
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης

Βάσεων Δεδομένων
Διάλεξη 1η: Data storage, Record and file

structures

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

1

CSD Univ. of Crete Fall 2014

DATA STORAGE, RECORD and
FILE STUCTURES

2

CSD Univ. of Crete Fall 2014

Typical Memory Hierarchy

 Primary storage: Fastest media but

volatile (cache, main memory)

Main memory for currently

accessed data

Cache for small amounts of data

and/or machine instructions

 on-chip (L1) and L2

 outside of DB system control

 Secondary storage for databases

(flash memory, magnetic disks)

also called on-line storage

 Tertiary storage for archiving older

versions of infrequently used data

(tapes, DVDs, jukeboxes)

also called off-line storage

main memory

flash memory

cache

magnetic disk

magnetic tapes

optical disk

Primary
Storage

Secondary
Storage

Tertiary
Storage

CPU
Data Request

Data Satisfying Request

3

CSD Univ. of Crete Fall 2014

Data Storage

 A DBMS stores information on disk;

manipulation of data takes place in

main memory

 READ: transfer data from disk to

main memory

 WRITE: transfer data from main

memory to disk

 Both are high-cost operations,

relative to in-memory operations

Typical disk access takes 10 milliseconds (10–3)

Main memory access is less than 60 nanoseconds (10–9)!!!

 Why not store everything in main memory?

costs too much! (70€ for 8GB RAM vs 70€ for 1TB disk space)

main memory is volatile: contents are usually lost if a power
failure or system crash occurs

CPU

Memory Controller

Disk/tape

...

cache

4

CSD Univ. of Crete Fall 2014

Moore’s Low

 Processor speed doubles every 18 months (2x18 months ~ 100x10 years)

CPUs will get faster, disks will get bigger, and so do communication
speeds… (http://www.intel.com/research/silicon/mooreslaw.htm)

6

CSD Univ. of Crete Fall 2014

Exponential Growth

 1969 2001 Factor

main memory 200 KB 200 MB 103

cache 20 KB 20 MB 103

cache pages 20 5000 <103

disk size 7.5 MB 20 GB 3*103

disk/memory size 40 100 -2.5

transfer rate 150 KB/s 15 MB/s 102

random access 50 ms 5 ms 10

scanning full disk 130 s 1300 s -10

 Over the last decade:

10x better memory access time

10x more bandwidth

100x more capacity

4000x lower media price

Disk scan takes 10x longer

Data on disk are 2.5x bigger than the memory size

8

CSD Univ. of Crete Fall 2014

Secondary Storage

 Disks: preferred secondary storage

device

random access is the main

advantage over tapes that

provide only sequential access

 Data is stored and retrieved in

units called disk blocks or pages

 Unlike RAM, time to retrieve a

disk block varies depending

upon location on disk

Therefore, relative placement

of blocks on disk has major

impact on DBMS performance!

9

CSD Univ. of Crete Fall 2014

Components of a Disc

Platters
(2 surfaces)

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector

 A typical disk is made up of several
platters, which are separated in
tracks, organized in sectors

 The arm is moved in or out to
position a head on a desired track

 Tracks under heads make a
cylinder (virtual)

 Only one disk head reads a
sector at a time

 Block size is a multiple of
sector size (fixed)

 Block address consists of:

Physical device # (for multi disks)

Cylinder #

Surface #

Sector #

10

CSD Univ. of Crete Fall 2014

Disk Characteristics

 Diameter: 1 - 15 inches

 Cylinders: 100 - 2000

 Surfaces: 1 (CDs) - many

 Tracks/Cyl: 2 (floppies) - 30

 Sector Size: 512B - 50K

 Capacity: 360 KB (floppies) – 8TB

Capacity of disk is a function of

number of cylinders, number of tracks

per cylinder, and capacity of track

Track

Gap

Sector

Block (typically
multiple sectors)

Often different numbers
of sectors per track

11

CSD Univ. of Crete Fall 2014

Disk Operation (Single-Platter View)

The disk surface

spins at a fixed

rotational rate

spindle

By moving radially, the

arm can position the

read/write head over

any track

The read/write head

is attached to the end

of the arm and flies over

the disk surface on

a thin cushion of air

sp
in

d
le

spindle

sp
in

d
le

spindle

12

CSD Univ. of Crete Fall 2014

Accessing a Disk Page

 Time to access (read/write) a disk block:

 seek time: Time it takes to reposition the
arm over the correct track

 4 to 10 ms on typical disks

 rotational latency: Time it takes for the
sector to be accessed to appear under
the head

 4 to 11 ms on typical disks (5400 to
15000 rpm)

 transfer time rate: The rate at which data
can be retrieved from or stored to the disk

 4 to 8 MB per second is typical

Multiple disks may share a controller,
so the rate that the controller can
handle is also important

 Seek time and rotational latency dominate

Initial Head

Block Wanted

Head Here

Block We Want

Track Start

May have to wait for start of track

before we can read desired block

13

CSD Univ. of Crete Fall 2014

Access Time for the IBM Deskstar 14GPX

 3.5 inch hard disk, 14.4 GB capacity

 5 platters of 3.35 GB of user data each, platters rotate at 7200/min

 average seek time 9.1 ms (min: 2.2 ms [track-to-track], max: 15.5 ms)

 average rotational delay 4.17 ms

 data transfer rate 13 MB/s

 access time8 KB block

~ 9.1 ms + 4.17 ms + 1 s/13 MB/8 KB ~ 13.87 ms

 Accessing a main memory location typically takes < 60 ns !!!

14

CSD Univ. of Crete Fall 2014

Arranging Pages on Disk

 Key to lower the duration and/or number of page transfers (I/O)

 DBMSs take the geometry and mechanics of hard disks into account

 Current disk designs can transfer a whole track in one platter
revolution, active disk head can be switched after each revolution

 Blocks in a file should be arranged sequentially on disk (by ‘Next’) to
minimize average latency i.e., reduce seek/rotation delays!

 This implies a closeness measure (relative positioning): for data records

r1, r2 on disk to reduce the duration of I/Os

 Place r1 and r2 inside the same block (single I/O operation!)

 Place r2 inside a block adjacent to r1’s block on the same track

 Place r2 in a block somewhere on r1’s track

 Place r2 in a track of the same cylinder than r1’s track

 Place r2 in a cylinder adjacent to r1’s cylinder

 For a sequential scan, pre-fetching several pages at a time is a big gain

to reduce the number of I/Os (more latter)

15

CSD Univ. of Crete Fall 2014

Example

 Compute time taken to read a 2048000

byte file that is divided into 8000 256

byte records assuming the following disk

characteristics?

average (random) seek time 18 ms

track-to-track seek time 5 ms

rotational delay 8,3 ms

maximum transfer rate 16,7 ms/track

bytes/sector 512

sectors/track 40

tracks/cylinder 11

tracks/surface (cylinders) 1331

block X
in memory

I want
block X

16

CSD Univ. of Crete Fall 2014

Example

 1 track contains 40*512 = 20480 bytes

 File needs 100 tracks ~10 cylinders

 Store records randomly

reading the file requires 4000

random accesses (Why?)

each access time

= 18 (average seek) + 8.3

(rotational delay) + 0,4 (transfer

one sector) = 26,7 ms

 total access time

= 4000 * 26,7 = 106800 ms =

106,8 s

 Store records on adjacent cylinders

 read first cylinder

= 18 + 8,3 + 11*16,7 = 210 ms

 read next 9 cylinders

= 9 * (5 + 8,3 + 11*16,7) =

1773 ms

 total access time

= 1983 ms = 1,983 s

 Ideally, a request for a sequence of pages should be satisfied by pages
stored sequentially in disk

 responsibility of the disk space manager

17

CSD Univ. of Crete Fall 2014

DBMS vs. OS File System

 The disk space manager is the lowest layer of the DBMS software

managing space on disk

 Operating systems (OS) does disk space but also buffer management

(more later)

why not let OS manage these tasks?

 In OS terminology a file (a document, a spreadsheet, an executable,

etc.) is simply a sequence of bytes

 In BDMS terminology, the term is used somewhat differently: Page or

block is OK when doing I/O, but…

higher levels of DBMS operate on records, and files of records (i.e.,

databases) which can’t span disks

18

CSD Univ. of Crete Fall 2014

Representing Data Elements

 Attributes are represented by fixed or variable

length sequences of bytes, called “fields”

 Fields are put together in fixed or variable

length collections called “records” (i.e., tuples

or objects)

 A collection of records forms a relation

which is stored as a collection

of blocks called a “file”

 A block is a contiguous sequence

of sectors from a single track

sizes range from 512 bytes to several KBs

 smaller blocks: more transfers from disk

 larger blocks: more space wasted due

to partially filled blocks

typical block sizes today 4-16 KBs

19

CSD Univ. of Crete Fall 2014

Representing Data Elements

 Ultimately, all data is represented as a sequence of bytes

 Integer (short): 2 bytes (-32000…+32000)

e.g., 35 is

 Integer (long): 4 bytes (-2x109…+ 2x109)

 Real, floating point (SQL FLOAT) 4 or 8 bytes

arithmetic interpretation by hardware

 Characters: various coding schemes suggested, most popular is ASCII

Example: 8 bit ASCII

 Boolean: e.g., TRUE FALSE

 Dates, e.g.: Integer: # days since Jan 1, 1900

8 chars: YYYYMMDD

7 chars: YYYYDDD

10 chars: YYYY-MM-DD (SQL2)

 Time, e.g. Integer: seconds since midnight

chars: HH:MM:SS[.FF…] (SQL2)

8
bits

00000000 00100011

1111 1111 0000 0000

20

CSD Univ. of Crete Fall 2014

Representing Data Elements

 Fixed-length character STRING is an array of n bytes

If the value for the attribute is a string of length shorter than n, then the

array is filled with special pad character

 Variable-length character STRING

Allocate array of n+1 bytes

Two common representations

 Length plus content

 First byte holds number of bytes in string

 Actual string cannot exceed n bytes (n < 255)

 Unused bytes in the array are ignored

Null-terminated string

 Allocate array of n+1 bytes

 Fill array with characters of string, followed by null character

c ta

c ta3

21

CSD Univ. of Crete Fall 2014

Records

 System catalog (more latter)

Information about field types common to all records in a file

e.g,. number of fields, field names and data types

 How to organize fields within a record ?

Retrieve, modify fields in a record

 Main choices:

Fixed vs variable length records

 fixed or variable size fields, repeated fields, etc.

Fixed vs variable format records

 follow or not a given record schema

Data Elements

Records

Blocks

Files

Memory

22

CSD Univ. of Crete Fall 2014

Fixed Length Records

 Fixed length representation

Each field has fixed length

Number of fields is fixed

Store fields consecutively

 Finding ith field done via arithmetic

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

23

CSD Univ. of Crete Fall 2014

Fixed Length Records: Example

 MovieStar relation

name: 30 byte string of characters

address: varchar(255)

gender: 1 byte

birth-date: 10 byte

 Record of type MoveStar will take 30+255+1+10 = 296 bytes

name address genderbirth-date

Field offset=0 30 285 286 296

24

CSD Univ. of Crete Fall 2014

Variable Length Records

 Fields whose size varies

E.g.,: address field of up

to 255 bytes

 Repeating fields

E.g.,: the set of movies in

which an actor appears in

 Enormous fields

E.g.,: include picture of

the actor -GIF image

 Variable format records

E.g.,: some actors also

direct/produce movie

Mark end of attributes

Indicator of length

Record dictionary

Optional fields

Combination of above

25

CSD Univ. of Crete Fall 2014

Variable Length Records: Variable Length Fields

 Put all fixed-length fields ahead of the variable-length fields (# fields is
fixed):

 Record header contains

Length of record

Pointers to (or offsets of) the beginning of all variable length fields

 Offers direct access to ith field, efficient storage of nulls (special don’t
know value); small directory overhead

F1 F2 F3 F4 F5

Array of variable
length field offsets

Record
Length

variable length fields

fixed length fields

26

CSD Univ. of Crete Fall 2014

Variable Length Records: Example

 Example MovieStar relation

 name: variable length

 address: variable length

 gender: fixed length 4 bytes

 birth-date: fixed length 12 bytes

name

Record
Length

birth-dategender address

27

CSD Univ. of Crete Fall 2014

Variable Length Records: Repeated Fields

 Record contains a variable number of occurrences of a fixed-length field F

 Group all occurrences of F together

 Record header has a pointer to the first occurrence

 Locate all occurrences of F as follows:

 Let the length of field F be L

 Add to the offset for field F all integer multiples of L, starting from 0,

L, 2L, 3L etc

 Stop when offset of the field following F is reached

28

CSD Univ. of Crete Fall 2014

Fixed vs. Variable Format Records

 Fixed format records

follow a given record schema that contains:

 # fields

 type of each field

 order in record

meaning of each field

 Variable format records

do not follow a fixed record schema (e.g., in information integration

and scientific applications)

Represented by a sequence of tagged fields (“self-description”)

Attribute or field name

Type of field, if it is not obvious from the field name or schema
information

 Length of field

Value of field

29

CSD Univ. of Crete Fall 2014

Variable Format Records: Example

 Example: MovieStar relation

Some movie stars have information such as movies directed, former

spouses, restaurants owned etc

Use single byte codes for various possible field names and types

R8SN 7SB r a d P i t t

C
o
d
e
 f

o
r

N
a
m

e

C
o
d
e
 f

o
r

S
tr

in
g
 t

y
p
e

L
e
n
g
th

C
o
d
e
 f

o
r

R
e
st

a
u
ra

n
t

C
o
d
e
 f

o
r

 S
tr

in
g
 t

y
p
e

L
e
n
g
th

G r a p p a s

30

CSD Univ. of Crete Fall 2014

 Different options for record placement:

 Separating records (by type)

 Spanned vs un-spanned

 Mixed record types – clustering

 Split records

 Sequencing

 Addressing

Placing Records on Blocks

blocks
...

a file

assume variable
or fixed length records

assume a single* relation

31

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

Separating records:

Must use special marker or include record lengths/offsets within each

record or in block header

No need to separate if records are of fixed length

R2R1 R3

block

32

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

 Spanned vs un-spanned

 Un-spanned: records are within one block but may waste space

...

 Spanned: necessary when record size > block size

 Bits to indicate record fragment, first or last fragment, pointer to next

 must indicate that a record is partially stored in a block and use a

pointer to the rest of it;

 must also indicate that a field is the continuation of another

R1 R2 R3 R4 R5

block1 block2

R1 R2
R3
(a)

R3
(b)

R6R5R4
R7
(a)

block1 block2

33

CSD Univ. of Crete Fall 2014

Spanned vs un-Spanned: Example

 Need to store 106 records, each of size 2050 bytes (fixed) using block

size = 4096 bytes

Total wasted = 2 x 109 (106+3) Block space utilization = 50%

Total space = 4 x 109 But… easy to find any record, since

record# = block#

Block space utilization = 100%

Blocking factor is the number of logical records included in a single

read or write operation aka a block

R1 R2

R1 R2

block 1 block 2

2050 bytes wasted 2046 2050 bytes wasted 2046

R2

2050 bytes 2046 bytes 4 bytes

R3

2050 bytes

R4

2042 bytes

spanned

34

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

Mixed record types: records of different types allowed in the same block

E.g.,

Why would we want to mix them?

Clustering: Records that are frequently accessed together should

be in the same block

Compromise: don’t mix them but keep them on the same disk cylinder

Deciding whether to cluster or not presupposes knowledge about the

expected types of queries

m1 Actor a1 a2ActorMovie

35

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

R2 (a)

R2 (b)

R2 (c)

This block also

has fixed records

R1 (a)

R1 (b)

Block with variable records

Block with fixed records

Split records: used for hybrid formats

Fixed part in one block

Variable part in another

36

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

Sequencing: order records in file (and block) by some key value

Why do sequencing?

Typically to make it possible to efficiently read records in order

(e.g., to do a merge-join)

Options for sequencing:

Next record physically contiguous

 Linked

Overflow area

Next (R1)R1

R1 Next (R1)

R1
R2
R3
R4
R5

header

R2.1
R1.3
R4.7

37

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

 Addressing

 How does one refer to a record?

 DB address: physical location on secondary storage by using

record address (<device id, cylinder#, track#,
block#, record-offset in block>)

 Memory address: record location when loaded into (main or virtual)

memory (full indirection) by using an arbitrary byte string

 Which one to use, and when?

 Tradeoff: Flexibility to move records (for deletions, insertions) vs.
cost of indirection

Physical
addr.Rec ID

map

rec ID

r address

a

Rx

38

CSD Univ. of Crete Fall 2014

Pointer Swizzling

 First Option

For all records copied to memory use a map that contains records
containing the record address

 Another Option

In memory pointers - need “type” bit

 Swizzling

Automatic ("eager")

On-demand ("lazy")

No swizzling / program control

Translation DB Addr Mem Addr

Table Rec-A Rec-A-inMem

to disk

to memoryM

Memory Disk

Rec A

block 1

Rec Ablock 2 block 2

block 1

39

CSD Univ. of Crete Fall 2014

Record Deletion

 When a record is deleted the following options are available:

 immediately reclaim space

 mark as “deleted” (may need a chain of deleted records for reuse)

 Need a way to mark (special characters, deleted field, in map)

 Many tradeoffs to consider:

 How expensive is to move valid record to free space for immediate

reclaim?

 How much space is wasted?

 Problem with dangling pointers. Solutions?

 Do not worry about it

 Use a special mark (tombstone) in old location or in map

Block

Rx

40

CSD Univ. of Crete Fall 2014

Record Insertion

 If records are not in sequence, insert new record at end of file (last

block) or in deleted slot

 Not as easy if records are of variable size

 If records are in sequence, use nearby free space or overflow area

 But…

 How much free space to leave in each block, track, cylinder?

 How often do I reorganize file + overflow?

41

CSD Univ. of Crete Fall 2014

Block Header

 Block (Page) is a collection of slots each containing a record

 Header data describing block may contain:

File ID (or RELATION or DB ID); the ID of this block – Record
directory; Pointer to free space

Type of block (e.g., contains records of type 4; is overflow, …)

Pointer to other blocks “like it” (say, if part of an index structure)

Timestamp ...

R4

R3

R2 R1

Record directory

Free space

Data space

Header

block

Fixed vs Variable
Fragment Size

42

CSD Univ. of Crete Fall 2014

Block (Page) Formats: Fixed Length Records

 Organize free and data space into fixed size fragments (slots)

 Packed: moving records for free space management (to keep records
contiguous) or for sorting them, changes the rid <page#, slot#>

may not be acceptable

 Bitmap: If slot i is free the ith bit of the header is set to 0, otherwise 1

 In both cases we have positioned the page header at the end of its page

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

block i

43

CSD Univ. of Crete Fall 2014

Block (Page) Formats: Variable Length Records

 Organize free and data space into variable size fragments (slots)

To get rid of holes produced by deletions compact the remaining
records to maintain a contiguous area of free space on the page

 Slotted: we can move records on page without changing rid <page#,
record_index> (indirection); so, attractive for fixed-length records too
Record (slot) directory entries: <record-offset,record-length>

Block i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
spaceSLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots
SLOTTED ORGANIZATION

Free
Space

Data
Space

length = 24

Record
offsets
from start
of data
space

length = 20

44

CSD Univ. of Crete Fall 2014

File Structure

 File

Collection of pages (blocks), each containing a collection of records

 File structure must support

insert / delete / modify record

read a particular record (specified using rid)

scan all records (possibly with some conditions on the records to be
retrieved)

 Many alternatives exist, each good for some situations, and not so good
in others:

Heap files: Suitable when typical access is a file scan retrieving all
records

Sorted (Sequential) Files: Best for retrieval in search key order, or
only a `range’ of records is needed (more latter)

Hashed Files: Good for equality selections (more latter)

45

CSD Univ. of Crete Fall 2014

Unordered (Heap) Files

 Simplest file structure contains records
in no particular order

 As file grows and shrinks, disk pages
are allocated and de-allocated

 To support record level operations, we
must:

 keep track of the pages in a file

 keep track of free space on pages

 keep track of the records on a page

 There are many alternatives for keeping
track of this

 We’ll consider two

A1 A2 A3

10 “abc” 32.3

11 “bcdc” 100.45

...

table

heap file

disk page disk page

(10,”abc”,32.3)
(11,”bcdc”,100.
45)
...

...

46

CSD Univ. of Crete Fall 2014

Heap File Implemented as a List

 DBMS allocates a free page (the file header) and writes an appropriate
entry <heapFileName, headerPageID> to a known location on disk;

 Database “catalog”

 Header page is initialized to point to two doubly linked lists of page ids

 Initially, both lists are empty

 Scan several pages on free list before finding one with enough free
space to insert a record

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
Free Space

Full Pages

47

CSD Univ. of Crete Fall 2014

Heap File Implemented as a List

 For insertRecord(f , r):

try to find a page p in the free list with free space > |r |; should this fail,
ask the disk space manager to allocate a new page p

record r is written to page p

since generally |r | << |p|, p will belong to the list of pages with free
space

a unique rid for r is computed and returned to the caller

 For openScan(f):

both page lists have to be traversed

 A call to deleteRecord(f , rid)

may result in moving the containing page from full to free page list,

or even lead to page deallocation if the page is completely free after
deletion

 Finding a page with sufficient free space is an important problem to solve

How does the heap file structure support this operation? (How many
pages of a file do you expect to be in the list of free pages?)

48

CSD Univ. of Crete Fall 2014

 DBMS maintains information on the first directory page for each heap file

Each entry in a directory page can include the number of free bytes

available on the page <PageID, nfree>

 The directory is a collection of pages; linked list (LL) implementation is

just one alternative

Much smaller than LL of all HF pages! |page directory| << |data pages|

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Heap File Using a Page Directory

49

CSD Univ. of Crete Fall 2014

Data Dictionary

 Data dictionary (also called system “catalog”) stores metadata: that is, data
about data, such as

information about relations

 names of relations

 names and types of attributes

 physical file organization information

 statistical data such as number of tuples in each relation

integrity constraints

view definitions

user and accounting information

information about indices

 Catalog structure: can use either

specialized data structures designed for efficient access

a set of relations, with existing system features used to ensure efficient
access

 the latter alternative is usually preferred

50

CSD Univ. of Crete Fall 2014

Disk Space Manager

 It is the lowest DBMS software layer supporting the concept of page as a
unit of data: accessing one disk block is one seek

 Many files will be stored on a single disk

 Higher DBMS software levels call upon this layer to:

 allocate/de-allocate a page

 read/write a page

 Best if a request for a sequence of pages is satisfied by pages for a file
stored as a contiguous sequence of blocks on disk!

 Higher levels don’t know how this is done, or how free space is
managed

 Though they may assume sequential access for files!

 Hence disk space manager should do a decent job

 Disk space is effectively utilized

 Files can be quickly accessed

51

CSD Univ. of Crete Fall 2014

Disk Space Management

 Two issues:

Management of free space in a disk

System maintains a list of free pages (blocks)

 keep a pointer to the first free block in a known location on disk

 when a block is no longer needed, append/prepend this block to
the free block list for future use

 next pointers may be stored in disk blocks themselves

 Implemented as bitmaps or linked lists

 reserve a block whose bytes are interpreted bit-wise (bit n = 0:
block n is free)

 toggle bit n whenever block n is (de-)allocated

Allocation of free space to files

Granularity of allocation (blocks, clusters, extents)

Allocation methods (contiguous, linked)

 Subsequent deallocations and new allocations however will, in
general, create holes

52

CSD Univ. of Crete Fall 2014

Bitmap of Free Blocks (Pages) on Disk

 A bitmap is kept for all blocks in the disk

Each block is represented by one bit

 If a block is free, its corresponding bit is 0

 If a block is in use, its corresponding bit is 1

To allocate space, scan the bitmap for 0s

Free block bitmaps allow for fast identification of contiguous
sequences of free blocks

 Example: Consider a disk whose blocks 2, 3, 4, 5, 8, 9, 10,
11, 12, 13, 17, etc. are free

The bitmap would be 110000110000001...

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

...............

53

CSD Univ. of Crete Fall 2014

Link Lists of Free Blocks (Pages) on Disk

 Link list of all the free blocks

Each free block points to the next free block

DBMS maintains a free space list head (FSLH) to the first free block

 To allocate space

look up FSLH

follow the pointers

reset the FSLH

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

...............

54

CSD Univ. of Crete Fall 2014

Contiguous Block Allocation

 Each file occupies a set of contiguous block addresses

 Efficient access

At most only one track-to-track movement for sequential accesses

Minimal head-movement (seek time) for random accesses

 External fragmentation

Only contiguous blocks can be allocated

Limited file growth/shrunk

 Periodic compaction of disk space

Disk is reorganized to group all free space as a single chunk

Prevent poor space utilization of disk space

Cost: time

55

CSD Univ. of Crete Fall 2014

Linked Block Allocation

 Each file is a linked list of disk blocks

Blocks may be scattered anywhere on disk

A directory contains a pointer to the first block of a file

 Example: A file of 5 blocks starts at block 9, continues at blocks 16, 1,
10 and 25

Each block contains a pointer to the next block

 No external fragmentation

Facilitates file growth/shrunk

 Poor random access performance

56

CSD Univ. of Crete Fall 2014

Buffer Manager

 The buffer manager enables the higher levels of the DBMS to assume that

the needed data is in main memory

Manages buffer pool: the pool provides space (called frames) for a

limited number of pages from disk

 If the block is already in the buffer:

the requesting program is given the address of the block in main

memory

 Otherwise:

The buffer manager allocates space in the buffer for the block

 discard some other block, if necessary for space

 the block that is thrown out is written back to disk if it was modified

since the last time it was fetched

The buffer manager reads the block from the disk to the buffer

Passes the address of the block in main memory to requester

57

CSD Univ. of Crete Fall 2014

Buffer Manager

 Buffer pool information table
contains tuples of the form:
<frame#, page#, pin_count, dirty>

 If requested page is not in pool:

Choose a frame for replacement:
only “unpinned” pages are
candidates!

If frame is “dirty”, write it to disk

Read requested page into chosen
frame, pin it and return address

 Page in pool may be requested
several times:

a pin_count is used, to pin a
page, pin_count++

a page is a candidate for
replacement iff pin count == 0
(“unpinned”)

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

58

CSD Univ. of Crete Fall 2014

Buffer Manager

 Sometimes it is useful to pin blocks to keep them available during an
operation and not let the replacement strategy touch them

a pinned block is a memory block that is not allowed to be written
back to disk

 Requestor of page must eventually unpin it, and indicate whether page
has been modified:

dirty bit is used for this

 Buffer frame is chosen for replacement by an appropriate policy:

Least-recently-used (LRU), Most-recently-used (MRU), Clock, First In
First Out (FIFO), Random, etc.

 Replacement policy can have big impact on the # of I/O’s

If requests can be predicted i.e., access patterns, (e.g., sequential
scans) pages can be pre-fetched (several pages at a time)

 Concurrency control and recovery may entail additional I/O (forced
output) when a frame is chosen for replacement

Write-Ahead Log protocol

59

CSD Univ. of Crete Fall 2014

Least Recently Used Replacement Policy

 LRU Strategy:

Buffer blocks not used for a long time are less likely to be accessed

Past usage often predicts future

 Rule: Throw out the block that has not been read or written for the longest
time

for each page in buffer pool, keep track of time when last unpinned

replace the frame which has the oldest (earliest) time

very common policy: intuitive and simple

Works well for repeated accesses to popular pages

 Problem: Sequential flooding

LRU + repeated sequential scans of the same table (e.g., nested-loop
joins)

#buffer frames < #file pages means each page request
causes an I/O

Is MRU better in this scenario?

60

CSD Univ. of Crete Fall 2014

Most Recently Used Replacement Policy

 Toss-immediate Strategy:

If iterating through table, then most recent buffer block will be unused

the longest (works very well with joins)

 Rule: Free the space occupied by a block as soon as the final tuple of that

block has been processed

System must pin the block currently being processed

After the final tuple of that block has been processed, the block is

“unpinned”, and it becomes the most recently used block

 Buffer manager can use statistical information regarding the probability that

a request will reference a particular relation

E.g. the data dictionary is frequently accessed

Heuristic: always keep data dictionary blocks pinned in main memory

if several pages are available for overwrite; choose the one that has the

lowest number of recent access requests to replace

61

CSD Univ. of Crete Fall 2014

“Clock” Replacement Policy

 “Clock” Strategy:

An approximation of LRU

Arrange frames into a cycle (current++), store one reference bit
(ref_bit) per frame

Can think of this as the second chance bit

When pin_count reduces to 0, turn on reference bit

When replacement necessary

do for each page in cycle {
if (pin_count == 0 && ref_bit is on)

turn off ref_bit;
else if (pin_count == 0 && ref_bit is off)

choose this page for replacement;
} until a page is chosen;

A(1)

B(0)

C(1)

D(1)

62

CSD Univ. of Crete Fall 2014

“Clock” Replacement Policy

63

CSD Univ. of Crete Fall 2014

Criteria of Buffer Replacement Policies

64

CSD Univ. of Crete Fall 2014

Schematic Overview of Buffer Replacement Policies

65

CSD Univ. of Crete Fall 2014

Buffer Management

 Existing OS affect DBMS operations by:

read ahead, write behind

uniform replacement strategies (DBMS is just an OS application!)

Unix is not good for DBMS to run on top

Most commercial DBMS implement their own I/O on a raw disk partition

 DBMS buffer management is more tricky

More semantics to pages: pages are not all equal

More semantics to access patterns: queries are not all equal

More concurrency on pages: often prescribe the order in which pages
are written back to disk

Facilitates prefetching: on-demand(asynchronous),heuristic(speculative)

 Variations of buffer allocation

common buffer pool for all relations

separate buffer pool for each relation

as above but with relations borrowing space from each other

prioritised buffers for very frequently accessed blocks (data dictionary)

66

CSD Univ. of Crete Fall 2014

Buffer Management (DBMS) vs.

Virtual Memory (OS)
 Goal in both cases: provide access to more

data than will fit in main memory

Page access patterns in DBMS can often

be predicted (vs. in OS) e.g., in a query

Pre-fetching of pages based on well-

defined access patterns

when the buffer manager receives
requests for (single) page(s), it may
decide to (asynchronously) read ahead

 reading contiguous page blocks is
faster (vs. reading the same pages at
different times as per several requests)

WAL (Write-Ahead Log) protocol required

by DBMS for crash recovery

 forces some buffer pages to be written
in the disc before others in order to
implement the WAL protocol

67

CSD Univ. of Crete Fall 2014

Double Buffering

 If the DBMS uses it’s own buffer manager (within the virtual memory

of the DBMS server process), independently from the OS VM

manager, we may experience the following:

 Virtual page fault: page resides in DBMS buffer. However, frame has

been swapped out of physical memory by OS VM manager

An I/O operation is necessary that is not visible to the DBMS

 Buffer fault: page does not reside in DBMS buffer, frame is in physical

memory

Regular DBMS page replacement, requiring an I/O operation

 Double page fault: page does not reside in DBMS buffer, frame has

been swapped out of physical memory by OS VM manager

Two I/O operations necessary: one to bring in the frame (OS);

another one to replace the page in that frame (DBMS)

 => DBMS buffer needs to be memory resident in OS

68

CSD Univ. of Crete Fall 2014

Summary

 Disks provide cheap, non-volatile storage:

Random access

Cost depends on location of page on disk

Goal: arrange data sequentially to minimize seek and rotation delays

 Blocks:

a fixed-length unit for storage allocation and data transfer

database files are organized into blocks

 Block Transfers

Want to minimize the number of block transfers between disk and
memory

Keep as many blocks as possible in main memory

 Buffer

portion of main memory available to store copies of disk blocks

 Buffer Manager

subsystem responsible for allocating buffer space in main memory

69

CSD Univ. of Crete Fall 2014

Summary

 Record format:

Variable length record format with field offset
directory offers support for direct access to
i’th field and null values

 Page format:

Slotted page format supports variable length
records and allows records to move on page

 File Structure:

Linked list or page directory structure to
keeps track of pages in the file and pages
with free space

 Disk Manager:

Bitmap or linked list to keep track of free
blocks on disk

Contiguous or linked allocation of free blocks

70

CSD Univ. of Crete Fall 2014

Summary

 There are 10,000,000 ways to
organize the data on disk

 Which one is right? Issues:

 To evaluate a specific strategy,
compute:

 expected space usage

 expected time to: fetch record
given key, fetch record with
next key, insert record,
append record, delete record,
update record, read all file,
reorganize file

Flexibility Space Utilization

Complexity Performance

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

The BIG picture…

71

CSD Univ. of Crete Fall 2014

References

 Based on slides from:

R. Ramakrishnan and J. Gehrke

H. Garcia Molina

J. Hellerstein

L. Mong Li

P. Kilpeläinen

M. H. Scholl

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:

–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο

–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο

–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Διάλεξη 1η: Data storage, Record and
file structures». Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη
δικτυακή διεύθυνση: http://www.csd.uoc.gr/~hy460/

