
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Εισαγωγή στην Επιστήμη και
Τεχνολογία των Υπηρεσιών

Ενότητα 13: Web Services

Χρήστος Νικολάου
Τμήμα Επιστήμης Υπολογιστών

Άδειες Χρήσης

• Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative
Commons και ειδικότερα

Αναφορά – Μη εμπορική Χρήση – Όχι Παράγωγο Έργο v. 3.0

(Attribution – Non Commercial – Non-derivatives)

• Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις
διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης.
Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς.

Χρηματοδότηση
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

του εκπαιδευτικού έργου του διδάσκοντα.

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο
Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του
εκπαιδευτικού υλικού.

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού
Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και
συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό
Κοινωνικό Ταμείο) και από εθνικούς πόρους.

D. Silberberg XML: Technology &Application
 Web Services

1

 XML

Web Services

 635.444

 David Silberberg

 Lecture 24

D. Silberberg XML: Technology &Application
 Web Services

2

 What are Web Services

• W3C: a Web Service system is a software system

 designed to support interoperable Machine-to-Machine
 interaction over a network.

• Web services are accessed via Web APIs over a network,
 such as the Internet, and executed on a remote system
 hosting the requested services.

• Web service clients and servers

 – Communicate using XML messages that follow the SOAP
 standard (will describe later)

 – Common in both the field and the terminology is the assumption

 that there is also a machine readable description of the operations
 supported by the server in the Web Services Description Language
 (WSDL)

D. Silberberg XML: Technology &Application
 Web Services

3

 More about Web Services

• Web Services are services offered via the Web

• A Web Service is programmable application logic
 accessible using standard Internet protocols
 – Not generally monolithic or course-grained services like zdnet.com

 or amazon.com (although they could be)

 – Each service represents black-box functionality that can be reused

 independent of its implementation

• Web services are usually component-based services

–

–

–

–

Building blocks for larger services

Can be aggregated in multiple ways to form an enterprise

The same services can be used to form other enterprises, as well

Individual services are usually ―light-weight‖ modules to provide a
single (or closely related set of) services

D. Silberberg XML: Technology &Application
 Web Services

4

 Service-Oriented Architectures

• Interest in Web Services has renewed an interest in service-oriented

 architecture (SOA).

• An SOA is an architecture that is composed of components and

 interconnections that stress interoperability and location transparency

• The term service has been used for many years

 – Transaction monitoring software uses term "service"

 – Client-server development efforts use the term "service" to indicate the

 ability to make a remote method call

 – Web Services has given the term service more prominence

• Services and service-oriented architectures are about designing and

 building systems using heterogeneous network addressable software

 components

D. Silberberg XML: Technology &Application
 Web Services

5

 General Characteristics of Web Services

• Applications
 – Self-contained - complete modules usable (and reusable) by one or

 more applications

 – Self-describing - can discern its use from its description

 – Modular - bite-sized chunks of code

• Use of services

 – Services are published for anticipated and unanticipated clients

 – Clients can discover and locate through directory services

 – Clients can invoke the services without notifying the services a

 priori

• Range of use from simple server to complicated business

 processes

D. Silberberg XML: Technology &Application
 Web Services

6

Examples

• ―Stock Quote‖ (simple) service

–

–

–

–

Client asks for the stock price of some specific stock

Web service (server) returns the current price of the specific stock

Request is filled almost immediately

Request and response are part of the same method call

• ―Efficient Route Map‖ (complex) service

–

–

–

–

Client sends request specifying delivery destinations

Web service returns an efficient route

Since the process is complex, the response time can be large

Request and response are part of two operations

• Multiple client/server calls

 – Customer asks for availability of item from retail service

 – Retail service ―turns around‖ and asks for availability of item from warehouse

 service

 – Warehouse service responds to retail service, which responds to the customer

D. Silberberg XML: Technology &Application
 Web Services

7

Why Web Services - Why Not Use Other Platforms?

• Other middleware platforms exist to support these types of operations

–

–

–

–

RMI - for Java to Java routines

Jini - a Java-based remote discovery and invocation service

CORBA - the OMG standard for supporting remote services in multiple languages

DCOM - Microsoft’s services platform

•

•

All the platforms above are widely used

 – However, none have the ubiquity of the entire Internet

 – All have specific protocols that must be adhered to by participants

Web Services

 – Uses XML, HTTP, SOAP (Simple Object Access Protocol), WSDL (Web Services

 Description Language), UDDI (Universal Description, Discovery and Integration

 service)

 – Significant advantage of Web Services over other platforms

 • HTTP - probably THE most widely accepted Internet protocol

 • XML - ubiquitous data exchange markup language

D. Silberberg XML: Technology &Application
 Web Services

8

 Remote Procedure Calls (RPC)

• Distributed components that need to communicate to complete application

 – Code on one computer needs to call code on other computers

 – Those pieces of code might need to call each other or yet other pieces of code

 on other computers

• Need to know a number of things for this type of platform to be successful

 – Where does the code you want to call reside?

 – Does the code need any parameters?

 – Does the code return any data?

• In addition, the following issues must be dealt with

 – Networking issues

 – Packaging data for transport

 – Data conversion (Little Endian vs. Big Endian)

D. Silberberg XML: Technology &Application
 Web Services

9

 Protocols

• Protocols are created to handle these issues
 – Enable different applications to talk to each other

 – Enable communication across heterogeneous platforms

• Provide ―handshaking‖ rules to enable communications

 – Describe how to address remote computers

 – Describe how to address remote applications

 – Describe how to package parameters to be sent to remote

 procedures

 – Describe how to package result data

 – Describe how to initiate a call

 – Describe how to handle errors

 – etc.

D. Silberberg XML: Technology &Application
 Web Services

10

 DCOM

• Based on COM (Components Object Model)

• Microsoft’s standard for writing sharable objects

 – Objects can be discovered at run time

 – Can be shared by any application running on the computer

 – Language independent (objects can be written in Java, C, C++, etc.)

• Example of use

–

–

–

–

Microsoft Office Suite

One application can make use of another

Word can incorporate Excel spreadsheets

Spell checker can be reused

• Distributed COM (DCOM) extends this capability across computers

 – Microsoft applications can speak to each other across platforms

 – However, DCOM is generally Microsoft specific

D. Silberberg XML: Technology &Application
 Web Services

11

IIOP for CORBA

• Common Object Request Broker Architecture (CORBA)

–

–

–

–

–

Solves the same problem as DCOM

Predated COM and DCOM

Platform independence

Language independence

Vendor independence

•

•

Difference between DCOM and CORBA

 – COM/DCOM - operating system (Windows) provides communication between

 application and COM object

 – CORBA - Object Request Broker (ORB) provides communication between

 application and CORBA object

 – CORBA is operating system independent

Internet Inter-ORB Protocol (IIOP)

 – Enables ORBs from different vendors to communicate

 – Provides ORB independence!

D. Silberberg XML: Technology &Application
 Web Services

12

 Java RMI

• DCOM and IIOP provide a language-independent way to enable remote

 objects to communicate

• IIOP provides a protocol for objects to be located on any platform

• However, Java already provides platform independence

 – But not language independence, obviously

• Java Remote Method Invocation (RMI) enables distributed Java objects

 to communicate

 – You can write Java objects for DCOM (with non-standard extensions) and

 CORBA

 – However, RMI provides a small learning curve to implement RPC

• Drawbacks

 – RMI is only for Java - no language independence

 – RMI can get difficult for complex implementations (e.g., JDBC drivers, etc.)

D. Silberberg XML: Technology &Application
 Web Services

13

 SOAP

• Simple Object Access Protocol (SOAP) is XML

 documents sent via HTTP

• SOAP specifies

 – Rules on how RPC is sent

 • Really, any network protocol can be used (e.g., IBM MQSeries,
 Microsoft Message Queue MSMQ, etc.)

 • However, HTTP is more common and thus the rules state how
 requests need to be specified

 – Structure of XML that is sent - called the envelope

 – Rule of how data is represented - called the encoding rules

• Benefit
 – XML is a ubiquitous data exchange model

 – HTTP is a ubiquitous protocol

D. Silberberg XML: Technology &Application
 Web Services

14

 HTTP

• Hypertext Transfer Protocol (HTTP) is a request/response

 protocol

• Upon request

–

–

–

–

–

Connection to HTTP server is made

Request is sent to server

Processing done by server

Response from server is sent back

Connection is closed

• HTTP message contains
 – Header - describes message and enables a server to interpret the

 message

 – Body - optional data to be processed by server

D. Silberberg XML: Technology &Application
 Web Services

15

 Example HTTP GET Method Header

GET /inventory.html HTTP/1.1

Accept: */*

Accept-Encoding: gzip

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www.store.com

• GET - common type of request (POST is other common type of request)

• Accept - which MIME (Multipurpose Internet Mail Extensions) type(s) the

 browser accepts

• Accept-Encoding - specifies to server if the content can be encoded

 before sending to browser and which encoding(s) are acceptable

• User-Agent - specifies the type of browser used. In this case, it is

 Mozilla/4.0. In addition, it is compatible with JavaScript 1.0, IE 5.5, and was

 generated on a Windows NT 5.0 platform).

• Host - the target server machine

D. Silberberg XML: Technology &Application
 Web Services

16

 Example HTTP GET Method Response

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Sun, 18 Aug 2002 14:15:27 GMT

Content-Type: text/html

Last-Modified: Sun, 18 Aug 2002 12:17:20 GMT

Content-Length: 396

<html>

<head><title>inventory</title></head>

<body>

<H1>Inventory

<p>

Ivory Soap

...

D. Silberberg XML: Technology &Application
 Web Services

17

 Web Page for POST Method

• Create an HTML page to be browsed

<html>

<head><title>Number of Soap Bars</title></head>

<body>

<form

 action=“http://www.apl.jhu.edu/cgi-instruct/davids/SoapCGI”

 method=“POST”>

 Enter the brand of soap you wish to check:

 <input type=“text” name=“soapName”>

 <input type=“text” name=“size”>

 <input type=“submit” value=“Get Inventory”>

</form>

</body>

</html>

D. Silberberg XML: Technology &Application
 Web Services

18

 HTTP Post Method Header and Body

POST /cgi-instruct/davids/SoapCGI HTTP/1.1

Accept: */*

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www.apl.jhu.com

Content-Length: 24

soapName=Ivory&size=16oz

• Contains a request body

• Useful for RPC

D. Silberberg XML: Technology &Application
 Web Services

19

 HTTP Post Method Response

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Sun, 18 Aug 2002 15:05:53 GMT

Content-Type: text/html

Content-Length: 112

<html>

<head><title>Inventory for Ivory - 16oz</title></head>

<body>

<H1>Inventory

<p>

3440 cases

</body>

</html>

D. Silberberg XML: Technology &Application
 Web Services

20

 HTTP for SOAP

• Similar to regular POST request

• Few steps must be done

 – Use POST method

 – Body of the message must be a SOAP request

 – Add extra HTTP header called SOAPAction, which specifies the

 remote procedure to be called

• Server must return a valid HTTP status code

 – 500 if the request is unsuccessful

 – 200 if the request is successful

D. Silberberg XML: Technology &Application
 Web Services

21

 Example SOAP Call

POST /inventory-cgi HTTP/1.1

Accept: */*

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www.apl.jhu.com

SOAPAction: “http://www.apl.jhu.edu/soap/inventorySize”

Content-Length: 241

<Envelope xmlns=“http://schemas.xmlsoap.org/soap/envelope/”>

<Body>

 <inv:inventorySize

 xmlns:inv=“http://www.apl.jhu.edu/soap/”>

 <inv:soapName>Ivory</inv:soapName>

 <inv:size>16oz</inv:size>

 </inv:inventorySize>

</Body>

</Envelope>

D. Silberberg XML: Technology &Application
 Web Services

22

 SOAPAction Header

• Indicates the remote procedure being called

• Uses URI notation

• Sometimes the string is left empty

 SOAPAction: “”

• Or it can be completely blank

 SOAPAction:

• In this case, the SOAP server looks in the envelope to find the remote

 procedure

• SOAPAction header is used to filter the SOAP messages that pass

 through a firewall

D. Silberberg XML: Technology &Application
 Web Services

23

 Example SOAP Response

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Sun, 18 Aug 2002 16:22:52 GMT

Content-Type: text/html

Content-Length: 215

<Envelope xmlns=“http://schemas.xmlsoap.org/soap/envelope/”>

<Body>

 <inv:inventoryResponse

 xmlns:inv=“http://www.apl.jhu.edu/soap/”>

 <inv:cases>3440</inv:cases>

 </inv:inventoryResponse>

</Body>

</Envelope>

D. Silberberg XML: Technology &Application
 Web Services

24

 SOAP Envelope

<SOAP-ENV:Envelope xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”

 xmlns:soap=“http://schemas.xmlsoap.org/soap/envelope/”>

 <SOAP-ENV:Header>

 <head-ns:headerElt xmlns:head-ns=“nsURI”

 soap:mustUnderstand=“1”

 soap:actor=“actorURI”/>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body

 encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”>

 <some-ns:someElt xmlns:some-ns=“someURI”/>

 <!-- OR -->

 <SOAP-ENV:Fault>

 <faultcode/>

 <faultstring/>

 <falutactor/>

 <detail/>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

D. Silberberg XML: Technology &Application
 Web Services

25

 Envelope Elements

• <Envelope>
 – Root element of SOAP envelope

 – Must use namespace: http://schemas.xmlsoap.org/soap/envelope/

• <Body>

–

–

–

–

Contains the main SOAP message

RPC calls are made using the children of Body

Names of procedures are the names of the child elements

Direct children must reside in a different namespace than the

 SOAP namespace

– Namespace uniquely identifies procedure

D. Silberberg XML: Technology &Application
 Web Services

26

 Envelope Elements (2)

• <Header>
 – Provides additional information beyond the procedure calls of the

 body

 – Can be used for external operations

 • Authentication (user/password)

 • Logging

 • Etc.

 – Not required

 – If used, it must be the first child of <Envelope>

 – It must exist in a namespace other than the SOAP envelope

 namespace

D. Silberberg XML: Technology &Application
 Web Services

27

 Header Attributes

• mustUnderstand
 – Specifies whether it is necessary for the SOAP server to process

 the header message

 • ―1‖ is yes

 • ―0‖ is optional

 – Absence of attribute is the same as optional

• actor

 – Sometimes SOAP messages are passed among multiple machines

 – actor attribute specifies the machine that must process the header

 – If a machine processes the header, it cannot pass that header on to

 the next machine

D. Silberberg XML: Technology &Application
 Web Services

28

Fault Element

•

•

•

•

•

For processing errors

 – Service unavailable

 – Version mismatch

 – Invalid parameters

 – Etc.

<faultcode>

 – Type of error

 – VersionMismatch (server does not understand this version of protocol)

 – MustUnderstand (mustUnderstand is mandatory, but server still does not

 understand)

 – Client (message not properly formatted)

 – Server (server could not process even though format was fine)

<faultstring> - human-readable error message

<faultactor> - URI of SOAP intermediary that caused the error

<detail> - addition application-specific error message

D. Silberberg XML: Technology &Application
 Web Services

29

 Web Services

• SOAP enables applications to make RPC calls

• However, to use the procedures, other information is necessary

 – Location of procedure (URI)

 – How to pass information to procedure

 – Results format

• Web Services Description Language (WSDL)

 – XML document

 – Describes Web Services

 – Used to locate Web Services

• Universal Discovery, Description, and Integration (UDDI) protocol

 – Enables registration of Web Services

 – Enables discovery of Web Services

D. Silberberg XML: Technology &Application
 Web Services

30

 WSDL Document Structure

• WSDL document contains these major elements
 – <portType>

 • Defines a web service, the operations that can be performed, and the

 messages that are involved.

 • Can be compared to a function library (or a module, or a class) in a

 traditional programming language.

 – <message>

 • Data elements of an operation

 • Each messages can consist of one or more parts

 • The parts can be compared to the parameters of a function call in a

 traditional programming language

D. Silberberg XML: Technology &Application
 Web Services

31

 WSDL Structure (2)

– <types>

 • Data types used by the web service

 • For maximum platform neutrality, WSDL uses XML Schema syntax

 to define data types.

– <binding>

 • Defines the message format and protocol details for each port

D. Silberberg XML: Technology &Application
 Web Services

32

 Main WSDL Structure

<definitions>

 <types>

of types........

of a message....

of a port.......

of a binding....

 definition

 </types>

 <message>

 definition

 </message>

 <portType>

 definition

 </portType>

 <binding>

 definition

 </binding>

</definitions>

• Can also contain other elements

 – Extension elements

 – Service element that makes it possible to group together the definitions of several

 web services in one single WSDL document

D. Silberberg XML: Technology &Application
 Web Services

33

 WSDL Example

• This is a simplified fraction of a WSDL document:

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

D. Silberberg XML: Technology &Application
 Web Services

34

 WSDL Example (2)

• <portType> element defines

 – "glossaryTerms" as the name of a port

 – "getTerm" as the name of an operation.

• The "getTerm" operation has

 – input message called "getTermRequest"

 – output message called "getTermResponse".

• <message> elements defines the parts of each message and the

 associated data types.

• Compared to traditional programming

 – glossaryTerms is a function library

 – "getTerm" is a function with "getTermRequest" as the input parameter and

 getTermResponse as the return parameter.

D. Silberberg XML: Technology &Application
 Web Services

35

 WSDL Ports

• <portType> element is the most important WSDL element.

 – Defines

 • web service

 • operations that can be performed

 • messages that are involved

• The request-response type is the most common operation type, but

 WSDL defines four types:

 – One-way -- operation can receive a message but will not return a response

 – Request-response -- operation can receive a request and will return a

 response

 – Solicit-response -- operation can send a request and will wait for a

 response

 – Notification -- operation can send a message but will not wait for a

 response

D. Silberberg XML: Technology &Application
 Web Services

36

 WSDL Ports - One-Way Example

<message name="newTermValues">

 <part name="term" type="xs:string"/>

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="setTerm">

 <input name="newTerm" message="newTermValues"/>

 </operation>

</portType >

•

•

•

"glossaryTerms" defines a one-way operation called "setTerm".

"setTerm" operation allows input of new glossary terms messages using a

"newTermValues" message with the input parameters "term" and "value"

No output is defined for the operation

D. Silberberg XML: Technology &Application
 Web Services

37

 WSDL Ports - Request-Response Example

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">
 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

•

•

"glossaryTerms" defines a request-response operation called "getTerm"

"getTerm" operation requires

 – Input message called "getTermRequest" with a parameter called "term‖

 – Returns an output message called "getTermResponse" with a parameter called

 "value"

D. Silberberg XML: Technology &Application
 Web Services

38

 WSDL Bindings to SOAP

• Regular WSDL elements

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

D. Silberberg XML: Technology &Application
 Web Services

39

 WSDL Bindings to SOAP (2)

<binding type="glossaryTerms" name="b1">

<soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <operation>

 <soap:operation

 soapAction="http://example.com/getTerm"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

</binding>

D. Silberberg XML: Technology &Application
 Web Services

40

WSDL Bindings to SOAP (3)

•

•

•

•

<binding> element has two attributes - the name attribute and the type

attribute.

name attribute

 – Can use any name you want

 – Defines the name of the binding

 – Defines the type attribute points to the port for the binding (in this case, the

 "glossaryTerms" port)

<soap:binding> element has two attributes - the style attribute and the

transport attribute.

 – style attribute can be "rpc" or "document" (in this case, document)

 – transport attribute defines the SOAP protocol to use (in this case we use HTTP)

<operation> element defines each operation that the port exposes

 – For each operation the corresponding SOAP action has to be defined

 – input and output are encoding must be specified (in this case, "literal‖)

D. Silberberg XML: Technology &Application
 Web Services

41

 UDDI

• UDDI is a platform-independent framework for

–

–

–

–

Describing services

Discovering businesses

Integrating business services by using the Internet

Platform independent

•

•

•

•

Directory for storing information about web services

Directory of web service interfaces described by WSDL

Communicates via SOAP

Sponsored by the Organization for the Advancement of Structure

Information Standards (OASIS) http://www.oasis-

open.org/committees/uddi-spec/doc/tcspecs.htm

 UDDI History

• The UDDI was integrated into the Web Services Interoperability (WS-

 I) standard
 – Central pillar of web services infrastructure

 – By the end of 2005, it was on the agenda for use by more than seventy percent of

 the Fortune 500 companies in either a public or private implementation

• A UDDI business registration consists of three components:

 – White Pages — address, contact, and known identifiers

 – Yellow Pages — industrial categorizations based on standard taxonomies

 – Green Pages — technical information about services exposed by the

 business

• In 2006, IBM, Microsoft, and SAP closed their public UDDI nodes

• Most UDDI implementations are now found internal to a company

D. Silberberg XML: Technology &Application
 Web Services

42

D. Silberberg XML: Technology &Application
 Web Services

43

UDDI Concepts

•

•

Before UDDI

 – There was no Internet standard for businesses to reach their customers and partners

 with information about their products and services

 – There was no method of how to integrate into each other's systems and processes.

Problems the UDDI specification can help to solve:

–

–

–

–

–

Making it possible to discover the right business from the millions currently online

Defining how to enable commerce once the preferred business is discovered

Reaching new customers and increasing access to current customers

Expanding offerings and extending market reach

Solving customer-driven need to remove barriers to allow for rapid participation in

 the global Internet economy

– Describing services and business processes programmatically in a single, open, and

 secure environment

D. Silberberg XML: Technology &Application
 Web Services

44

Example Use

•

•

•

Company X is installing a standard business software package that is capable of

participating in eBusiness transactions

At installation time, the package would ask company X whether they want to

accept orders over the Web

 – If they answers yes, the package would expose the necessary Web services to accept

 electronic orders

 – Then it would go to UDDI to register company X and publish its new order entry

 service

As company X starts using the new business package, they will start entering

customer names and addresses and creating invoices to send to those customers

 – Because this business package is UDDI-aware, it will search for each new customer in

 the UDDI registry to determine whether that customer supports electronic invoicing

 – If the customer does support electronic invoicing, company X would have the option to

 send invoices electronically

 – In both of these scenarios, UDDI is used as a programmatically accessible central

 director of businesses and their services

D. Silberberg XML: Technology &Application
 Web Services

45

 Programming UDDI

• To ensure most platforms can access UDDI’s services, the

 UDDI directory exposes a bunch of APIs in the form of a

 SOAP-based Web service

• There are nodes that expose the UDDI Web service

• There are also UDDI test directories

• These can be found by searching the web

D. Silberberg XML: Technology &Application
 Web Services

46

UDDI APIs

FINDING THINGS

find_business

find_service

find_binding

find_tModel

GETTING DETAILS ABOUT THINGS

get_businessDetail

get_serviceDetail

get_bindingDetail

get_tModelDetail

CATEGORY

Inquiry

Inquiry

Inquiry

Inquiry

Inquiry

Inquiry

Inquiry

Inquiry

D. Silberberg XML: Technology &Application
 Web Services

47

UDDI APIs (2)

SAVE THINGS

save_business

save_service

save_binding

save_tModel

DELETE THINGS

delete_business

delete_service

delete_binding

delete_tModel

SECURITY

get_authToken

discard_authToken

CATEGORY

Publishing

Publishing

Publishing

Publishing

Publishing

Publishing

Publishing

Publishing

Publishing

Publishing

D. Silberberg XML: Technology &Application
 Web Services

48

 Invoking UDDI Procedures

• Send SOAP messages with the appropriate body content

• For example, to search for a company called ―XYZ

 Industries,‖ the following XML in the body of a SOAP

 message would be sent:

<find_business generic='1.0' xmlns='urn:uddi-org:api'>

 <name>XYZ Industries</name>

</find_business>

D. Silberberg XML: Technology &Application
 Web Services

49

 Conclusion

• Commercial business software could use UDDI to

 – Make it easy for software users to publish Web services

 – Find other Web services that are needed

• Now, UDDI registries are generally used internal to companies

• Enabled by sending and receiving SOAP messages

• Microsoft UDDI SDK is a useful tool for COM-aware services

 – Handles all the SOAP and XML work

 – Programmers write to a COM-based object model

 – http://msdn.microsoft.com/en-us/library/aa966237%28BTS.10%29.aspx

Τέλος Ενότητας

