
ΗΥ360
Αρχεία και Βάσεις ∆εδοµένων
∆ιδάσκων: ∆. Πλεξουσάκης

Φυσική Σχεδίαση Βάσεων
Δεδομένων

Υμεράλλη Ελισιάνα

Physical DB Design

• Data Structures for Primary Indices

– Structures that determine the location of the records of
a file.

– Most common structures: heaps, hashed files, indexed
files , B-Trees .

• The Heap Organization

– Records are packed into blocks in no special order and
with no special organization of the blocks.

Physical DB Design

Efficiency of Heaps
• n: number of records we need to store

• R: number of records that can fit in a block

The minimum number of blocks needed to store

these records is [n/R].

If records are of variable length R is taken to be the average

number of records that can fit in one block

Physical DB Design

Efficiency of Heaps:
• Lookup: must retrieve n/2R blocks on average. If there is no

record with they key value, we must retrieve all n/R records.

• Insertion: must retrieve the last record on the heap. If the
current block has no space, a new block must be used. In both
cases, the block must be written to secondary storage after the
insertion. Hence, insertion takes 2 block accesses.

• Deletion: requires n/2R block accesses to find the record and 1
more to delete it on average. If the record does not exist, n/R
accesses are required.

• Modification: requires n/2R block accesses to find the record
and 1 more to write the new values.

Physical DB Design

Hashed Files
• Records are divided into buckets according to the value of the key.
• A hash function h takes as argument a value for the key and

produces an integer in the range 0 to B-1, where B is the number of
buckets.

• Each bucket consists of a (usually small) number of blocks. The
blocks in each bucket are organized as a heap.

• The bucket directory is an array of pointers indexed from 0 to B-1.
• The entry for i in the directory is a pointer to the first block of

bucket i, called the bucket header. The blocks in a bucket form a
linked list.

Physical DB Design

Hash Function
• A simple hash function :

Convert each key value into an integer and then take
the remainder of that integer modulo B(#buckets).

• If the key value v is an integer, then h(v) = v mod B

Physical DB Design

Example: h(v) = v mod B

A file of numbers organized in a hashed file with 4 buckets.

17 13 5 29

2

23 7 35 19 11 31

1

0

2

3

Physical DB Design

Example: Delete record with key value (35)

17 13 5 29

2

23 7 35 19 11 31

1

0

2

3

17 13 5 29

2

23 7 31 19 11

1

0

2

3

Physical DB Design

Efficiency of Hashing:
For a file of n records, of which R fit in a block, and for a hashed

organization with B buckets (whose headers are kept in main

memory) we require on average:

n/2BR for a successful lookup, deletion or modification of an

existing record

n/BR for an unsuccessful lookup

Physical DB Design

Example:
• A file contains 1,000,000 records of 200 bytes each. Blocks are

212=4096 bytes long. R=20.

– If B=1000, then the average bucket holds n/B=1000 records.

These are distributed over n/BR=50 blocks.

– If each block address requires 4 bytes, the bucket directory

requires =1000 records * 4bytes =4000 bytes

– An unsuccessful lookup takes 50 block

accesses(n/BR=1,000,000/20000=50 blocks)

– A successful lookup requires 26 block accesses on the average.

Physical DB Design

Sorted Files:
• A file called a sparse index is created for a sorted file.

The index contains pairs of the form: (<key
value>,<block address>).

• For every block b of the file, there is a record (v,b) in
the index; v is a key value that is at least as low as
any key value on b, but higher than any key value on

any block preceding b.

Physical DB Design

Example: sorted list of numbers: 2,4,5,16,25,37,54,68,79,80,88

2 4 5 16

25

68 79 80 88

25
37 54 56

68

After insertion of numbers

19,58,31:

2 4 5 16

25

68 79 80 88

25
37 54 56

58

19

31

58

Physical DB Design

Searching Index Files:
• 1) Linear Search:

Scan the index from the beginning, examining each
record until the one that covers the one searched for is
found
Inefficient for large indices: half the index blocks will
have to be examined on average in a successful lookup
Index records are usually shorter than file records.

Physical DB Design

Searching Index Files:
2) Binary Search: : assume B1, B2, …, Bn are the blocks of the

index file and v1,v2, …,vn are the keys of the first records in the
respective blocks. To locate record with key v:

 Retrieve index block Bn/2 and let w be the value of its key:
if v<w, repeat the search for the blocks B1, B2, …, B n/2-1 ;
if v>=w, repeat the search for the blocks Bn/2 … Bn ; when
only one block remains, use linear search to find the record.

 Roughly log2 n block accesses are needed.

Physical DB Design

• Example: A file contains 1,000,000 records of 200 bytes each. Blocks
are 212=4096 bytes long. The length of the key fields is 20 bytes.

– R=20, hence the main file uses 50,000 blocks (n/R=1,000,000/20).
The same number of records is needed for the index file.

– An index record used 24 bytes: 20 bytes for the key, 4 for a
pointer to a block. 170 index records can fit in one
block(4096/24=170 records) if no additional bits are used. Then
50,000/170=294 blocks are needed for the index file.

– Linear search would require about 147 block accesses on average
for a successful lookup.

– Binary search requires about log2 294 = 9 block accesses.

Physical DB Design

• Example(cont’d):

– Hashed organization would only require 3 accesses: (1 to

read the bucket directory, and 2 to read/write the block)

– However, binary search is preferable to hashed

organization for answering range queries, i.e., queries of

the form “retrieve all records with keys in the range

(a,b)”. A hashed organization would require examining

practically all buckets.

Physical DB Design

B-Tree (Balanced Tree):
• B-tree of order m is a tree with the following properties:

– The root has at least 2 children, unless it is a leaf.
– No node in the tree has more then m children.
– Every node except for the root and the leaves have at least

m/2 children.
– All leaves appear at the same level.
– An internal node with k children contains exactly k-1 keys.

Physical DB Design

Operations on B-trees:

• Lookup: Search for a record with key value v, find a path
from the root of the B-tree to some leaf node where the
desired record will be found if it exists

• Insertion: Insert a record with key value v

• Deletion: Delete a record with key value v

Physical DB Design

Figure 1

a) A node with two children; b) a node with three children; c) a node with m children

Physical DB Design

• B-Tree:

* 9 *

* 1 * 3 * 5 * * 13 * 21 *

a

b c

Nodes b and c have room to insert more elements

Physical DB Design

• Insert 2:

* 3 * 9 *

* 1 * 2 * * 13 * 21 ** 5 *

a

b d c

Node b has no more room, so it splits creating node d.

Physical DB Design

• Insert 7,10 :

* 3 * 9 *

* 1 * 2 * * 10 * 13 * 21 ** 5 * 7 *

a

b d c

Nodes d and c have room to add more elements

Physical DB Design

• Insert 12:

* 3 * 9 * 13 *

* 1 * 2 * * 21 ** 5 * 7 * * 10 * 12 *

a

b d

Nodes c must split into nodes c and e

ec

Physical DB Design

• Insert 4:

* 3 * 9 * 13 *

* 1 * 2 * * 21 ** 4 * 5 * 7 * * 10 * 12 *

b

a

ecd

Node d has room for another element

Physical DB Design

• Insert 8:

* 3 * 7 *

* 21 *

* 13 *

* 9 *

* 1 * 2 * * 4 * 5 * * 10 * 12 ** 8 *

b

a

f g

d h c e

Node d must split into 2 nodes. This causes node a to split into 2 nodes and the
tree grows a level.

Physical DB Design

• Delete 2:

* 3 * 7 *

* 21 *

* 13 *

* 9 *

* 1 * * 4 * 5 * * 10 * 12 ** 8 *

a

f g

b d h c e

Node b can loose an element without underflow.

Physical DB Design

• Delete 21:

* 3 * 7 *

* 13 *

* 12 *

* 9 *

* 1 * * 4 * 5 * * 10 ** 8 *

a

f g

b d h c e

Deleting 21 causes node e to underflow, so elements are redistributed
between nodes c, g, and e

Physical DB Design

• Delete 10:

* 12 * 13 *

* 3 * 7 * 9 *

* 1 * * 4 * 5 * * 8 *

a

b d h e

Deleting 10 causes node c to underflow. This causes the parent, node g to
recombine with nodes f and a. This causes the tree to shrink one level.

Physical DB Design

• Delete 3:

* 12 * 13 *

* 4 * 7 * 9 *

* 1 * * 5 * * 8 *

a

b d h e

Because 3 is a pointer to nodes below it, deleting 3 requires keys to be
redistributed between nodes a and d.

Physical DB Design

• Delete 4 :

* 12 * 13 *

* 7 * 9 *

* 1 * 5 * * 8 *

a

h eb

Deleting 4 requires a redistribution of the keys in the subtrees of 4; however,
nodes b and d do not have enough keys to redistribute without causing an
underflow. Thus, nodes b and d must be combined.

Physical DB Design

Example (2): B-tree

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256

9 64 100 196

25 144

B1

B2 B3 B4

B5 B6 B7 B8 B9 B10 B11

Physical DB Design

• Insert Record with Key 32:

1 4 9 16 25 32 64 81 100 121 144 169 196 225 256

9 36 196

25
B1

B2 B3 B4

B5 B6 B7 B8 B9 B10 B11

36 49

B12

B13

100

B14

144

B15

64

Physical DB Design

• Delete record with key 64:

1 4 9 16 25 32 81 100 121 144 169 196 225

9 36

196

25 81

B2 B3

B5 B6 B7 B8 B10 B11

36 49

B12

B13

100

B14

Physical DB Design

Cost of Operations on B-trees:

– Lookup: if there exist i nodes on a path from the root to a

leaf node where a particular record is located, then i block

accesses are needed.

– For insertion, deletion and modification, 2 + logd (n/e)

accesses are required on average

– We will assume that all operations take 2 + logd (n/e)

block accesses on average.

Physical DB Design

End of Slides

