{ /* read into variables whose addresses are passed as pointers: */

 scanf("%i %c %g %s", pi, pc, pd, ps);

 /* %s skips initial whitespace and is terminated by whitespace */

}

int i; char c; double d; char s[100]; f(&i, &c, &d, s); /* call to assign to i, c, d, and s */

• Don’t ever use gets() or scanf("%s")!

• Consider them poisoned

• They are the source of many security violations

• An overflow is easily arranged and easily exploitable

• Use getchar()

Lecture: The C Programming Language, Slide 20 HY150 Programming, University of Crete

printf() and scanf() are not type safe

double d = 0;

int s = 0;

printf("d: %d , s: %s\n", d, s); /* compiles and runs

 the result might surprise you */

“d” for “decimal”, not “double”

“s” for “string”

 Though error-prone, printf() is convenient for built-in types

 printf() formats are not extensible to user-defined types

 E.g. no %M for My_type values

 Beware: a printf () with a user-supplied format string is a cracker tool

Lecture: The C Programming Language, Slide 21 HY150 Programming, University of Crete

Arrays and pointers

• Defined almost exactly as in C++

• In C, you have to use them essentially all the time

• because there is no vector, map, string, etc.

• Remember

• An array doesn’t know how long it is

• There is no array assignment

• use memcpy()

• A C-style string is a zero-terminated array

Lecture: The C Programming Language, Slide 22 HY150 Programming, University of Crete

C-style strings

• In C a string (called a C-string or a C-style string in C++
literature) is a zero-terminated array of characters

char* p = "asdf";

char s[] = "asdf";

'a' 's' 'f' 'd' 0 p:

'a' 's' 'f' 'd' 0 s:

Lecture: The C Programming Language, Slide 23 HY150 Programming, University of Crete

C-style strings
• Comparing strings

#include <string.h>

if (s1 = = s2) { /* do s1 and s2 point to the same array?

 (typically not what you want) */

}

if (strcmp(s1,s2) = = 0) { /* do s1 and s2 hold the same characters? */

}

• Finding the lengths of a string
int lgt = strlen(s); /* note: goes through the string at run time

 looking for the terminating 0 */

• Copying strings
strcpy(s1,s2); /* copy characters from s2 into s1

 be sure that s1 can hold that many characters */

Lecture: The C Programming Language, Slide 24 HY150 Programming, University of Crete

C-style strings
• The string copy function strcpy() is the archetypical C

function (found in the ISO C standard library)

• Unless you understand the implementation below, don’t
claim to understand C:

char* strcpy(char *p, const char *q)

{

 while (*p++ = *q++);

 return p;

}

• For an explanation see for example K&R or TC++PL

Lecture: The C Programming Language, Slide 25 HY150 Programming, University of Crete

Standard function libraries
• <stdio.h> printf(), scanf(), etc.

• <string.h> strcmp(), etc.

• <ctype.c> isspace(), etc.

• <stdlib.h> malloc(), etc.

• <math.h> sqrt(), etc.

• Warning: By default, Microsoft tries to force you to use safer, but

non-standard, alternatives to the unsafe C standard library

functions

Lecture: The C Programming Language, Slide 26 HY150 Programming, University of Crete

Free store: malloc()/free()

#include<stdlib.h>

void f(int n) {

 /* malloc() takes a number of bytes as its argument */

 int* p = (int*)malloc(sizeof(int)*n); /* allocate an array of n ints */

 /* … */

 free(p); /* free() returns memory allocated by malloc() to free store */

}

Lecture: The C Programming Language, Slide 27 HY150 Programming, University of Crete

Free store: malloc()/free()

• Little compile-time checking

/* malloc() returns a void*. You can leave out the cast of malloc(), but don’t */

double* p = malloc(sizeof(int)*n); /* probably a bug */

• Little run-time checking

int* q = malloc(sizeof(int)*m); /* m ints */

for (int i=0; i<n; ++i) init(q[i]);

• No initialization/cleanup

• malloc() doesn’t call constructors

• free() doesn’t call destructors

• Write and remember to use your own init() and cleanup()

• There is no way to ensure automatic cleanup

• Don’t use malloc()/free() in C++ programs

• new/delete are as fast and almost always better

Lecture: The C Programming Language, Slide 29 HY150 Programming, University of Crete

void*
Why does void* convert to T* in C but not in C++?

 C needs it to save you from casting the result of malloc()

 C++ does not: use new

Why is a void* to T* conversion not type safe?

void f()

 {

 char i = 0;

 char j = 0;

 char* p = &i;

 void* q = p;

 int* pp = q; /* unsafe, legal C; error in C++ */

 pp = -1; / overwrite memory starting at &i */

 }

Lecture: The C Programming Language, Slide 30 HY150 Programming, University of Crete

Comments
• // comments were introduced by Bjarne Stroustrup into C++ from

C’s ancestor BCPL when he got really fed up with typing /* … */

comments

• // comments are accepted by most C dialects including the new ISO

standard C (C99)

Lecture: The C Programming Language, Slide 31 HY150 Programming, University of Crete

const

// in C, a const is never a compile time constant

const int max = 30;

const int x; // const not initialized: ok in C (error in C++)

void f(int v)

{

 int a1[max]; // error: array bound not a constant (max is not a constant!)

 int a2[x]; // error: array bound not a constant (here you see why)

 switch (v) {

 case 1:

 // …

 case max: // error: case label not a constant

 // …

 }

}

Lecture: The C Programming Language, Slide 32 HY150 Programming, University of Crete

Instead of const use macros
#define max 30

void f(int v)

{

 int a1[max]; // ok

 switch (v) {

 case 1:

 // …

 case max: // ok

 // …

 }

}

Lecture: The C Programming Language, Slide 33 HY150 Programming, University of Crete

Beware of macros
#include "my_header.h"

// …

int max(int a, int b) { return a>=b?a:b; } // error: “obscure error message”

• As it happened my_header.h contained the macro max from the previous slide so what
the compiler saw was

 int 30(int a, int b) { return a>=b?a:b; }

• No wonder it complained!

• There are tens of thousands of macros in popular header files.

• Always define macros with ALL_CAPS names, e.g.

 #define MY_MAX 30

 and never give anything but a macro an ALL_CAPS name

• Unfortunately, not everyone obeys the ALL_CAPS convention

Lecture: The C Programming Language, Slide 34 HY150 Programming, University of Crete

C/C++ interoperability

• Works because of shared linkage model

• Works because a shared model for simple objects

• built-in types and structs/classes

• Optimal/Efficient

• No behind-the-scenes reformatting/conversions

Lecture: The C Programming Language, Slide 35 HY150 Programming, University of Crete

Calling C from C++

• Use extern "C" to tell the C++ compiler to use C calling conventions

 // calling C function from C++:

 extern "C" double sqrt(double); // link as a C function

 void my_c_plus_plus_fct()

 {

 double sr = sqrt(2);

 // …

 }

Lecture: The C Programming Language, Slide 36 HY150 Programming, University of Crete

Calling C++ from C
• No special action is needed from the C compiler

 /* call C++ function from C: */

 int call_f(S* p, int i); /* call f for object pointed to by p with argument i */

 struct S* make_S(int x, const char* p); /* make S(x,p) on the free store */

 void my_c_fct(int i)

 {

 /* … */

 struct S* p = make_S(17, "foo");

 int x = call_f(p,i);

 /* … */

 }

Lecture: The C Programming Language, Slide 37 HY150 Programming, University of Crete

Word counting example (C++ version)

#include<map>

#include<string>

#include<iostream>

using namespace std;

int main()

{

 map<string,int> m;

 string s;

 while (cin>>s) m[s]++; // use getline() if you really want lines

 for(map<string,int>::iterator p = m.begin(); p!=m.end(); ++p)

 cout << p->first << " : " << p->second << "\n";

}

Lecture: The C Programming Language, Slide 38 HY150 Programming, University of Crete

Word counting example (C version)
// word_freq.c

// Walter C. Daugherity

#include <stdio.h>

#include <stdlib.h>

 #include <string.h>

#define MAX_WORDS 1000 /* max unique words to count */

#define MAX_WORD_LENGTH 100

#define STR(s) #s /* macros for scanf format */

#define XSTR(s) STR(s)

typedef struct record{

 char word[MAX_WORD_LENGTH + 1];

 int count;

} record;

Lecture: The C Programming Language, Slide 39 HY150 Programming, University of Crete

Word counting example (C version)

int main()

{

 // … read words and build table …

 qsort(table, num_words, sizeof(record), strcmp);

 for(iter=0; iter<num_words; ++iter)

 printf("%s %d\n",table[iter].word,table[iter].count);

 return EXIT_SUCCESS;

}

Lecture: The C Programming Language, Slide 40 HY150 Programming, University of Crete

Word counting example (most of main)

record table[MAX_WORDS + 1];

int num_words = 0;

char word[MAX_WORD_LENGTH + 1];

int iter;

while(scanf("%" XSTR(MAX_WORD_LENGTH) "s", word) != EOF) {

 for(iter = 0; iter < num_words && strcmp(table[iter].word, word); ++iter);

 if(iter == num_words) {

 strncpy(table[num_words].word, word, MAX_WORD_LENGTH + 1);

 table[num_words++].count = 1;

 }

 else table[iter].count++;

 if(num_words > MAX_WORDS){

 printf("table is full\n");

 return EXIT_FAILURE;

 }

}

Lecture: The C Programming Language, Slide 41 HY150 Programming, University of Crete

Word counting example (C version)

• Comments

• In (some) colloquial C style (not written by BS)

• It’s so long and complicated! (my first reaction – BS)

• See, you don’t need any fancy and complicated language features!!! (not my comment –
BS)

• IMHO not a very good problem for using C

• Not an atypical application, but not low-level systems programming

• It’s also C++ except that in C++, the argument to qsort() should be cast to its proper
type:

• (int (*)(const void*, const void*))strcmp

• What are those macros doing?

• Maxes out at MAX_WORD words

• Doesn’t handle words longer than MAX_WORD_LENGTH

• First reads and then sorts

• Inherently slower than the colloquial C++ version (which uses a map)

Lecture: The C Programming Language, Slide 42 HY150 Programming, University of Crete

More information

• Kernighan & Ritchie: The C Programming Language

• The classic

• Stroustrup: TC++PL, Appendix B: Compatibility

• C/C++ incompatibilities, on my home pages

• Stroustrup: Learning Standard C++ as a New Language.

• Style and technique comparisons

• www.research.att.com/~bs/new_learning.pdf

• Lots of book reviews: www.accu.org

Lecture: The C Programming Language, Slide 43 HY150 Programming, University of Crete

Acknowledgements

Bjarne Stroustrup

Programming -- Principles and Practice Using C++

http://www.stroustrup.com/Programming/

Lecture: The C Programming Language, Slide 44 HY150 Programming, University of Crete

Thank you!

