

Exercise Session 2:

Introduction to Mininet

and learning switch tutorial

Dimitris Gkounis

01/10/2014

ΗΥ436: Software Defined Networks

Introduction to Mininet (I)

• Mininet: Network emulator:

– End-hosts, switches and links on a single Linux kernel

– Software network elements with behavior similar to
hardware elements

• Why using Mininet?

– Fast network set-up, easy to use, custom topologies

– Can run real Linux programs

– Mininet switches support OpenFlow

– Open source, under active development

Introduction to Mininet (II)

• Mininet drawbacks:

– Resource limitation since all virtual network elements
run on a single system.

– No simulations: no virtual timing

Introduction to Mininet (III)

• Help message for Mininet’s startup options

– sudo mn -h

• Start a minimal topology1 and enter the Command
Line Interface (CLI):

– sudo mn

• Start a network with 1 OF switch, 3 hosts with MAC
equal to their IP2 and an external controller:

– sudo mn --topo single,3 --mac --switch ovsk --controller
remote

1. 1 OpenFlow switch, 2 hosts and the OF reference controller
2. By default, hosts start with randomly assigned MAC addresses. This makes debugging tough

Introduction to Mininet (IV)

• Naming in Mininet:

– Usually: hosts h1..hN and switches s1...sN, host h1’s
default interface h1-eth0, switch s1’s first port s1-eth1.

• Mininet CLI commands:

– mininet> help display available commands

– mininet> nodes display nodes

– mininet> net display links

– mininet> xterm hi hj open terminals to hosts hi, hj

– mininet> exit/quit exit/quit Mininet

Introduction to Mininet (V)
• Custom topology example:
from mininet.topo import Topo
from mininet.net import Mininet
from mininet.cli import CLI

class SingleSwitchTopo(Topo):
 "Single switch connected to n hosts."

def __init__(self, n=2, **opts):
 Topo.__init__(self, **opts)
 switch = self.addSwitch('s1')
 for h in range(n):
 host = self.addHost('h%s' % (h + 1))
 self.addLink(host, switch)
def simpleTest():
 topo = SingleSwitchTopo(n=4)
 net = Mininet(topo)
 net.start()
 print "Testing network connectivity"
 net.pingAll()
 CLI(net)
 net.stop()
if __name__ == '__main__':
 simpleTest()

Reminder: What is OpenFlow?

• Software Defined Networking (SDN):

– Separates Control Plane (computing routes and
updating forwarding tables etc.) and Data Plane
(forwarding, buffering, marking packets etc.) of
networks

– Network control is logically centralized

– Open Interface between control and data plane

• OpenFlow:

– A protocol which enables SDN

Introduction to POX (I)

• What is POX?

– Python-based OpenFlow controller framework

– Supports OpenFlow specification version 1.0

– Widely used and supported

– Easy learning curve

– Slow performance but easy and fast development
of SDN controller applications:

 Preferred in research, experimentation, demonstrations

Introduction to POX (II)

• How does POX work?
– Event-driven programming model: controller registers

for events and developer implements event handlers

– Controller functionalities implemented on
Components

– When an application is started, the launch() function
is invoked. This is the function where the application
registers event listeners or creates objects of any
Component class: e.g.
• https://github.com/noxrepo/pox/blob/carp/pox/forwarding/

hub.py

• https://github.com/noxrepo/pox/blob/carp/pox/forwarding/
l2_learning.py

https://github.com/noxrepo/pox/blob/carp/pox/forwarding/hub.py
https://github.com/noxrepo/pox/blob/carp/pox/forwarding/hub.py
https://github.com/noxrepo/pox/blob/carp/pox/forwarding/l2_learning.py
https://github.com/noxrepo/pox/blob/carp/pox/forwarding/l2_learning.py

Learning Switch in POX (I)

• Remember Monday lecture’s pseudocode:

 when frame received at switch:
 1. record incoming port, MAC address of sending host

 2. index switch table using MAC destination address

 3. if entry found for destination

 then {

 if destination on segment from which frame arrived
 then drop frame

 else forward frame on interface indicated by entry

 } else flood /*forward on all interfaces except arriving interface*/

Learning Switch in POX (II)

• sudo mn --topo single,2 --mac --switch ovsk --controller
remote

• ~/pox$./pox.py log.level --DEBUG forwarding.l2_learning

 https://github.com/noxrepo/pox/blob/carp/pox/forwardi
ng/l2_learning.py

https://github.com/noxrepo/pox/blob/carp/pox/forwarding/l2_learning.py
https://github.com/noxrepo/pox/blob/carp/pox/forwarding/l2_learning.py

Preparation for Exercise Session 3

• Review Python, Mininet, POX:

– Check the course web site (Links) for more
resources

• Next session: Assignment 1 - Transparent
Load-Balancer

