

Agenda

 From Internet to SDN abstractions

 SDN controllers:
 NOX

 POX

 Ruy

 Floodlight

 ONIX

 OpenDayLight

Abstractions

 How to build a complex system?
General principle: break it down into tractable
pieces

 Abstractions:
 Identify re-usable components

 Hide unnecessary details

Think of objects in object-oriented programming

 Abstractions are often organized in layers

Complex system example: air travel!

 a series of steps (will map them to layered
abstractions)

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

ticket (purchase)

baggage (check)

gates (load)

runway (takeoff)

airplane routing

departure

airport
arrival

airport

intermediate air-traffic

control centers

airplane routing airplane routing

ticket (complain)

baggage (claim

gates (unload)

runway (land)

airplane routing

ticket

baggage

gate

takeoff/landing

airplane routing

Layered abstractions of the system

layers: each layer implements a service

 via its own internal-layer actions

 relying on services provided by layer below

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

Why (layered) abstractions?

dealing with complex systems:

 explicit structure allows identification,

relationship of complex system’s pieces
 layered reference model for understanding

 modularization eases managing and updating
the system
 change of implementation of layer’s service transparent

to rest of system

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

Today’s Internet abstractions

 application: supporting network
applications

 transport: process-process data
transfer

 network: routing of datagrams
from source to destination

 link: data transfer between
neighboring network elements

 physical: bits “on the wire”

application

transport

network

link

physical

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

Control plane vs data plane

 Data plane:

 Forward packets (milisecond granularity)

 Based on 5-layer reference model

 Control plane:

 Monitor and configure forwarding

elements (seconds to hours if manual)

 Presently: no abstractions!

Deriving control plane

abstractions
 What does it take to control a network?

 Learn network state (topology, etc.)

 Decide how to configure it (routing,

isolation, traffic engineering, etc.)

 Push configuration to network elements

 Which processes are re-usable?

 Build network topology

 Push configuration to network elements

SDN: 2+1 abstractions

Control Program

Network OS

Packet
Forwarding

Packet

Forwarding

Packet
Forwarding

Packet
Forwarding

Abstraction 1. Forwarding configuration (e.g. OpenFlow)

Abstraction 2. Network graph

Clean Separation of

Concerns

 Control program: expresses operator goals
 Implemented on global network view abstraction

 Computes forwarding state for each router/switch

 NOS: links global view and physical switches
 Gathers information for global network view

 Conveys configurations from control program to
swtiches

 Routers/switches: merely follow orders from
NOS

Based on S. Shenker’s talk “SDN at the Crossroads” Stanford Seminar, 2013 See: http://youtu.be/WabdXYzCAOU

Enables independent innovation in “layers”

SDN’s 3rd abstraction: Virtual

topology
Control Program

Network OS

Packet
Forwarding

Packet

Forwarding

Packet
Forwarding

Packet

Forwarding

Abstraction 1. Forwarding configuration (e.g. OpenFlow)

Abstraction 2. Network graph

Network Hypervisor

Abstraction 3. Virtual topology

To be discussed in a future lecture

Today: Network OS

 Maintain an up-to-date view of the
network state (topology, etc.)

 Configure network elements
(OpenFlow, etc.)

Also known as “south-bound” interface

 Provide a graph abstraction to the
applications on top

Also known as “north-bound” interface

Challenges in building a

NOS
 Scalability to large networks

 Reliability to failures

 Good performance (fast, etc.)

 Generality and simplicity of “north-

bound” API

 Largely still an open question

Agenda

 From Internet to SDN abstractions

 SDN controllers:
 NOX

 POX

 Ruy

 Floodlight

 ONIX

 OpenDayLight

Controllers Overview

 NOX

 POX

 Ryu

 Floodlight

 OpenDayLight

 Trema

 OpenFaucet

 Beacon

 Focused on north-
bound API:
 Pyretic

 Frenetic

 Procera

 …

 Focused on inter-
domain routing
 RouteFlow

 ONOS

 …

Many controllers!

Controllers’ diversification

 Programming language (can affect performance)

 Focus:
 Southbound API

 Northbound API

 Support for OpenStack:

 Widely-used cloud operating system

 Manage storage, computation, and network in the cloud

 Allows to write cloud applications

 Education/Research, Production?

 Learning curve

 User base and community support

Based on N. Feasmter’s lecture “Examples of SDN Controllers”2014 See:http://youtu.be/dpcw2XqLp-E

NOX

 First-generation OpenFlow
controller
 Open source and widely used

 Fast IO, well maintained

 C++, OpenFlow 1.0

 Programming model
 Controller registers for events

 Programmer writes event handlers

Natasha Gude, Teemu Koponen et al, SIGCOMM CCR, 2008.
Talk by Martin Casado, „A Network Operating System for OpenFlow”, SDN Workshop 2009

http://www.noxrepo.org/nox/about-nox/

NOX: Event-based model
Control Program

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Core: Threads/IO/Events

OpenFlow stack

Event: New switch, packet-In,
new link, switch port status
change, etc.

Network
View

Network view = Graph

Abstraction
 In network view:

 Switch-level topology

 Locations of hosts, middleboxes, other network
elements

 Locations of users

 Namespace: bindings between names and
addresses

 Not in network view: state of network traffic

 Example use case: policy-based access
control

NOX Characteristics

 Performance

 Generality

 Robustness ☐?

 Simplicity

Based on Martin Casado‘s retrospective in the talk:
”A Network Operating System for OpenFlow”, 2009
http://archive.openflow.org/downloads/Workshop2009/OpenFlowWorkshop-MartinCasado.pdf

POX

 NOX in Python

 Supports OpenFlow 1.0 only

 Advantages:

 Widely used, maintained, supported

 Relatively easy to read and write code

 Disadvantages: Performance

https://openflow.stanford.edu/display/ONL/POX+Wiki

http://www.noxrepo.org/pox/about-pox/

https://openflow.stanford.edu/display/ONL/POX+Wiki
https://openflow.stanford.edu/display/ONL/POX+Wiki
https://openflow.stanford.edu/display/ONL/POX+Wiki

POX programming example

def _handle_PacketIn (self, event):

 packet = event.parsed # This is the parsed pkt data

 packet_in = event.ofp # The ofp_packet_in message

 msg = of.ofp_packet_out()

 msg.buffer_id = packet_in.buffer_id

 msg.in_port = packet_in.in_port

 msg.match = of.ofp_match.from_packet(packet)

 action = of.ofp_action_output(port = of.OFPP_FLOOD)

 msg.actions.append(action)

 self.connection.send(msg)

Reminder: Packet-Out

 Instruct switch to
send a packet out
 Response to Packet-In

 New packet

 Must contain a full
packet or reference a
buffered packet ID

 May include a list of
actions to be applied

Controller

Packet
Forwarding

Packet – Out Message

See OpenFlow message structures in http://flowgrammable.org/sdn/openflow/message-layer/packetout/

Ryu

 Open source Python controller
 Supports OpenFlow 1.0-1.4, Netconf,

etc.

 Works with OpenStack

 Advantages:
 OpenStrack integration, OpenFlow

1.2-1.4

 Disadvantages: Performance

Floodlight

 Open-source Java controller
 Supports OpenFlow v1.0

 Fork from Beacon Java OpenFlow controller

 Maintained by Big Switch Networks

 Advantages:
 Good documentation

 Integration with REST API

 Production-level performance, OpenStack

 Disadvantages: Steep learning curve

ONIX

 Closed source, not publicly

available

 Production quality (likely used in

Google backbone)

 Distributed by design

 Scalability

 Robustness

Onix: A Distributed Control Platform for Large-scale Production Networks. T. Koponen , et al. OSDI 2010

ONIX components

Network Information Base

NIB: Network Information Base = Graph++

Abstraction

Queries to the NIB

Category Purpose

Query Find entities

Create, destroy Create and remove entities

Access attributes Inspect and modify entities

Notifications Receive updates about changes

Synchronize Wait for updates being exported to
network elements and controllers

Configuration Configure how state is imported to and
exported from the NIB

Pull Ask for entities to be imported on-
demand

Scalability

 Partition

 An instance keeps only a subset of the

NIB

 Aggregation

 The details of NIB subsets in other

controller instances are hidden

 Consistency between instances

Reliability to Failures

 Network element and link failures
 Application’s responsibility

 ONIX failures
 Running instances detect and take

over

 More than one can manage
simultaneously

 Connectivity to controller failures

Distributing the NIB

 Different storage options

 Transactional data storage (SQL)

 Distributed hash table (DHT)

 Applications determine consistency
requirements

 Strong consistency for critical, stable
state

 Eventual consistency for dynamic,
inconsistency-tolerant state

Example: ARP server

 Switch topology: candidate for hard state

 IP-MAC mappings: candidate for soft state

 Free choice: number of controllers for every switch

 Free choice: local ARP tables or single global ARP table

OpenDayLight Controller

 Heavy industry involvement and
backing

 A platform for SDN and Network
Function Virtualization (NFV)
innovation

 Not limited to OpenFlow innovations

 Controller:

 Java chosen as an enterprise-grade cross platform compatible language

 Java interfaces are used for event listening, specifications and forming patterns

 Installation and dynamic bundle loading

 Maven build system for Java

 OSGi :

 Allows dynamically loading bundles

 Allows registering dependencies and services exported

 For exchanging information across bundles

Design Choices

Life of a Packet

Source : OpenDayLight Wiki

FRM: Flow Rule manager

 MD-SAL
 Model-Driven Service Abstraction Layer

 Performs event routing

 State: Hierarchical database in MD-SAL
 Contains all kinds of information

 Forwarding rules

 Topology, etc.

 Plugins can register for change notification
events,

e.g., the FRM registers to flow forwarding
rules

OpenDayLight network

abstraction

OpenDayLight Summary

 OpenDayLight is an industry-backed
effort to develop a broader set of SDN
solutions

 SDN is no longer just OpenFlow
 Possible to integrate a broader set of

cloud based applications
 Set of functions is similar to other

controllers

 Steep learning curve

See Nick Feamster’s Lecture on OpenDayLight
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY

Agenda

 From Internet to SDN abstractions

 SDN controllers:
 NOX

 POX

 Ruy

 Floodlight

 ONIX

 OpenDayLight

Further Reading

 Martin Casado’s list of OpenFlow Software Projects
http://yuba.stanford.edu/~casado/of-sw.html

 Nick Feamster’s SDN Controllers’ lectures
http://youtu.be/dpcw2XqLp-E

http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBM
CXkLcGbmhY

http://yuba.stanford.edu/~casado/of-sw.html
http://yuba.stanford.edu/~casado/of-sw.html
http://yuba.stanford.edu/~casado/of-sw.html
http://youtu.be/dpcw2XqLp-E
http://youtu.be/dpcw2XqLp-E
http://youtu.be/dpcw2XqLp-E
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY

