
1

SDN Switches: Architecture

and Design

Xenofontas Dimitropoulos

24/11/2014

Slides prepared by: Markus Happe

Also credits to online material by Raj Jain, Nick Bastin, Rui Miao, Nick McKeown,
Lorenzo de Carli, and the Open Networking Foundation

2

Sofware-Defined Networking: Switches

3

SDN Switch: Simple Packet Forwarding Hardware

4

Flow Table

MAC

src

MAC

dst

IP

Src

IP

Dst

TCP

sport

TCP

dport
Action

OpenFlow Agent

* * 5.6.7.8 * * * port 1

port 4 port 3 port 2 port 1

1.2.3.4 5.6.7.8

OpenFlow
Controller

PC OpenFlow

Protocol

Hardware
Layer

Software

Layer

SDN Switch: Simple Packet Forwarding Hardware

 Controller
 writes forwarding table(s) of the switch

 Switch
 forwards packets to controller, if there is no matching flow table entry

 needs to forward packets according to flow table(s)

 multiple full-duplex Ethernet ports: e.g. 4, 8, 24, 48, etc.

 where each port has 1GbE, 10GbE, etc.

 back plane needs to process millions of packets per second

5

Lecture Overview

Part I: Efficient Flow-Action Matching

Part II: Architecture and Design of SDN Switches

Part III: Configuration and Management of SDN Switches

Part IV: Next Generation of SDN Switches

6

Part I:

Efficient Flow-Action Matching

(How to Match Packets to Flow Tables?)

7

Efficient Flow-Action Matching Types in SDN

 Exact rules
 all (selected) header fields are defined in flow table

 incoming packet can be matched to a unique exact rule

 Longest prefix rules
 select flow rule with longest matching prefix

 e.g. 200.124.12.*, 200.124.*.*, 200.*.*.*

 example: IPv4/IPv6 destination address lookup

 Wildcard rules
 some header fields contain wildcards (*)

 example: access-control list lookup (firewall)

 Multiple rules might match incoming packet
 prioritization required to identify matching rule

8

Exact Flow-Action Matches: Naive Approach

 Flow table stored in memory (e.g. SRAM)
 assumption: flow table entries are unsorted

 linear search of table entries in memory

 stop when match is found (or when reaching final flow table entry)

 but: low performance for long tables

 we only have few clock cycles for matching

9

no. header 1 header 2 stats action

0 11 01 stats0 act0

1 00 10 stats1 act1

2 01 01 stats2 act2

...

N 01 01 statsN actN

Exact Flow-Action Matches: Naive Approach

 Flow table stored in memory (e.g. SRAM)
 assumption: flow table entries are unsorted

 linear search of table entries in memory

 stop when match is found (or when reaching final flow table entry)

 but: low performance for long tables

 we only have few clock cycles for matching

10

no. header 1 header 2 stats action

0 11 01 stats0 act0

1 00 10 stats1 act1

2 01 01 stats2 act2

...

N 01 01 statsN actN

Binary Content-Addressable Memory (CAM)

11

 Idea: parallel search of all memory entries

 Can be used for exact matches (and prefix matches)
 e.g: use multiple CAMs used for different 8/16/24-bit prefixes

 Advantage: matches packet to flow rule in a single operation

 Expensive and power hungry

addr act.

0 act0

1 act1

2 act3

SRAM

12

search line drivers

00

01

10

11

1

1

1

x

0

1

0

x

1 x

1 x

x x

x x

match

match

match

match lines

rule act.

101x act0

111x act1

10xx act3

xxxx act0

flow table SRAM

addr act.

00 act0

01 act1

10 act3

11 act0

packet header

1011

Ternary Content-Addressable Memory (TCAM)

 Similar to CAM, but each header bit is encoded in two bits
 0 01, 1 10, don’t care (x) 11

 support for wildcards and prefixes

 Can be used for all kind of matches

 Very expensive, very power hungry

source: http://thenetworksherpa.com/tcam-in-the-forwarding-engine

Algorithmic Approach: Hash Table

 Computes table position of rule from packet header

 Use hash function to map headers to flow table

 Can be used for exact matches

 But: flow table is much smaller than header space
 collision: multiple headers have same hash value

 use two independent hash functions to resolve collisions

 alternative: use multiple flow tables, check them in parallel

13

00:06:40:01:5a:64

00:06:20:02:4d:2d

00:02:40:02:3e:5f

00:06:40:04:27:44

flow table

hash

Algorithmic Approach: Trie

 Can be used all match types

 Form trie from prefixes or header fields

 Packets traverse trie in a pipeline (pipeline stage = trie stage)

 Matching requires several operations (= trie depth)

 Trie can be compressed to save resources

14

example flow table

Rule Prio Field x Field y

R1 1 00~01 00~00

R2 2 00~01 00~11

R3 3 10~10 00~11

R4 4 11~11 11~11

R5 5 11~11 00~11

Summary: Efficient Flow-Action Matching

15

 Challenge
 match millions of packets per second to long flow tables

 only few clock cycles for matching

 Content-addressable memory
 fastest, but also most expensive solution (power, area)

 preferred in ASICs

 Algorithmic approaches
 require few clock cycles, less expensive (power, area)

 preferred for general-purpose and network processors

 Further approaches
 optimized versions of algorithms or CAMs

 combination of presented solutions

 other solutions?

Part II:

Architecture and Design of SDN Switches

16

A) Software Test Switches

B) Commodity Hardware Switches: Merchant Silicon

C) Commodity Hardware Switches: Network Processors

17

OF Switch Design and Architectures

A) Software Test Switches

18

Open vSwitch: Software Switch

19

 OpenFlow capable virtual software switch
 used with hypervisors to interconnect to virtual machines within a host

 and virtual machines between different hosts across networks

 open source: www.openvswitch.org

 included in Linux 3.3 per default

 written in C / Python

 Features:
 integrate well with virtual

machine managers

 supports tunnels, remote
control, NetFlow, sFlow

 default switch in XenServer,
Xen Cloud Platform

 supports Xen, Virtualbox,
Proxmox VE, KVM

http://www.openvswitch.org/

Open vSwitch Internals

20

ovs-dpctl ovs-appctl ovs-vsctl ovsdb-client

ovs-ofctl

ovsdb-server

Openvswitch kernel module

ovsdb

ovs-vswitchd

sFlowTrend

ovsdb-tool

remote

kernel-space

user-space

From / To
Net Device

config

netlink
uplink

(netlink)

save changes

apply changes

source: de.slideshare.net/rajdeep/openvswitch-deep-live

Open vSwitch

 openvswitch_mod.ko: kernel-space packet processing
 in limited time due to hashing

 if match: apply set of actions, update counters

 if no match: go to user-space and eventually to the controller

 ovs-vswitchd: user-space packet processing
 first packets of a flow are handled here (actions, counters)

 put new exact flow table rules to kernel hash tables

 also: linear search in wildcard flow table (actions, counters)

 Can be installed on some commodity switches
 enables OpenFlow, but with poor performance

21

Further Software Switches

22

Switch Description

Indigo open-source implementation that runs on physical switches

and uses features of the ASICs to run OpenFlow

LINC open-source implementation that runs on Linux, Solaris,

Windows, MacOS and FreeBSD

Pantou turns a commercial wireless router/access point to an

OpenFlow-enabled switch. OpenFlow runs on OpenWRT

supports generic Broadcom and some models of LinkSys and

TP-Link access points with Broadcom and Atheros chipsets

Of13softswitch user-space software switch (based on Ericsson TrafficLab 1.1

softswitch)

XORPlus open-source switching software to drive high-perfromance

ASICs. supports STP/RSTP/MSTP, LCAP, QoS, VLAN,

LLDP, ACL, OSPF/ECMP, RIP, IGMP, IPv6, PIM-SM

Summary Software Test Switches

 Advantages
 maximum flexibility: develop novel protocols, routing algorithms, etc.

 unlimited flow table size, unlimited number of flow tables

 simple implementation effort

 simulate entire networks on single computer

 Disadvantages
 slow flow matching performance

 usually not used as switches in actual networks

 Therefore...
 hardware support required to support switches with many ports at

high line rates of 1GbE, 10 GbE, 100 GbE, 1 TbE, etc.

23

B) Commodity Hardware Switches:

 Merchant Silicon

24

OpenFlow Vendors and Solutions

25

Vendor Model / Series Version

Arista 7050, 7150, 7300, 7500 1.0

Brocade ICX, VDX 1.3

Brocade MLXe, CER, CES 1.3

Brocade Netlron XMR 1.3

Extreme Networks BlackDiamond 8000/X8, Summit X670 1.0

HP 2029, 3500/3500yl, 3800, 5400zl 1.0, 1.3

IBM Programmable Network Controller, RackSwitches

G8264, G8264T, G8332, G8052, G8316

1.0

Juniper EX, MX 1.0

NEC PF5240, PF5820, PF1000 1.0

NEC ProgrammableFlow Network Controller PF 6800 1.0, 1.3

Pica-8 P-3290, P-3295, P-3780. P-3920 1.4

source: www.tomsitpro.com/articles/pica8-openflow-1.4-sdn-switches,1-1927.html

Full list of switches: https://www.sdncentral.com/comprehensive-list-hardware-switching-routing/

Commodity Hardware Switches

 Widely adopt single switching chip design

 Greatly simplifies switch design and reduces cost

 Switch vendors depend on merchant silicon switch ASICs

26

DRAM

CPU for control
plane All-in-one

switching ASIC

Flow Matching on ASIC-based Switches

 Observation: 10% of flows account for over 80% of traffic [1]
 elephants: long-lived, high-bandwidth flows

 mice: short-lived, low-bandwith flows

 Elephant flows HW (TCAM), mice flows SW (SRAM)

27

slow path

fast path

[1] Kandula et al., "The nature of data center traffic: measurements & analysis.", ACM SIGCOMM 2009

OpenFlow Switches based on Merchant Silicon

 Run software switch on CPU
 e.g. Open vSwitch (OVS)

 Linux running on merchant silicon
device drivers

 dpif layer communicates to TCAM

 Packet match
 not in TCAM: forward packet to CPU

 ofproto communicates with controller
and writes new flow rule to TCAM

28

 ovs-vswitchd/openflowd

ofproto

dpif

netdev

dpif-netdev dpif-linux

netdev-silicon
netdev-linux

netdev-vport

CPU

ASIC TCAM

hardware queues

physical ports

Switches based on Merchant Silicon

 Most commodity switches use ASIC from a single vendor
 merchants: Broadcom, Marvell, Fulcrum (Intel), Centec

 advantage: lower production costs

29

2011

p
o

rt
s

2013

Merchant Silicon

 Every 18-24 month new generation of merchant silicon
 twice as many ports, 50% lower forwarding latency

 lowers power consumption, reduces latency jitter, etc.

 Designed as general networking switches with standard

throughputs and configurable feature sets
 176 Gbps supports 48x 1GbE, 4x 10GbE

 1.28 Tbps supports 48x 10GbE, 4x 100GbE

 Built with traditional networking in mind
 limited flexibitily

30

General Hardware Processing Pipeline of a Switch

Input
processing

Buffering /
Queuing

Output
processing

31

• parser: extract header
fields

• (pipelined) flow-action
matching

• action: rewrite header
fields (pipelined)

• action: insert packet
to queue/s (QoS,
unicast, multicast) or
drop

Merchant Silicon: Input Processing

32

Counter L2 CAM L3 CAM TCAM

VLAN

Processor
Packet

Parser
L3 Match /

Learning

ACL

Processing

Output Buffering

MST Storage

L2 Match /

Learning

128k x 48b

store VLAN, dst MAC addr.

16k x 32b Host
learning match

4k Wildcard

match

Merchant Silicon: Input Processing

33

source: Broadcom OpenFlow Software OF-DPA: OpenFlow 1.3.1 Switch Pipeline Specification and Software

 Broadcom: OpenFlow Data Plane Abstraction (OF-DPA)
 2014: Broadcom released specification for StrataXGS ASICs

 OpenFlow data plane abstraction networking software

 supports OpenFlow 1.3.1 combined with Indigo 2.0 software switch

 tables do not necessary directly correspond to hardware tables

Merchant Silicon: Processing Pipeline

Input
processing

Buffering /
Queuing

Output
processing

34

• parser: extract header
fields

• (pipelined) flow-action
matching

• action: rewrite header
fields (pipelined)

• action: insert packet
to queue/s (QoS,
unicast, multicast) or
drop

Merchant Silicon: Buffering/Queuing

 Packets are buffered until they are sent to output ports

 Several different queues: multicast queues, per port queues
 queues can have different quality-of-service features (e.g. bandwidth)

35

source: Cisco Understanding Queuing With Hierarchical Queueing Framework (HQF), June 2012

Merchant Silicon: Processing Pipeline

Input
processing

Buffering /
Queuing

Output
processing

36

• parser: extract header
fields

• (pipelined) flow-action
matching

• action: rewrite header
fields (pipelined)

• action: insert packet
to queue/s (QoS,
unicast, multicast) or
drop

Merchant Silicon: Output Processing

 Field processor makes modification to the headers
 as defined by the action set, which is build at input processing

 Less complex than input processing
 perform the actions which are selected during input processing

 Various ASICs support various output actions
 cheapest ASICs: output packets on any port, no support for rewrites

 few ASICs: interleave output and rewrite actions

37

Shortcomings of Merchant Silicon

 Slow production cycles
 usually 18-24 months or more

 vendors need to wait until the new merchant silicon is released

 Focus on lower-layer networking services (L2-L3)
 meet expectations of large number of different customers

 focus on: throughput, port number, latency, power consumption

 but not on higher-layer services (L4-L7)

 Furthermore...
 small sizes of usefull tables that can implement SDN data planes

 usually slow bus speeds between ASIC and CPU/NPU

 often: small/slow on-chip CPUs

 lack of flexible actions support

38

Addressing Shortcomings of Merchant Silicon

 Vendors try to compensate shortcomings

 More-advanced commodity switches
 high performance multi-core CPU or network processor array

 high-bandwith connection between CPU and ASIC (PCIe, custom)

 Interesting solution: hybrid hardware switching architecture
 hybrid: merchant ASICs and custom vendor ASICs

 custom ASIC: focus on higher value network services

 merchant ASIC: focus on forwarding and power consumpion

 Example hybrid hardware switch: Cisco Nexus 9000
 2 custom ASICs (28nm): VXLAN routing

 2 Broadcom Trident II ASICs (40nm): L2/L3 forwarding

39

C) Commodity Hardware Switches:

 Network Processors

40

Network Processors (NPUs)

 Network processors
 alternative to merchant silicon (on the fast path)

 integrated circuit, feature set specifically targeted at networking domain

 software programmable but with high performance

 Improved time to market
 software-only changes should require less time to develop, test, and

deploy than hardware or mixed hardware/software changes.

 Reduced development cost
 software-only changes should take less effort and expense to develop,

test, and deploy than hardware or mixed hardware/software changes.

 Increased time in market
 ability to support new features, services and protocols with software-

only upgrades increases the useful life of a system and the amount of
revenue the network the system can generate over its useful lifetime.

41

Example Network Processor

42

source: EZ Chip NPU-4 Product Brief

 EZ Chip: NP-4 100-Gbit Network Processor
 supports three types of lookup tables: direct access tables, hash

tables and tries (stored in DRAM)

 longest prefix match and wildcards are usually supported in tries

 optional: external TCAM

EZ Chip: NP-4 Main Functional Blocks

43

 Task optimized processors (TOPs)
 many high-performance processors, each optimized for a specific task

 perform: packet classification, forwarding and modification

 Control CPU
 extends flexibility for monitoring, management offload, statistics

 Traffic manager
 for ingress/egress paths, frame queuing, supports QoS mechanisms

 QoS CPU
 monitor and control

traffic managers

source: EZ Chip NPU-4 Product Brief

Summary: Architecture and Design of Switches

44

 Software test switches
 most flexible, easy to program, ‘unlimited’ table sizes, low performance

 Merchant silicon + CPU
 wide-spread, cheap, fast, inflexible

 limited programmability, hardware is fixed

 limited flow table size on fast path (TCAM)

 long production cycles for silicon

 NPUs + CPU
 fast, flexible, more expensive

 software programmable (C/C++)

 large flow tables possible (tries)

 can support new protocols on fast path

 but: processors highly optimized for current network protocols

 NPU merchant-specific software development kits, APIs, toolflows

Part III:

Configuration/Management of OF Switches

45

How to Configure/Manage OpenFlow Switches?

 OpenFlow protocol

 used for communciation
between switch(es) and
controller(s)

 e.g.: add/modify/remove flow
table entries

 access flow table statistics

 operates on a timescale of a
flow

 see previous lecture about
OpenFlow, controllers, etc.

46

OpenFlow

Controller

OpenFlow
protocol

OpenFlow

Switch

How to Configure/Manage OpenFlow Switches?

 OpenFlow protocol

 used for communciation
between switch(es) and
controller(s)

 e.g.: add/modify/remove flow
table entries

 access flow table statistics

 operates on a timescale of a
flow

 see previous lecture about
OpenFlow, controllers, etc.

47

OpenFlow

Controller

OpenFlow
protocol

OpenFlow

Switch

How to Configure/Manage OpenFlow Switches?

 OpenFlow management and

configuration protocol

 enables the remote configuration and
management of OF switches

 no assumption about configuration
point (service in controller,)

 bootstrapping: switch initiates
connection to controller

 controller’s IP address, port, TLS/TCP, ...

 detect and update the topology
between OF switches

 allocate resources within switches:
ports, queues (enable/disable ports)

 operates on a slow timescale

48

OpenFlow

Controller

OpenFlow

Configuration

Point

 Operational Context

OF-Config OpenFlow
protocol

OpenFlow

Switch

OpenFlow

Configuration

Point(s)

Physical vs. Logical OpenFlow Switches

 physical switch = one or more logical switches

 OF-Config allows for configuration of multiple logical switches

 resources: ports/queues/tables are partitioned between logical switches

 logical switch assumes to have full control over its assigned resources
49

OpenFlow

Controller(s)
OpenFlow

Controller(s)
OpenFlow

Controller(s)

OpenFlow

Controller(s)
OpenFlow

Controller(s)

OpenFlow

Configuration

Point(s)

 OpenFlow Capable Switch (Physical)

 OF Logical Switch

OF Resource

(e.g.) port

OF Resource

(e.g.) queue

 OF Logical Switch

OF Resource

(e.g.) port

OF Resource

(e.g.) queue

OF-Config OpenFlow OpenFlow

How to Configure/Manage OpenFlow Switches?

 OF notification framework

 event triggered messages:
report link failures, etc.

 publish/subscribe model

 switch = publisher

 controller and configuration points can

subscribe to selected events

 examples

 attribute value change, communication

alarm, QoS alarm, processing error

alarm, state change, etc.

50

OpenFlow

Controller

OpenFlow

Configuration

Point

 Operational Context

OF-Config OpenFlow
protocol

OpenFlow

Switch

OF-Config 1.2: Further Functionalites

 Monitoring

 monitor physical network of physical switches

 monitor logical network of logical switches

 Configuration

 configuration of queues and ports

 ability to remotely change some aspects of ports (up/down)

 configuration of certificates for securce communication between

logical switches and controllers

 configuration of a set of specific tunnel types (VxLAN, etc.)

 Versioning

 negotiation of which OF-Config versions are supported

 support for OpenFlow versions 1.0 – 1.3.1

51

Summary: Configuration/Management of Switches

52

 Configuration points
 initialize switches using OF_Config protocol

 establish connections between switch and controllers

 Physical vs. logical switches
 one physical switch can instantiate several logical switches

 physical resources partitioned between logical switches

Part IV: Next Generation of SDN Switches

53

Next Generation of SDN Switches

 Protocol-independent packet forwarding
 Huawei’s approach

 towards OpenFlow 2.0

 Industrial trends
 open hardware switch developed for Facebook

 Intel dreams to replace ASICs/NPUs by CPUs

54

Protocol-Independent Forwarding

55

 OpenFlow 1.x Limitations
 OpenFlow protocol is limited to fixed set of protocols

 version 1.4 already contains 41 different header fields

 adding user-defined protocols requires significant effort

 OpenFlow constraints development of new protocols

 switch cannot express its capabilities to the controller

 Solution: protocol-independet packet forwarding
 Huawei’s protocol-oblivious forwarding (POF)

 towards OpenFlow 2.0

Huawei Protocol-Oblivious Forwarding (POF)

 Generic instructions for

packet field parsing and

handling

 Table search keys are
defined as {offset, length}
tuples

 Instructions/Actions
access packet data or
metadata using
{offset, length} tuples

 Include other math, logic,
move, branching, and
jump instructions

 Proposed in 2013

56

OFPAT_COPY_TTL_OUT

OFPAT_COPY_TTL_IN

OFPAT_SET_MPLS_TTL

OFPAT_DEC_MPLS_TTL

OFPAT_PUSH_VLAN

OFPAT_POP_VLAN

OFPAT_PUSH_MPLS

OFPAT_POP_MPLS

OFPAT_SET_NW_TTL

OFPAT_DEC_NW_TTL

OFPAT_PUSH_PBB

OFPAT_POP_PBB

and on and on and on …

POFAT_SET_FIELD

POFAT_ADD_FIELD

POFAT_DELETE_FIELD

POFAT_MOD_FIELD

Period.

~40 matching header

fields defined yet still

many uncovered

protocols/headers

{offset, length} covers

any frame based

formats

Match

Action

Current OpenFlow POF

source: Huawei

Huawei Protocol-Oblivious Forwarding

57

Programming

Languages

Compiler

Flow Instruction Set

Application API

• Programmable

• Network

optimized

• Runtime & Remote

reprogrammable

• Table driven &

protocol blind

• Flow instruction set

• Flexible

• Generic

• Standard

• Low level

instruction

set

NPU

CPU

• High

performance

Flex Flow

Processor

ASIC

Novel Applications

&Services

Protocol Specific

Application

Protocol Agnostic

Tables/Instructions

Controller

Flow

Tables

POF

Instructions

POF Data Path

OpenFlow+ Hardware

Abstraction Layer
Driver

C
o

n
tro

lle
r

F
o

rw
a
rd

in
g

 E
le

m
e
n

ts

source: Huawei

Towards OpenFlow 2.0

 “We believe that future generations of OpenFlow should allow the

controller to tell the switch how to operate, rather than be constrained by a

fixed switch design” [1]

 Protocol independence
 switches should not be tied to any specific network protocols

 Target independence
 programmers should describe how switches are to process packets

in a way that can be compiled down to any target switch that fits our
abstract forwarding model

 Reconfigurability in the field
 programmers should be able to change the way switches process

packets once they are deployed in a network

58

[1] McKeown, Rexford, et al. ”P4: Programming Protocol-Independent Packet Processors”

 ACM SIGCOMM 2014

Programming Protocol-independet Processors

59

60

 new: programmable parser: support for novel protocols

 unlike Huawei POF: not focussed on network processors

 multiple match-action stages: in parallel, in series (OF 1.0 in series)

 actions are built from a set of primitives supported by the switch.

Protocol-Independent Packet Processor

Intel Ethernet Switch FM 6000 Series (1/2)

 Protocol-independent, hybrid commodity switch by Intel
 traditional processing pipeline + OpenFlow processing pipeline

 Input processing: FlexPipe processing architecture
 programmable parser

61

Intel Ethernet Switch FM 6000 Series (2/2)

 Output processing: frame forwading unit
 used for generic pattern matching

62

Facebook: WEDGE Switch

63

 Open Compute Project
 Similar to Google

Facebook develops
own switches for
their data centers

 Zuckerberg: «Saved 1
Billion Dollars»

 Linux-based controller
«FBOSS»

 many partners:
Broadcom, Intel, Big
Switch Network, etc

 modular hardware

 Broadcom Trident 2 ASIC

 Intel Microserver

Intel: Replace Merchant Silicon & NPUs with CPUs

 Intel is very interested to move to data centers and

enterprise computing sector
 Intel bought network silicon vendor Fulcrum in 2011

 Intel Data Plane Development Kit for Open vSwitch
 goal: accelerate packet processing on Intel CPUs (instead of NPUs)

 Chrystal forest platform: 160 million packets/s on multi-core CPU

 Target group
 data centers switches

 top of the rack switches

 service providers (e.g. Verizon)

 Repeated history?
 Intel used x86 PC chips to

tackle Sun’s/IBM’s servers

 today: Broadcom, etc.
64

Summary: Next Generation of SDN Switches

 Software-defined networking trends
 more flexibility, stronger separation between control and data plane

 forwarding hardware should no longer hinder protocol development

 OpenFlow 2.0: protocol-indepent packet forwarding

 Large service providers (Google, Facebook)
 produce their own networking equipment

 standard solutions from switch vendors no longer fit

 Shift towards NPUs and high-performance CPUs
 programmability becomes more important than pure forwarding

performance

 Will history repeat itself?
 Can Intel break the dominance of Broadcom?

65

66

67

68

69

70

