sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv

Ai1dAegn 1n: Data storage, Record and file
structures

Anuntpng MNAeg¢ouoakng
Tunua Emotiung YtoAoyiotwy

DATA STORAGE, RECORD and
FILE STUCTURES

T
C

”‘-—-___________--”

CSD Univ. of Crete

Fall 2014

Typical Memory Hierarchy

e Primary storage: Fastest media but

volatile (cache, main memory)

+Main memory for currently
accessed data

Primary
Storage

¢ Cache for small amounts of data

and/or machine instructions

e on-chip (L1) and L2 Sgcgpadaery’
e outside of DB system controY 9

e Secondary storage for databases

<<

N—

CPU
1 !l Data Request

cache

4

main memory
AN

fIasr)\memory

maghnetic disk

(flash memory, magnetic disks) ~ —- Dhta Satisfying Request
ealso called on-line storage gﬁgtr':gré optical disk
e Tertiary storage for archiving older il I
versions of infrequently used data - magnetic tapes

(tapes, DVDs, jukeboxes)
salso called off-line storage

CSD Univ. of Crete Fall 2014

Data Storage

e A DBMS stores information on disk; CPU
manipulation of data takes place in [

. h
main memory cacne

¢ READ: transfer data from disk to
main memory Memory Controller

¢ WRITE: transfer data from main
memory to disk
e Both are high-cost operations, Disk/tape
relative to in-memory operations
e Typical disk access takes 10 milliseconds (10-3)
+Main memory access is less than 60 nanoseconds (109!l
e \Why not store everything in main memory?

¢ costs too much! (70€ for 8GB RAM vs 70€ for 1TB disk space)

emain memory is volatile: contents are usually lost if a power
failure or system crash occurs

(D (T

N i1 CSD Univ. of Crete

+CPUs will
speeds...

Fall 2014

Moore's Low

Shrinking chips
Number and length of transistors bought per $

%M

20
i 16nm

#i0nm 2012 2014* 2015*

*Forecast Source: Linley Group

130nm
2004

180nm Nanometres (nm)

2002

e Processor speed doubles every 18 months (2x18 months ~ 100x10 years)

get faster, disks will get bigger, and so do communication
(http://www.intel.com/research/silicon/mooreslaw.htm)

4

"9 CSD Univ. of Crete

Exponential Growth

Fall 2014

1969 2001 Factor

main memory 200 KB 200 MB 103
cache 20 KB 20 MB 103
cache pages 20 5000 <103
disk size 7.5 MB 20 GB 3*%103
disk/memory size 40 100 -2.5
transfer rate 150 KB/s 15 MB/s 102
random access 50 ms 5ms 10
scanning full disk 130 s 1300 s -10

e Over the last decade:
¢ 10x better memory access time
¢ 10x more bandwidth
¢ 100x more capacity
€4000x lower media price
& Disk scan takes 10x longer
¢ Data on disk are 2.5x bigger than the memory size

v

28 CSD Univ. of Crete

Secondary Storage

e Disks: preferred secondary storage
device

erandom access is the main
advantage over tapes that
provide only sequential access

Readiwrite
e Data Is stored and retrieved in heads

units called disk blocks or pages

e Unlike RAM, time to retrieve a
disk block varies depending
upon location on disk

¢ Therefore, relative placement
of blocks on disk has major “***
Impact on DBMS performance!

Spindle

Platters

Controller

Data cache

Fall 2014

CSD Univ. of Crete Fall 2014

Components of a Disc

e Atypical disk is made up of several

platters, which are separated in () Spindle
tracks, organized in sectors Disk head < ' } racks
e The arm is moved in or out to T 2
position a head on a desired track NN
ﬂ ~— Sector
e Tracks under heads make a ‘ 0
cylinder (virtual) k_/
e Only one disk head reads a w
sector at a time
e Block size is a multiple of ¢ 3 Platters
sector size (fixed) Arm movement

_ (2 surfaces)
e Block address consists of:

+Physical device # (for multi disks)
+Cylinder #

eSurface # Arm assembl
eSector # y 9

1111 v

Disk Characteristics

CSD Univ. of Crete Fall 2014

Diameter: 1 - 15 inches Often different numbers
of sectors per track Sector
Cylinders: 100 - 2000 %

Gap

Surfaces: 1 (CDs) - many

4

Tracks/Cyl: 2 (floppies) - 30

\ Track

Sector Size: 512B - 50K

\o

—

Capacity: 360 KB (floppies) — 8TB

Block (typically

+Capacity of disk is a function of multiple sectors)

number of cylinders, number of tracks
per cylinder, and capacity of track

10

CSD Univ. of Crete Fall 2014

Disk Operation (Single-Platter View)

The read/write head

IS attached to the end

of the arm and flies over
the disk surface on

a thin cushion of air

The disk surface
spins at a fixe

d
rotational rate
/4
@
®

By moving radially, the
arm can position the
read/write head over
any track

11

CSD Univ. of Crete Fall 2014

Accessing a Disk Page

e Time to access (read/write) a disk block:
¢ seek time: Time it takes to reposition the

arm over the correct track ﬂ
e 4to 10 ms on typical disks BlgcK Wanted
¢ rotational latency: Time it takes for the
sector to be accessed to appear under

Initi ead

the head : : May have to wait for start of track|
*410 11 ms on typical disks (5400 to before we can read desired block
15000 rpm)
o transfer time rate: The rate at which data rack Start
can be retrieved from or stored to the disk
¢4 to 8 MB per second is typical
e Multiple disks may share a controller, M
so the rate that the controller can Hg; 2

handle is also important
e Seek time and rotational latency dominate BlocR We Warit

"9 CSD Univ. of Crete

Access

Fall 2014

Ime for the IBM Deskstar 14GPX

e 3.5 inch hard disk, 14.4 GB capacity

e 5 platters of 3.35 GB of user data each, platters rotate at 7200/min

e average seek time 9.1 ms (min: 2.2 ms [track-to-track], max: 15.5 ms)
e average rotational delay 4.17 ms

e data transfer rate 13 MB/s

® access timeg «g piock
e~9.1ms+4.17ms+1s/13 MB/8 KB ~ 13.87 ms

e Accessing a main memory location typically takes < 60 ns !!!

13

CSD Univ. of Crete Fall 2014

Arranging Pages on Disk

e Key to lower the duration and/or number of page transfers (1/O)

e DBMSs take the geometry and mechanics of hard disks into account

¢ Current disk designs can transfer a whole track in one platter
revolution, active disk head can be switched after each revolution

+ Blocks in a file should be arranged sequentially on disk (by ‘Next’) to
minimize average latency i.e., reduce seek/rotation delays!

e This implies a closeness measure (relative positioning): for data records
rl, r2 on disk to reduce the duration of 1/0Os
¢ Place rl and r2 inside the same block (single 1/O operation!)
¢ Place r2 inside a block adjacent to r1’'s block on the same track
¢ Place r2 in a block somewhere on r1’s track
¢ Place r2 in a track of the same cylinder than r1’s track
¢ Place r2 in a cylinder adjacent to r1’s cylinder

e For a sequential scan, pre-fetching several pages at a time is a big gain
to reduce the number of 1/Os (more latter) 14

CSD Univ. of Crete

Example

e Compute time taken to read a 2048000
byte file that is divided into 8000 256
byte records assuming the following disk
characteristics?

eaverage (random) seek time 18 ms
eotrack-to-track seek time 5 ms
erotational delay 8,3 ms

emaximum transfer rate 16,7 ms/track
ebytes/sector 512

esectors/track 40

eotracks/cylinder 11

eotracks/surface (cylinders) 1331

block X
In memory

Fall 2014

15

7% CSD Univ. of Crete Fall 2014

Example

e 1 track contains 40*512 = 20480 bytes
e File needs 100 tracks ~10 cylinders

e Store records randomly e Store records on adjacent cylinders
¢reading the file requires 4000 ¢ read first cylinder
random accesses (Why?) =18 + 8,3 + 11*16,7 = 210 ms
eeach access time & read next 9 cylinders
= 18 (average seek) + 8.3 =9*(5+8,3 +11*16,7) =
(rotational delay) + 0,4 (transfer 1773 ms
one sector) = 26,7 ms & total access time
¢ total access time = 1983 ms = 1,983 s
= 4000 * 26,7 = 106800 ms =
106,8 s

e Ideally, a request for a sequence of pages should be satisfied by pages
stored sequentially in disk

+ responsibility of the disk space manager 16

"% CSD Univ. of Crete Fall 2014

DBMS vs. OS File System

e The disk space manager is the lowest layer of the DBMS software
managing space on disk

e Operating systems (OS) does disk space but also buffer management
(more later)

+Why not let OS manage these tasks?

e In OS terminology a file (a document, a spreadsheet, an executable,
etc.) is simply a sequence of bytes

e |[n BDMS terminology, the term is used somewhat differently: Page or
block is OK when doing /O, but...

e¢higher levels of DBMS operate on records, and files of records (i.e.,

databases) which can’t span disks .

| ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Representing Data Elements

e Attributes are represented by fixed or variable
length sequences of bytes, called “fields”

e Fields are put together in fixed or variable ama 1]
length collections called “records” (i.e., tuples | o
or objects) Bral
e A collection of records forms a relation e P —

which is stored as a collection | TR—
et Table dirsctory block

of blocks called a “file Country | 6 St Lawrence

Fiver 4 Fioc Grande

P | = | =

e A block is a contiguous sequence [, S+ [7 cccords 73 bytescach Mississippi
of sectors from a single track il M
e#sizes range from 512 bytes to several KBs ey ——
e smaller blocks: more transfers from disk vereo Oy
e larger blocks: more space wasted due orawa [
to partially filled blocks [~

otypical block sizes today 4-16 KBs 18

CSD Univ. of Crete Fall 2014

Representing Data Elements

—8 —

e Ultimately, all data is represented as a sequence of bytes bits
e Integer (short): 2 bytes (~ -32000...+32000)
+€e.g., 351s | 00000000 || 00100011
e Integer (long): 4 bytes (~ -2x10°...+ 2x10%)
e Real, floating point (SQL FLOAT) 4 or 8 bytes
earithmetic interpretation by hardware
e Characters: various coding schemes suggested, most popular is ASCII
+Example: 8 bit ASCII
e Boolean: e.g., TRUE (1111 1111FALSE |0000 0000

e Dates, e.g.. Integer: # days since Jan 1, 1900
+8 chars: YYYYMMDD
o7 chars: YYYYDDD
+10 chars: YYYY-MM-DD (SQL2)

e Time, e.g. Integer: seconds since midnight
echars: HH:MM:SS[.FF...] (SQL2) 19

/9 CSD Univ. of Crete Fall 2014

Representing Data Elements

e Fixed-length character STRING is an array of n bytes

«If the value for the attribute is a string of length shorter than n, then the
array is filled with special pad character

e Variable-length character STRING
¢ Allocate array of n+1 bytes

+TWO common representations
e Length plus content 3/ cla|t

. First byte holds number of bytes in string
. Actual string cannot exceed n bytes (n < 255)
. Unused bytes in the array are ignored

e Null-terminated string clalt
. Allocate array of n+1 bytes
. Fill array with characters of string, followed by null character

20

f? i1 CSD Univ. of Crete
<.

Records

e System catalog (more latter)

¢e.g,. number of fields, field names and data types

o Fixed vs variable format records
e follow or not a given record schema

Fall 2014

¢ Information about field types common to all records in a file

. L Data Elements
e How to organize fields within a record ?
¢ Retrieve, modify fields in a record v
Records
e Main choices: '
. . Blocks
o Fixed vs variable length records
o fixed or variable size fields, repeated fields, etc.

Fil.es

Mengory

21

»@ i1 CSD Univ. of Crete Fall 2014

Fixed Length Records

F1 F2 F3 F4

~ L1 — L2 L3 L4

\ \

Base address (B) Address = B+L1+L2

e Fixed length representation
oEach field has fixed length
+Number of fields is fixed
+ Store fields consecutively

e Finding it field done via arithmetic
22

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Fixed Length Records: Example

e MovieStar relation
ename: 30 byte string of characters
eaddress: varchar(255)
egender: 1 byte
e¢birth-date: 10 byte

e Record of type MoveStar will take 30+255+1+10 = 296 bytes

name address gendenbirth-date

Field offset=0 30 285 286 296

23

CSD Univ. of Crete

Variable Length Records

e Fields whose size varies

¢E.g.,: address field of up
to 255 bytes

e Repeating fields

¢E.g.,: the set of movies in
which an actor appears in

e Enormous fields

¢E.qg.,: include picture of
the actor -GIF image

Mark end of attributes

Fall 2014

I 20 bytes* 10 bytes * 4 bytes*

Indicator of length

| l! 20 bitEJ \|_10 bytes

Record dictionary

Optional fields

e Variable format records

IA11

Al

A

¢E.g.,: some actors also
direct/produce movie

Combination of above

@ CSD Univ. of Crete Fall 2014

" Variable Length Records: Variable Length Fields

By eaen
/VERS

e Put all fixed-length fields ahead of the variable-length fields (# fields is
fixed):

Record fixed length fields
Length F1 F2 F3 F4 F5
I e —
g v J \\l/‘//'

Array of variable

length field offsets variable length fields

e Record header contains
¢Length of record
¢ Pointers to (or offsets of) the beginning of all variable length fields

e Offers direct access to ith field, efficient storage of nulls (special don't
know value); small directory overhead 25

| ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Variable Length Records: Example

e Example MovieStar relation
¢ name: variable length
¢ address: variable length
¢ gender: fixed length 4 bytes
¢ birth-date: fixed length 12 bytes

Record
Length

e_| e lgender birth-date| name | address
w

26

"% CSD Univ. of Crete Fall 2014

Variable Length Records: Repeated Fields

e Record contains a variable number of occurrences of a fixed-length field F
& Group all occurrences of F together
¢ Record header has a pointer to the first occurrence
+ Locate all occurrences of F as follows:
e Let the length of field F be L

e Add to the offset for field F all integer multiples of L, starting from O,
L, 2L, 3L etc

e Stop when offset of the field following F is reached

27

/9 CSD Univ. of Crete Fall 2014

Fixed vs. Variable Format Records

e Fixed format records

ofollow a given record schema that contains:
o # fields
e type of each field
e order in record
e meaning of each field

e Variable format records

+do not follow a fixed record schema (e.g., in information integration
and scientific applications)
¢Represented by a sequence of tagged fields (“self-description”)
e Attribute or field name

e Type of field, if it is not obvious from the field name or schema
Information

e Length of field

e Value of field 28

CSD Univ. of Crete Fall 2014

Variable Format Records: Example

e Example: MovieStar relation

¢ Some movie stars have information such as movies directed, former
spouses, restaurants owned etc

eUse single byte codes for various possible field names and types

|

NIS8B rad?Pitt|RS7|Grappas
“E’8£ c 85
S S o '5"3‘8’
S = =
L 5 U 5
o N X On
O —
§ 8 =X

s 9 o

O 0'8

) O S

29

"9 CSD Univ. of Crete

Fall 2014

Placing Records on Blocks

AMMIMIINY
DMANNNN

MANNNN

7777777772777

77777774 assume Variable
or fixed length records

blocks

_

/

a fileiC assume a single* relation

e Different options for record placement:
Separating records (by type)
Spanned vs un-spanned

Mixed record types — clustering

¢

L R R R R 4

Split records
Seqguencing
Addressing

30

9| CSD Univ. of Crete Fall 2014

Placing Records on Blocks

O Separating records:
block

R1 R2 R3

+Must use special marker or include record lengths/offsets within each
record or in block header

+No need to separate if records are of fixed length

31

"9 CSD Univ. of Crete Fall 2014

Placing Records on Blocks

® Spanned vs un-spanned
¢ Un-spanned: records are within one block but may waste space

block1 block2
7 7
R1 R2 // R3 |R4|R5
¢ Spanned: necessary when record size > block size
block1 block2
R1 R2 R e R4 | R5 R6

ﬂ (—bg\
e Bits to indicate record fragment, first or last fragment, pointer to next

¢ must indicate that a record is partially stored in a block and use a
pointer to the rest of it;

¢ must also indicate that a field is the continuation of another

32

7% CSD Univ. of Crete Fall 2014

Spanned vs un-Spanned: Example

e Need to store 10° records, each of size 2050 bytes (fixed) using block
size = 4096 bytes

block 1 block 2
Z Z
2050 bytes wasted 2046 2050 bytes wasted 2046
eTotal wasted = 2 x 10° (105+3) Block space utilization = 50%
eTotal space =4 x10° But... easy to find any record, since

spanned record# = block#
™

R1 R2 R2 R3 R4

2050 bytes 2046 bytes 4 bytes 2050 bytes 2042 bytes
Block space utilization = 100%

+#Blocking factor is the number of logical records included in a single
read or write operation aka a block 33

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

® Mixed record types: records of different types allowed in the same block
¢E.Q.

Movie| ml Actor| al Actor| a2

+Why would we want to mix them?

e Clustering: Records that are frequently accessed together should
be in the same block

+Compromise: don’'t mix them but keep them on the same disk cylinder

+Deciding whether to cluster or not presupposes knowledge about the
expected types of queries

34

Ve CSD Univ. of Crete

Fall 2014

Placing Records on Blocks

® Split records: used for hybrid formats

¢ Fixed part in one block
¢ Variable part in another

Block with variable records

R1(a) +—

R2 (a),

N\

\

R1 (b)

Block with fixed records

This block also
has fixed records

35

/911 CSD Univ. of Crete Fall 2014

Placing Records on Blocks

® Seqguencing: order records in file (and block) by some key value
+Why do sequencing?

e Typically to make it possible to efficiently read records in order
(e.g., to do a merge-join)
+Options for sequencing:

e Next record physically contiguous R1 Next (R1)
/ ™\
e Linked R1 7| INext (R1)| /
e Overflow area healglle ri
R2.1
R2
R1.3
it R4.7
R4 '
RS 36

® Addressing
¢ How does one refer to a record?

CSD Univ. of Crete Fall 2014

Placing Records on Blocks

RX

DB address: physical location on secondary storage by using
record address (<device 1d, cylinder#, track#,
block#, record-offset in block>)

Memory address: record location when loaded into (main or virtual)
memory (full indirection) by using an arbitrary byte string

map
rec ID
\ =
r Rec ID Pg‘&%ﬁa —__, address
a

¢ Which one to use, and when?

Tradeoff: Flexibility to move records (for deletions, insertions) vs.
cost of indirection

CSD Univ. of Crete

Pointer Swizzling

e First Option

Fall 2014

o For all records copied to memory use a map that contains records

containing the record address
Translation DB Addr |Mem Addr

Table Rec-A Rec-A-inMem

e Another Option
oln/memory pointers - need “type” bit

to disk Memory Disk
<
M | to memory block 1 ﬁ\\
N— N
e Swizzling \
esAutomatic ("eager) @ _ v ~.
sOn-demand ("lazy”) POk 2 Rec A Rec

+No swizzling / program control

block 1

block 2

38

CSD Univ. of Crete Fall 2014

Record Deletion

e When a record is deleted the following options are available:
¢ Immediately reclaim space
¢ mark as “deleted” (may need a chain of deleted records for reuse)
e Need a way to mark (special characters, deleted field, in map)

e Many tradeoffs to consider:

¢ How expensive is to move valid record to free space for immediate
reclaim?

¢ How much space is wasted? Block
e Problem with dangling pointers. Solutions?

©® Do not worry about it

® Use a special mark (tombstone) in old location or in map 39

f;;, CSD Univ. of Crete

Record Insertion

Fall 2014

e If records are not in sequence, insert new record at end of file (last
block) or in deleted slot

¢ Not as easy If records are of variable size

e |f records are in sequence, use nearby free space or overflow area
But...
¢ How much free space to leave in each block, track, cylinder?
¢ How often do | reorganize file + overflow?

40

CSD Univ. of Crete Fall 2014

Block Header

Header Record directory

\ &~ 1/

block ’
Fixed vs Variable
R¢

Fragment Size
!/I¥3 >
RO R1) Data space

Free space

AN

e Block (Page) is a collection of slots each containing a record
e Header data describing block may contain:

oFile ID (or RELATION or DB ID); the ID of this block — Record
directory; Pointer to free space

¢ Type of block (e.g., contains records of type 4; is overflow, ...)
+Pointer to other blocks “like it” (say, if part of an index structure)
o Timestamp ... H

3 @‘fa CSD Univ. of Crete Fall 2014

Block (Page) Formats: Fixed Length Records

| .
Slot 1 block i)+ 1
Slot 2 Slot 2
Free
Space
Slot N / Slok N
Slot M
N~ 1. . [O[1j1 M —
number M.. 321 number

PACKED of records UNPACKED, BITMAP of slots
e Organize free and data space into fixed size fragments (slots)

e Packed: moving records for free space management (to keep records
contiguous) or for sorting them, changes the rid <page#, slot#>

emay not be acceptable
e Bitmap: If slot i is free the 1ith bit of the header is set to 0, otherwise 1
e In both cases we have positioned the page header at the end of its page®

|\ CSD Univ. of Crete
e

~ Block (Page) Formats: Variable Length Records

Block i _
Rid = (i,N)

“~ length = 20 —

Rid = (i,2)

Rid = (i,1)

Data

Space

(— length=24 "

-

N

Free
Space

\

N

20

N

N
SLOTTED ORGANIZATION™

e Organize free and data space into varia
¢To get rid of holes produced by deletions compact the remaining

16 | 24
2 L

SLOT {RECTORY

slo

e
ts

Fall 2014

Record
offsets
from start
of data
space

Pointer
to start
of free
space

e size fragments (slots)

records to maintain a contiguous area of free space on the page

e Slotted: we can move records on page without changing rid <page#,
record_index> (indirection); so, attractive for fixed-length records too

eRecord (slot) directory entries: <record-offset, record-1lengths

CSD Univ. of Crete Fall 2014

File Structure

o File
+Collection of pages (blocks), each containing a collection of records

e File structure must support
e¢insert / delete / modify record
eread a particular record (specified using rid)

¢scan all records (possibly with some conditions on the records to be
retrieved)

e Many alternatives exist, each good for some situations, and not so good
In others:

oHeap files: Suitable when typical access is a file scan retrieving all
records

o Sorted (Sequential) Files: Best for retrieval in search key order, or
only a ‘range’ of records is needed (more latter)

eHashed Files: Good for equality selections (more latter) 44

"9 CSD Univ. of Crete Fall 2014

Unordered (Heap) Files

e Simplest file structure contains records table
In no particular order N " 3

e As file grows and shrinks, disk pages 10 “abc - 32.3
are allocated and de-allocated 11 | "bcdc” | 100.45

e To support record level operations, we
must:

¢ keep track of the pages in a file

heap file

¢ keep track of free space on pages | (10 "abc”32.3)
keep track of the records on a page |(11,”bcdc”100.
45)

e There are many alternatives for keeping | **
track of this

¢ We’'ll consider two

disk page disk page 4

"% CSD Univ. of Crete Fall 2014

Heap File Implemented as a List

N N N 7Y

Data Data Data F;J” Pages
Page Page Page

Data Data Data)
- Page Page Page

N A AN
e DBMS allocates a free page (the file header) and writes an appropriate
entry <heapFileName, headerPageID> to a known location on disk;

¢ Database “catalog”
e Header page is initialized to point to two doubly linked lists of page ids
+ Initially, both lists are empty

e Scan several pages on free list before finding one with enough free
space to insert a record

Pages with
Free Space

46

CSD Univ. of Crete Fall 2014

Heap File Implemented as a List

e For insertRecord(f, r):

otry to find a page p in the free list with free space > |r |; should this fall,
ask the disk space manager to allocate a new page p

erecord r is written to page p

e¢since generally |r | << |p], p will belong to the list of pages with free
space

¢a unique rid for r is computed and returned to the caller
e For openScan(f):
+both page lists have to be traversed
e A call to deleteRecord(f, rid)
emay result in moving the containing page from full to free page list,

¢0r even lead to page deallocation if the page is completely free after
deletion

e Finding a page with sufficient free space is an important problem to solve

+How does the heap file structure support this operation? (How many
pages of a file do you expect to be in the list of free pages?)

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

| Heap File Using a Page Directory

am | Data
Header AN Page 1
Page \ >
< \\ Data
k Page 2
- I
Data
Page N
DIRECTORY 2

e DBMS maintains information on the first directory page for each heap file

+Each entry in a directory page can include the number of free bytes
available on the page <PagelD, nfree>

e The directory is a collection of pages; linked list (LL) implementation is
just one alternative

+Much smaller than LL of all HF pages! |page directory| << |data pages}

"9 CSD Univ. of Crete Fall 2014

Data Dictionary

e Data dictionary (also called system “catalog”) stores metadata: that is, data
about data, such as

sinformation about relations
e names of relations
e names and types of attributes
e physical file organization information
e statistical data such as number of tuples in each relation
eintegrity constraints
eVview definitions
euser and accounting information
sinformation about indices
e Catalog structure: can use either
#specialized data structures designed for efficient access

+a set of relations, with existing system features used to ensure efficient
access

e the latter alternative is usually preferred ©

CSD Univ. of Crete Fall 2014

Disk Space Manager

It is the lowest DBMS software layer supporting the concept of page as a
unit of data: accessing one disk block is one seek

+ Many files will be stored on a single disk

Higher DBMS software levels call upon this layer to:
¢ allocate/de-allocate a page
¢ read/write a page

Best if a request for a sequence of pages is satisfied by pages for a file
stored as a contiguous sequence of blocks on disk!

+ Higher levels don’t know how this is done, or how free space is
managed

¢ Though they may assume sequential access for files!
e Hence disk space manager should do a decent job
. Disk space is effectively utilized
. Files can be quickly accessed 50

CSD Univ. of Crete Fall 2014

Disk Space Management

® TwoO ISSues:
+Management of free space in a disk
e System maintains a list of free pages (blocks)
. keep a pointer to the first free block in a known location on disk

. when a block is no longer needed, append/prepend this block to
the free block list for future use

. next pointers may be stored in disk blocks themselves
e Implemented as bitmaps or linked lists

. reserve a block whose bytes are interpreted bit-wise (bit n = O:
block n is free)

. toggle bit n whenever block n is (de-)allocated
¢ Allocation of free space to files
e Granularity of allocation (blocks, clusters, extents)
e Allocation methods (contiguous, linked)

. Subsequent deallocations and new allocations however will, in

general, create holes >

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014
o~ 8

Bitmap of Free Blocks (Pages) on Disk

e A bitmap is kept for all blocks in the disk
oEach block is represented by one bit
e If a block is free, its corresponding bitis O
e If a block is in use, its corresponding bitis 1
+To allocate space, scan the bitmap for Os

e Free block bitmaps allow for fast identification of contiguous
sequences of free blocks

e Example: Consider a disk whose blocks 2, 3, 4, 5, 8, 9, 10,
11, 12, 13, 17, etc. are free
¢ The bitmap would be 110000110000001. ..

— T
— I

o RERE [

A ‘?@ i1 CSD Univ. of Crete Fall 2014

Link Lists of Free Blocks (Pages) on Disk

e Link list of all the free blocks

+Each free block points to the next free block

+DBMS maintains a free space list head (FSLH) to the first free block
e To allocate space

e¢look up FSLH

ofollow the pointers

eoreset the FSLH

AN IER N _Jn-
|10 -] 11 12 'J

53

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Contiguous Block Allocation

e Each file occupies a set of contiguous block addresses

e Efficient access
+At most only one track-to-track movement for sequential accesses
+Minimal head-movement (seek time) for random accesses

e External fragmentation
+0Only contiguous blocks can be allocated
¢ Limited file growth/shrunk

e Periodic compaction of disk space
+#Disk is reorganized to group all free space as a single chunk
+Prevent poor space utilization of disk space

¢ Cost: time
54

"% CSD Univ. of Crete Fall 2014

Linked Block Allocation

e Each file is a linked list of disk blocks
+Blocks may be scattered anywhere on disk
¢ A directory contains a pointer to the first block of a file

e Example: A file of 5 blocks starts at block 9, continues at blocks 16, 1,
10 and 25

¢Each block contains a pointer to the next block

Directory block9 block16 block 1
file start 16 » 1 » 0

fileF 9

— I—' |25 = __L
block 10 block 25 ==

e No external fragmentation

o Facilitates file growth/shrunk
e Poor random access performance

55

CSD Univ. of Crete Fall 2014

Buffer Manager

e The buffer manager enables the higher levels of the DBMS to assume that
the needed data is in main memory

+Manages buffer pool: the pool provides space (called frames) for a
limited number of pages from disk

e |f the block is already in the buffer:

othe requesting program is given the address of the block in main
memory

e Otherwise:
O The buffer manager allocates space in the buffer for the block
e discard some other block, if necessary for space

e the block that is thrown out is written back to disk if it was modified
since the last time it was fetched

®The buffer manager reads the block from the disk to the buffer
e Passes the address of the block in main memory to requester 56

%1 CSD Univ. of Crete Fall 2014

Buffer Manager

e Buffer pool information table
contains tuples of the form:
<frame#, page#, pin_count, dirty>

e If requested page is not in pool:
+Choose a frame for replacement:

only “unpinned” pages are BUFFER POOL1
candidates!

Page Requests from Higher Levels

oIf frame is “dirty”, write it to disk N
_ disk pag
+Read requested page into chosen /R/

frame, pin it and return address free franle

e Page in pool may be requested _MAIN MEMORY

several times: .
¢a pin_count is used, to pin a DISK B j
page, pin_count++
+a page is a candidate for choice of frame dictated
replacement iff pin count == by replacement policy

57

(“unpinned”)

CSD Univ. of Crete Fall 2014

Buffer Manager

Sometimes it is useful to pin blocks to keep them available during an
operation and not let the replacement strategy touch them

¢a pinned block is a memory block that is not allowed to be written
back to disk

Requestor of page must eventually unpin it, and indicate whether page
has been modified:

o dirty bit is used for this
Buffer frame is chosen for replacement by an appropriate policy:

¢ Least-recently-used (LRU), Most-recently-used (MRU), Clock, First In
First Out (FIFO), Random, etc.

Replacement policy can have big impact on the # of I/O’s

+If requests can be predicted i.e., access patterns, (e.g., sequential
scans) pages can be pre-fetched (several pages at a time)

Concurrency control and recovery may entail additional /O (forced
output) when a frame is chosen for replacement

¢ \Write-Ahead Log protocol >

"9 CSD Univ. of Crete Fall 2014

Least Recently Used Replacement Policy

e LRU Strategy:
¢ Buffer blocks not used for a long time are less likely to be accessed
¢ Past usage often predicts future
e Rule: Throw out the block that has not been read or written for the longest
time
ofor each page in buffer pool, keep track of time when last unpinned
eoreplace the frame which has the oldest (earliest) time
every common policy: intuitive and simple
e Works well for repeated accesses to popular pages
e Problem: Sequential flooding
+LRU + repeated sequential scans of the same table (e.g., nested-loop
joins)
eo#buffer frames < #file pages means each page request
causes an I/O

+¢Is MRU better in this scenario? 59

CSD Univ. of Crete Fall 2014

Most Recently Used Replacement Policy

e Toss-immediate Strategy:

o If iterating through table, then most recent buffer block will be unused
the longest (works very well with joins)

e Rule: Free the space occupied by a block as soon as the final tuple of that
block has been processed

¢ System must pin the block currently being processed

o After the final tuple of that block has been processed, the block is
“unpinned”, and it becomes the most recently used block

e Buffer manager can use statistical information regarding the probability that
a request will reference a particular relation

#E.g. the data dictionary is frequently accessed
e Heuristic: always keep data dictionary blocks pinned in main memory

+if several pages are available for overwrite; choose the one that has the
lowest number of recent access requests to replace 5

CSD Univ. of Crete Fall 2014

“Clock”™ Replacement Policy

e “Clock” Strategy:
+An approximation of LRU

¢Arrange frames into a cycle (current++), store one reference bit
(ref_b1it) per frame

e Can think of this as the second chance bit A(1)
+When pin_count reduces to 0, turn on reference bit
+When replacement necessary D(1) B(0)
do for each page in cycle { C(1)

1f (pin_count == 0 && ref_bit 1s on)
turn off ref_bit;

else 1if (pin_count == 0 && ref_bit is off)
choose this page for replacement;

} until a page i1s chosen;
61

f? i1 CSD Univ. of Crete
<.

“Clock”™ Replacement Policy

before FIE(N4) is requested
(nd) o |bg| .

|t:?|':'

|n1|l:l

Elock nl replaces block b1.

Fall 2014

62

@ il CSD Univ. of Crete Fall 2014

Criteria of Buffer Replacement Policies

Criteria Age of page in buffer

since last ref. total age

Random

LRU
References | last CLOCK
GCLOCK(V1)

GCLOCK(V2)
pGcLock FRD(VL)
LRD(V?2)

LFU

63

@ CSD Univ. of Crete

LRU
A
A.>§ A\\“
—» \
Bl > B B\\&
refto A refto C
in buffer not in buffer
LFU
2
victim 1
page /3
or 3
\ 6
1
3
LRD(V1) rc age
victim
page / 3|26
1140
. \ 345
315
E@ 512
1137
317

FIFO

]

]
[]
[]

]
—_— [|

CLOCK

("Second

[]
]

"used" bit

o |

Chance")

of |

L1 e []

ol |

i

— 01

=01

GCLOCK
possibly initialized
with weights

o]
—o[[]
—2|3

0 ref count

e |

—>
v -

= 1| 2

Fall 2014

Schematic Overview of Buffer Replacement Policies

64

CSD Univ. of Crete Fall 2014

Buffer Management

e Existing OS affect DBMS operations by:
oread ahead, write behind
e uniform replacement strategies (DBMS is just an OS application!)
+Unix is not good for DBMS to run on top
+Most commercial DBMS implement their own I/O on a raw disk partition

e DBMS buffer management is more tricky
+More semantics to pages: pages are not all equal
+More semantics to access patterns: queries are not all equal

+More concurrency on pages: often prescribe the order in which pages
are written back to disk

s Facilitates prefetching: on-demand(asynchronous),heuristic(speculative)

e Variations of buffer allocation
+common buffer pool for all relations
e+ separate buffer pool for each relation
+as above but with relations borrowing space from each other
eprioritised buffers for very frequently accessed blocks (data dictionary)s

Virtual Memor

CSD Univ. of Crete Buffer Management (DBMS) VS.

0S

Fall 2014

e Goal in both cases: provide access to more
data than will fit in main memory

+Page access patterns in DBMS can often

query plan
interpreter

1

be predicted (vs. In OS) e.qg., in a query

record
fnanager

¢ Pre-fetching of pages based on well-
defined access patterns

e Wwhen the buffer manager receives
requests for (single) page(s), it may
decide to (asynchronously) read ahead

2

buffer paol

e reading contiguous page blocks is
faster (vs. reading the same pages at

buffer

manager

different times as per several requests

WAL (Write-Ahead Log) protocol required
by DBMS for crash recovery

e forces some buffer pages to be written
In the disc before others in order to
Implement the WAL protocol

)

secandary
starage

66

CSD Univ. of Crete Fall 2014

Double Buffering

If the DBMS uses it's own buffer manager (within the virtual memory
of the DBMS server process), independently from the OS VM
manager, we may experience the following:

Virtual page fault: page resides in DBMS buffer. However, frame has
been swapped out of physical memory by OS VM manager

+An |/O operation is necessary that is not visible to the DBMS

Buffer fault: page does not reside in DBMS buffer, frame is in physical
memory

¢Regular DBMS page replacement, requiring an 1/O operation

Double page fault: page does not reside in DBMS buffer, frame has
been swapped out of physical memory by OS VM manager

¢ Two I/O operations necessary: one to bring in the frame (OS);
another one to replace the page in that frame (DBMS)

=> DBMS buffer needs to be memory resident in OS

67

CSD Univ. of Crete Fall 2014

Summary

Disks provide cheap, non-volatile storage:
+Random access
+Cost depends on location of page on disk
+Goal: arrange data sequentially to minimize seek and rotation delays

Blocks:
+a fixed-length unit for storage allocation and data transfer
edatabase files are organized into blocks

Block Transfers

eWant to minimize the number of block transfers between disk and
memory

+Keep as many blocks as possible in main memory
Buffer

e+ portion of main memory available to store copies of disk blocks
Buffer Manager

+subsystem responsible for allocating buffer space in main memory

68

CSD Univ. of Crete Fall 2014

Summary

e Record format:

¢ Variable length record format with field offset ...
directory offers support for direct access to N e
i'th field and null values]
e Page format: =2

¢ Slotted page format supports variable length . AN,
records and allows records to move on page L l\ — L,
. Y SN
® Flle StrUCture Halation Spaces L 1 L r\a:
oLinked list or page directory structure to VAN
keeps track of pages in the file and pages AL

Page Set | | |

with free space AN

e Disk Manager: "m
+Bitmap or linked list to keep track of free Disk Blocks w

blocks on disk

+Contiguous or linked allocation of free blocks
69

ff;,, CSD Univ. of Crete

Summary

e There are 10,000,000 ways to
organize the data on disk

e Which one is right? Issues:

Flexibility Space Utilization

mplexity><>erferance

e To evaluate a specific strategy,
compute:

¢ expected space usage

¢ expected time to: fetch record
given key, fetch record with
next key, insert record,
append record, delete record,
update record, read all file,
reorganize file

Co

The BIG picture...

Query Optimization
and Execution

Fall 2014

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

70

f? i1 CSD Univ. of Crete

e Based on slides from:

References

¢R. Ramakrishnan and J. Gehrke

oH. Garcia Molina
+¢J. Hellerstein
oL. Mong Li

+P. Kilpelainen
oM. H. Schaoll

Fall 2014

71

TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= -]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang

XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong

2NMEIWMAT

2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.

2NUEIWHA AVO@POpPAC

Copyright Mavemotmuio Kpntng, Anuntpng TllAegoucdAkng. «ZuoTAMATA
Alaxeipiong Bacswv Aedopévwy. AildAeén 1n: Data storage, Record and
file structures». 'Ekdoon: 1.0. HpdakAeio/P£Buuvo 2015. AiaBéoipyo atrd 1n

dIkTuakn dleuBuvaon: http://www.csd.uoc.gr/~hy460/

