

Exercise Session

Introduction to Pyretic
George Nomikos

15/10/2014

ΗΥ436: Software Defined Networks

Do we need other low-level controllers?

• Need to perform multiple independent tasks

• Need high-level mechanisms (abstractions) for
reusability

• Need to handle packet events when the
controller does not know how to figure them
out

• Need to properly manipulate switch-level
rules
– Switches have limited space for rules

– Cannot install all possible patterns

Common Abstraction

Controller Application Modules affect the same traffic

OpenFlow Protocol
Controller-Switches

• Difficult to develop, test, debug, reuse, maintain
• Modularity (key concept), a way to slice the traffic NOT the network
• Each module (slice) can control different portion of the traffic

Modularity

Solution: “Northbound API”

(http://cdn.sdncentral.com/wp-content/uploads/2012/11/IG-Image-11.jpg)

(Switch API)

(Programmer API) e.g. Frenetic, Pyretic

e.g. OpenFlow (NOX, Pox)

Apps/Modules

Run-time system

A shift from low-level protocols (Openflow) to high level applications:

SDN Languages

• Quite different from ordinary ones

• Program SDN Control (run-time systems)

• A run-time system translates higher level
functions/policies to low-level rules on switches

• Each module works on its own abstract view of the
network (topology abstraction)

• E.g. Frenetic (implemented in OCaml), Pyretic

Python + Frenetic = Pyretic

• Frenetic: an SQL-like query language

• SDN Language and Runtime

– Language: Way of expressing high-level policies

– Runtime: Way of “compiling” those policies to
low-level OpenFlow rules

• Embodies more sophisticated SDN
applications

• Supports modular programming

Primitives (1/3)
• Virtual Packet Headers

– Packet metadata, a unified way of representing
packet information.

 For pyretic:

Primitives (2/3)
• Predicates

– Expressions/Functions (static or dynamic) to match
traffic policies

– Each module can control a different portion of the
traffic (based on packet-header fields, e.g. source-ip)

For pyretic:

Primitives (3/3)

• Composition
– Sequential

• Perform action on one packet, followed by another action in sequence
• E.g.: Load balancing, Routing

– Parallel
• Perform actions on one packet in parallel
• E.g.: Monitor and Routing

 No priorities needed
 Overcome potential interference among actions

For pyretic:

Example:

How to make a complete application?

We need:

1. Reusable modules that all process the same traffic
(Virtual packet headers)

2. A proper slicing of the traffic (Predicates)

3. Module interaction without conflicts (Composition)

Examples of applications

1. Security applications

2. Resource management and control

3. Large virtual switches

12

IP = X2

IP = X1

B

A

Let’s see an example

What is this? Load Balancer

(match(srcip=X1,dstip=P)>>mod(dstip=A)>>fwd(1)) +
(match(srcip=X2,dstip=P)>>mod(dstip=B)>>fwd(2))

What else we have here? Firewall

IP = P (1)

(2)

Traffic Monitoring

Step 1:

Step 2:

Step 3:

Scenario:
-Monitor web-traffic requests
-Tcp port: 80

