

Agenda

 From Internet to SDN abstractions

 SDN controllers:
 NOX

 POX

 Ruy

 Floodlight

 ONIX

 OpenDayLight

Abstractions

 How to build a complex system?
General principle: break it down into tractable
pieces

 Abstractions:
 Identify re-usable components

 Hide unnecessary details

Think of objects in object-oriented programming

 Abstractions are often organized in layers

Complex system example: air travel!

 a series of steps (will map them to layered
abstractions)

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

ticket (purchase)

baggage (check)

gates (load)

runway (takeoff)

airplane routing

departure

airport
arrival

airport

intermediate air-traffic

control centers

airplane routing airplane routing

ticket (complain)

baggage (claim

gates (unload)

runway (land)

airplane routing

ticket

baggage

gate

takeoff/landing

airplane routing

Layered abstractions of the system

layers: each layer implements a service

 via its own internal-layer actions

 relying on services provided by layer below

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

Why (layered) abstractions?

dealing with complex systems:

 explicit structure allows identification,

relationship of complex system’s pieces
 layered reference model for understanding

 modularization eases managing and updating
the system
 change of implementation of layer’s service transparent

to rest of system

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

Today’s Internet abstractions

 application: supporting network
applications

 transport: process-process data
transfer

 network: routing of datagrams
from source to destination

 link: data transfer between
neighboring network elements

 physical: bits “on the wire”

application

transport

network

link

physical

Modified from: Kurose, James F., and Keith W. Ross. Computer Networking: A top-down approach featuring the Internet.

Control plane vs data plane

 Data plane:

 Forward packets (milisecond granularity)

 Based on 5-layer reference model

 Control plane:

 Monitor and configure forwarding

elements (seconds to hours if manual)

 Presently: no abstractions!

Deriving control plane

abstractions
 What does it take to control a network?

 Learn network state (topology, etc.)

 Decide how to configure it (routing,

isolation, traffic engineering, etc.)

 Push configuration to network elements

 Which processes are re-usable?

 Build network topology

 Push configuration to network elements

SDN: 2+1 abstractions

Control Program

Network OS

Packet
Forwarding

Packet

Forwarding

Packet
Forwarding

Packet
Forwarding

Abstraction 1. Forwarding configuration (e.g. OpenFlow)

Abstraction 2. Network graph

Clean Separation of

Concerns

 Control program: expresses operator goals
 Implemented on global network view abstraction

 Computes forwarding state for each router/switch

 NOS: links global view and physical switches
 Gathers information for global network view

 Conveys configurations from control program to
swtiches

 Routers/switches: merely follow orders from
NOS

Based on S. Shenker’s talk “SDN at the Crossroads” Stanford Seminar, 2013 See: http://youtu.be/WabdXYzCAOU

Enables independent innovation in “layers”

SDN’s 3rd abstraction: Virtual

topology
Control Program

Network OS

Packet
Forwarding

Packet

Forwarding

Packet
Forwarding

Packet

Forwarding

Abstraction 1. Forwarding configuration (e.g. OpenFlow)

Abstraction 2. Network graph

Network Hypervisor

Abstraction 3. Virtual topology

To be discussed in a future lecture

Today: Network OS

 Maintain an up-to-date view of the
network state (topology, etc.)

 Configure network elements
(OpenFlow, etc.)

Also known as “south-bound” interface

 Provide a graph abstraction to the
applications on top

Also known as “north-bound” interface

Challenges in building a

NOS
 Scalability to large networks

 Reliability to failures

 Good performance (fast, etc.)

 Generality and simplicity of “north-

bound” API

 Largely still an open question

Agenda

 From Internet to SDN abstractions

 SDN controllers:
 NOX

 POX

 Ruy

 Floodlight

 ONIX

 OpenDayLight

Controllers Overview

 NOX

 POX

 Ryu

 Floodlight

 OpenDayLight

 Trema

 OpenFaucet

 Beacon

 Focused on north-
bound API:
 Pyretic

 Frenetic

 Procera

 …

 Focused on inter-
domain routing
 RouteFlow

 ONOS

 …

Many controllers!

Controllers’ diversification

 Programming language (can affect performance)

 Focus:
 Southbound API

 Northbound API

 Support for OpenStack:

 Widely-used cloud operating system

 Manage storage, computation, and network in the cloud

 Allows to write cloud applications

 Education/Research, Production?

 Learning curve

 User base and community support

Based on N. Feasmter’s lecture “Examples of SDN Controllers”2014 See:http://youtu.be/dpcw2XqLp-E

NOX

 First-generation OpenFlow
controller
 Open source and widely used

 Fast IO, well maintained

 C++, OpenFlow 1.0

 Programming model
 Controller registers for events

 Programmer writes event handlers

Natasha Gude, Teemu Koponen et al, SIGCOMM CCR, 2008.
Talk by Martin Casado, „A Network Operating System for OpenFlow”, SDN Workshop 2009

http://www.noxrepo.org/nox/about-nox/

NOX: Event-based model
Control Program

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Core: Threads/IO/Events

OpenFlow stack

Event: New switch, packet-In,
new link, switch port status
change, etc.

Network
View

Network view = Graph

Abstraction
 In network view:

 Switch-level topology

 Locations of hosts, middleboxes, other network
elements

 Locations of users

 Namespace: bindings between names and
addresses

 Not in network view: state of network traffic

 Example use case: policy-based access
control

NOX Characteristics

 Performance 

 Generality 

 Robustness ☐?

 Simplicity 

Based on Martin Casado‘s retrospective in the talk:
”A Network Operating System for OpenFlow”, 2009
http://archive.openflow.org/downloads/Workshop2009/OpenFlowWorkshop-MartinCasado.pdf

POX

 NOX in Python

 Supports OpenFlow 1.0 only

 Advantages:

 Widely used, maintained, supported

 Relatively easy to read and write code

 Disadvantages: Performance

https://openflow.stanford.edu/display/ONL/POX+Wiki

http://www.noxrepo.org/pox/about-pox/

https://openflow.stanford.edu/display/ONL/POX+Wiki
https://openflow.stanford.edu/display/ONL/POX+Wiki
https://openflow.stanford.edu/display/ONL/POX+Wiki

POX programming example

def _handle_PacketIn (self, event):

 packet = event.parsed # This is the parsed pkt data

 packet_in = event.ofp # The ofp_packet_in message

 msg = of.ofp_packet_out()

 msg.buffer_id = packet_in.buffer_id

 msg.in_port = packet_in.in_port

 msg.match = of.ofp_match.from_packet(packet)

 action = of.ofp_action_output(port = of.OFPP_FLOOD)

 msg.actions.append(action)

 self.connection.send(msg)

Reminder: Packet-Out

 Instruct switch to
send a packet out
 Response to Packet-In

 New packet

 Must contain a full
packet or reference a
buffered packet ID

 May include a list of
actions to be applied

Controller

Packet
Forwarding

Packet – Out Message

See OpenFlow message structures in http://flowgrammable.org/sdn/openflow/message-layer/packetout/

Ryu

 Open source Python controller
 Supports OpenFlow 1.0-1.4, Netconf,

etc.

 Works with OpenStack

 Advantages:
 OpenStrack integration, OpenFlow

1.2-1.4

 Disadvantages: Performance

Floodlight

 Open-source Java controller
 Supports OpenFlow v1.0

 Fork from Beacon Java OpenFlow controller

 Maintained by Big Switch Networks

 Advantages:
 Good documentation

 Integration with REST API

 Production-level performance, OpenStack

 Disadvantages: Steep learning curve

ONIX

 Closed source, not publicly

available

 Production quality (likely used in

Google backbone)

 Distributed by design

 Scalability

 Robustness

Onix: A Distributed Control Platform for Large-scale Production Networks. T. Koponen , et al. OSDI 2010

ONIX components

Network Information Base

NIB: Network Information Base = Graph++

Abstraction

Queries to the NIB

Category Purpose

Query Find entities

Create, destroy Create and remove entities

Access attributes Inspect and modify entities

Notifications Receive updates about changes

Synchronize Wait for updates being exported to
network elements and controllers

Configuration Configure how state is imported to and
exported from the NIB

Pull Ask for entities to be imported on-
demand

Scalability

 Partition

 An instance keeps only a subset of the

NIB

 Aggregation

 The details of NIB subsets in other

controller instances are hidden

 Consistency between instances

Reliability to Failures

 Network element and link failures
 Application’s responsibility

 ONIX failures
 Running instances detect and take

over

 More than one can manage
simultaneously

 Connectivity to controller failures

Distributing the NIB

 Different storage options

 Transactional data storage (SQL)

 Distributed hash table (DHT)

 Applications determine consistency
requirements

 Strong consistency for critical, stable
state

 Eventual consistency for dynamic,
inconsistency-tolerant state

Example: ARP server

 Switch topology: candidate for hard state

 IP-MAC mappings: candidate for soft state

 Free choice: number of controllers for every switch

 Free choice: local ARP tables or single global ARP table

OpenDayLight Controller

 Heavy industry involvement and
backing

 A platform for SDN and Network
Function Virtualization (NFV)
innovation

 Not limited to OpenFlow innovations

 Controller:

 Java chosen as an enterprise-grade cross platform compatible language

 Java interfaces are used for event listening, specifications and forming patterns

 Installation and dynamic bundle loading

 Maven build system for Java

 OSGi :

 Allows dynamically loading bundles

 Allows registering dependencies and services exported

 For exchanging information across bundles

Design Choices

Life of a Packet

Source : OpenDayLight Wiki

FRM: Flow Rule manager

 MD-SAL
 Model-Driven Service Abstraction Layer

 Performs event routing

 State: Hierarchical database in MD-SAL
 Contains all kinds of information

 Forwarding rules

 Topology, etc.

 Plugins can register for change notification
events,

e.g., the FRM registers to flow forwarding
rules

OpenDayLight network

abstraction

OpenDayLight Summary

 OpenDayLight is an industry-backed
effort to develop a broader set of SDN
solutions

 SDN is no longer just OpenFlow
 Possible to integrate a broader set of

cloud based applications
 Set of functions is similar to other

controllers

 Steep learning curve

See Nick Feamster’s Lecture on OpenDayLight
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY

Agenda

 From Internet to SDN abstractions

 SDN controllers:
 NOX

 POX

 Ruy

 Floodlight

 ONIX

 OpenDayLight

Further Reading

 Martin Casado’s list of OpenFlow Software Projects
http://yuba.stanford.edu/~casado/of-sw.html

 Nick Feamster’s SDN Controllers’ lectures
http://youtu.be/dpcw2XqLp-E

http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBM
CXkLcGbmhY

http://yuba.stanford.edu/~casado/of-sw.html
http://yuba.stanford.edu/~casado/of-sw.html
http://yuba.stanford.edu/~casado/of-sw.html
http://youtu.be/dpcw2XqLp-E
http://youtu.be/dpcw2XqLp-E
http://youtu.be/dpcw2XqLp-E
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY
http://youtu.be/yS0cIFY_aKk?list=PLpherdrLyny8YN4M24iRJBMCXkLcGbmhY

