
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 

Συστήματα Διαχείρισης 

Βάσεων Δεδομένων 
Διάλεξη 2η: Access methods, File 

organization, B+Tree 

 
Δημήτρης Πλεξουσάκης 

Τμήμα Επιστήμης Υπολογιστών 



1

CSD Univ. of Crete Fall 2014

ACCESS METHODS: FILE 
ORGANIZATIONS, B+TREE



2

CSD Univ. of Crete Fall 2014

File Storage

 How to keep blocks of records on disk files

but must support operations:

 scan all records

 search for a record id (“RID”)

 insert new records

 delete old records

A whole set of
records in a file

Page 1

Page 2

Data is stored 
and retrieved 
in the units of
pages/blocks

Memory

I/O Cost

Disk



3

CSD Univ. of Crete Fall 2014

Alternative File Organizations

 Many alternatives exist, each ideal for some situation, and not so good in 

others:

Heap Files: Suitable when typical access is a file scan retrieving all 

records

Sorted Files: Best if records must be retrieved in some order, or only 

a `range’ of records is needed

Hashed Files: Good for equality selections

File is a collection of buckets

 Bucket = primary page plus zero or more overflow pages

Hashing function h:

 h(r) = bucket in which record r belongs

 h looks at only some of the fields of r, called the search fields



4

CSD Univ. of Crete Fall 2014

 Heap (or Pile) Files: Place records in the order they are inserted

 New records inserted at the end of the file

S6

S1

S5

S2

studno name
Insertion efficient

Deleting expensive reorganisation &
fragmentation

Searching expensive linear n/2

Retrieval
in order

expensive sort

File Organization: Unordered Records



5

CSD Univ. of Crete Fall 2014

File Organization: Ordered Records

 Sorted (or Sequential) Files: Physically order the records of a file on disk 

based on values of one of the fields — ordering field / ordering key

S1

S2

S4

S6

S10

Insertion expensive reposition

Deleting expensive reorganisation &
fragmentation

Searching on
ordering key

more
efficient

binary log2(n)

Searching on
non-ordering
key

expensive linear n/2

Retrieval in
order of
ordering key

efficient no sort

studno name



6

CSD Univ. of Crete Fall 2014

File Organization: Ordered Records 

with Overflow Blocks

studno name

S1

S8

S7

S4

S2

S202

S201

S200

block 1

block 2

block N

overflow block

 Insertion is expensive: records 
must be inserted in the correct 
order

 must locate the position in the 
file where the record is to be 
inserted

 if there is free space insert 
there

 if no free space, insert the 
record in an overflow block

 It is common to keep a separate 
unordered overflow (or transaction) 
block for new records to improve 
insertion efficiency

 this is periodically merged with 
the main ordered file



7

CSD Univ. of Crete Fall 2014

File Organization: Hashed Records

 Hashed Files: The record with hash key value K is 

stored in bucket i, where i=h(K), and h is the 

hashing function

 Blocks containing data can be viewed as 

buckets

 Collisions occur when a new record hashes to a 

bucket that is already full

 An overflow file is kept for storing such records

 Overflow records that hash to each               

bucket can be linked together

 Overflow handling in dynamic databases: 

 open addressing or chaining (closed hashing)

 Hashing can be used not only for file organization, 

but also for index-structure creation (more latter)

Hashed 

Key

Values

0 R1, R10

1 R1, R100, 

R37

... R1, R2

R64, R5

Hash Function Key

Primary 
bucket

Overflow



8

CSD Univ. of Crete Fall 2014

Cost Model for Analysis

 We ignore CPU costs, for simplicity:

B:  The number of data blocks (pages) in a table

R:  Number of records per block in a table

D:  (Average) time to read or write disk block

Measuring number of block I/O’s ignores gains of pre-fetching and 

sequential access;

 thus, even I/O cost is only loosely approximated   

Average-case analysis;

 based on several simplistic assumptions

 Good enough to show the overall trends!



9

CSD Univ. of Crete Fall 2014

Assumptions in Analysis

 Single record insert and delete

 Heap Files:

Equality selection on key; exactly one match (scan ½ file on average)

Range search requires scan entire file since unordered

Insert always at end of file (load last page, add, write out)

Delete anywhere in the file (find page, delete record, write out)

 Sorted Files: 

Selections on sort field(s), no overflow blocks for sorted files

Range search requires find first, then sequentially retrieve

Insert and delete in middle of file

Files compacted after deletions or reordered after insertions (read in 
remaining 0.5B pages, adjust, then write out)

 Hashed Files: 

No overflow buckets, 80% page occupancy



10

CSD Univ. of Crete Fall 2014

Cost of Operations 

Delete

Insert

Range 
Search

Equality 
Search

Scan all 
records

Hashed FileSorted FileHeap File

BD BD 1.2BD

0.5BD D (log2 B) D

BD 1.2BDD (log2 B + # of 

pages with matches)

2D 2D

2DSearch + 2D Search + BD

Search + 

2 (0.5 BD)



11

CSD Univ. of Crete Fall 2014

Single Record and Range Search

 Single record retrieval

“Find student name whose #AM = 
1487”

 Range queries

“Find all students with grade < 3.0”

 Sequentially scanning of file is costly!

 If data is in sorted file

 Binary search to find first such student

 Scan to find others

 Cost of binary search can still be quite 
high

Query Optimization
and Execution

Files and Access Methods

Buffer Management

Disk Space Management

DB

The BIG picture…



12

CSD Univ. of Crete Fall 2014

What is an Index?

 Databases tend to be very large: millions or billions of records

 Answers to ultimate queries tend to be small

How to locate required records efficiently?

 Index: Data structure for locating efficiently records with given search key 

value

Also facilitates a full scan of a relation if records not stored on physically 
consecutive blocks

 An index on a file speeds up selections on the search key fields for the 
index

Any subset of the fields of a relation can be the search key for an index 
on the relation

Search key is not the same as key (minimal set of fields that uniquely 
identify a record in a relation)

? value

record



13

CSD Univ. of Crete Fall 2014

Indexes

 An index is a collection of data 
entries that supports efficient 
retrieval of all data entries k* with a 
given key value k

 Two issues:

What is stored as a data entry k*
in an index ?

How are data entries organized 
(index structure)?

 Three main alternatives:

Actual data record with 
search key value k
<k, rid of data record 
with search key value k>
<k, list of rids of data 
records with search key 
value k>

Directory

Data

Directory

(key, rid) pairs

Data

Directory

(key, list of rids) pairs

Alternative 

Alternative 

Alternative 



14

CSD Univ. of Crete Fall 2014

Index Data Entry k*

 Alternative :

Index and data records stored together

A special file organization for data records

Heap or sorted or hash file organization

This alternative saves pointer lookups but can be expensive to 
maintain with insertions and deletions

At most one index on a given collection of data records can use Alt 

Otherwise, duplicate data records, leading to redundant storage and 
potential inconsistency

Rest of the index use Alternative  or 
 Alternatives  and :

Index data entries point to data records
Typically much smaller than data records (easier to maintain)

Alternative  better space utilization than Alternative 
But leads to variable sized data entries depending on the number 

of data records with a given search key value
Even worse, for large rid lists the data entry would have to span 

multiple blocks!



15

CSD Univ. of Crete Fall 2014

Example

 On Left :  Data stored in file hashed on age
 Alternative : Data entries are actual data records

 Hash function identifies page on which record lies.; no index used

 On Right:  Heap file with Unclustered Hash Index on sal
 Alternative :  Data entries are <sal,rid> pairs (with rid shown as 

arrow in figure)

 Hash function identifies appropriate bucket

No ordering No ordering



16

CSD Univ. of Crete Fall 2014

Index Data Entry k*

 Choice of alternative for data entries is orthogonal to the index structure
used to speed up searches for data entries with a given search key value

 Index structures:

 Tree-structured indexing

 Hash-based indexing

 What kinds of selections do they support?

Selections of form field <op> constant

Equality selections (op is =)

Range selections (op is one of <, >, <=, >=, BETWEEN)

More exotic selections:

 2-dimensional (or n-dimensional) ranges (“east of Chania and west 
of Heraklion and North of Plakias and South of Spili”)

 2-dimensional (or n-dimensional) distances (“within 2 miles of 
Heraklion”)

Ranking queries (“10 restaurants closest to Knossos”)

Regular expression matches, genome string matches, etc.

One common n-dimensional index: R-tree



17

CSD Univ. of Crete Fall 2014

Index Classification

 Primary vs. Secondary indexes:

An index is called primary if the search key is a set of fields that 
includes the primary key

Usually implemented using Alternative 

An index is called unique if the search key contains a candidate key

No duplicates in the data entries

 In general, secondary index usually contains duplicates

 Secondary indexes facilitate the answering of queries involving conditions 
on fields other than the primary key

Secondary indexes do not determine the location of records (i.e., 
blocks) since these are organized according to primary indexes

Alternatives  and  are not suitable for secondary indexes since they 
do not (explicitly, at least) allow for duplicate entries

 Typically, a relation has a primary index on its key attributes



18

CSD Univ. of Crete Fall 2014

Primary Index on a Key Field

Data File

Index File

Data file could be physically 

ordered on a key field 

(ordering key field)

S1  

S11  

  

  

  

S599  

  
 

 

 

studno name hons tutor year 

s1 jones ca vassilis 2 
s2 brown cis dimitris 2 
     
s10 smith cs grigoris 2 
     

s11 bloggs ca grigoris 1 
s12 jones cs nikos 1 
     
s20 peters ca panos 3 
     

s501 smith cs vassilis 3 
s502 patel cis aggelos 3 
     
s508 jones cs aggelos 1 
s599 gower cis nikos 2 
 

Alternative  sparse

Ordering 
key value

Block 
pointer

Block 
anchor

Primary key field



19

CSD Univ. of Crete Fall 2014

Secondary Index on a Non-Key Field

Dept Name Staffno 

3   

5   

1   

6   
 

 
2   

3   

4   

8   
 

 

6   

8   

4   

1   
 

 

6   

5   

2   

5   
 

 
5   

1   

6   

3   
 

 

1  

2  

3  

4  

5  

6  

8  
 

 

   

   

   
 

 

   

   

   
 

 

   

   

   
 

 

   

   

   
 

 

   

   

   
 

 

   

   

   
 

 

   

   

   
 

 

Field 
value

Block 
pointer

Blocks of record pointers Data File

Search field
Index File

Alternative 
dense

Index file could 

be physically 

ordered on a 

search key field 



20

CSD Univ. of Crete Fall 2014

Index Classification

 Clustered vs. Unclustered indexes:

An index is clustered if the order of data 
records in a file is the same as or `close to’ 
the order of data entries in the index

An index is clustered if

 It uses Alternative  (by definition)

 It uses Alternative  or  and the data 
records are sorted on the search key

 Clustered:  file can be clustered on at most one 
search key (usually primary index)

Cost of retrieving data records through index 
varies greatly based on whether index is 
clustered or not!

 Unclustered: file does not constrain table 
organization (usually secondary index)

There might be several unclustered indexes 
per table

Records

Records

Physical ordering
of data or index file
on disk



21

CSD Univ. of Crete Fall 2014

Clustered Index

Data file is physically ordered on a non 

necessarily key field (clustering field)

Index File

Data File

year name hons tutor studno 

1     

1     

1     

2     

     
     

2     

2     

3     

3     

     
     
     

3     

3     

3     

3     
 

1  

2  

3  
 

 

 To build a clustered index:

Sort the records in (heap) file on 
the index search key

Leave some free space in each 
page to absorb future insertions

Alternative  sparse

Clustering 
field value

Block pointer



22

CSD Univ. of Crete Fall 2014

Separate blocks for each group of records 
with the same cluster field value

Index File

Clustered Index with Separate Blocks

1  

2  

3  
 

 

year name hons tutor studno 

1     
1     
1     
     

     

 Block pointer   

     

2     
2     
2     
2     

 Block pointer   

     

2     
2     

     

     

 Block pointer   

     

3     
3     
3     
     

 Block pointer   
 

 If free space is used up 
subsequently, further insertions to 
the page is handled using a linked 
list of overflow pages

Need to reorganize file periodically 
to ensure good performance

 Clustered index is efficient for range 
searches but expensive to maintain

Alternative  sparse

Clustering 
field value

Block pointer

Data File



23

CSD Univ. of Crete Fall 2014

 Data file has 10.000 pages, 100 rows in range

 Page transfers for rows (assuming 20 rows/page):

 Heap:  

 10.000 (entire file must be scanned)

 File sorted on search key: 

 log2 10.000 + (5 or 6)  19

 Unclustered index: 

  100

 Clustered index:  

 5 or 6

 Page transfers for index entries (assuming 200 entries/page)

 Heap and sorted: 0

 Unclustered secondary index:  1 or 2 (all entries for rows in the requested 

range must be read) 

 Clustered secondary index:  1 (only first entry must be read)

Example - Cost of Range Search



24

CSD Univ. of Crete Fall 2014

Index Classification

 Dense vs. Sparse indexes:
An index is dense if it contains at least one data 

entry for every search key value
Alternative  always leads to build dense 

index
Alternative  can be used to build a dense   

or sparse index
 several data entries can have same 

search key value if there are duplicates
Alternative  can be used to build a dense 

index 
An index is sparse if it contains one data entry   

for each records’ page in the data file
 indicates the block of records, so

 sparse indexes take less space
 index scanning is faster
 but...no existence test based on the index

 A file can have one sparse index and many dense 
indexes, because a sparse index relies on a unique 
physical ordering (clustering) of the data file on disk

P1 PiP2

record
record

record

Pointers are 

associated 

to pages

Pointers are 
associated
to records



25

CSD Univ. of Crete Fall 2014

 9   

 5   

 13   

 8   
 

 

 6   

 15   

 3   

 17   
 

 

 19   

 11   

 16   

 2   
 

 

 7   

 10   

 20   

 1   
 

 

 4   

 12   

 18   

 14   
 

 

1  

2  

3  

4  

5  

6  

7  

8  
 

 

17  

18  

19  

20  

  
 

9  

10  

11  

12  

13  

14  

15  

16  
 

 

Field 
value

Block pointer
Index File Data File

Dense Secondary Index on a non-ordering Key Field

Alternative 



26

CSD Univ. of Crete Fall 2014

Example

Sparse Index
on Name

Data File

Dense Index
on Age

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass
Smith

22

25

30

40
44

44

50

33

Bristow, 30, 2007
Basu, 33, 4003

Cass, 50, 5004

Tracy, 44, 5004

Daniels, 22, 6003

Jones, 40, 6003

Alternative  Alternative 

 On Left: same order of index data entries and records in the file

 Primary, Clustered, Sparse index on Name

 On Right: different order of index data entries and records in the file

 Secondary, Unclustered, Dense Index on Name



27

CSD Univ. of Crete Fall 2014

Index Classification

 Composite Index (also called a concatenated index): is an index that 
you create on multiple fields in a table

Fields in a composite index can appear in any order and need not be 
adjacent in the table

 Composite Search Keys: Search on a combination of fields

Equality query: Every field value is equal to a constant value e.g., 
Given a composite index with key <age,sal> :

age=20 and sal =75

Range query: Some field value is not a constant e.g., :

age > 20 (any value for sal) 

age=20 and sal > 10

 Data entries in index sorted by search key to support range queries

Lexicographic order 

Like the dictionary, but on fields, not letters!



28

CSD Univ. of Crete Fall 2014

Example

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries in index
sorted by <sal>

Examples of composite key indexes 

using lexicographic order

Alternative 



29

CSD Univ. of Crete Fall 2014

Multilevel Indices

 Even with a sparse index, index size 
may still grow too large to fit in main 
memory

Search a sparse index not 
completely in main memory is
expensive

 Multilevel index: treat primary index 
kept on disk as a sequential file and 
construct a sparse index on it

Reduce number of disk accesses 
to index records

outer index – a sparse index of 
primary index

inner index – the primary index file

If even outer index is too large to fit 
in main memory, yet another level of 
index can be created, and so on

Indices at all levels must be updated 
on insertion or deletion from the file



30

CSD Univ. of Crete Fall 2014

15    

21    
 

 

2    

5    
 

 
8    

12    
 

 

85    

89    
 

 

24    

29    
 

 35    

36    
 

 39    

41    
 

 

44    

46    
 

 51    

52    
 

 

55    

58    
 

 

63    

66    
 

 71    

78    
 

 80    

82    
 

 

2  

35  

55  

85  
 

 

2  

8  

15  

24  
 

 

35  

39  

44  

51  
 

 

55  

63  

71  

80  
 

 

85  

  

  

  
 

 

Outer Index (OI)

Inner Index (II) Data FilePrimary Key Field

Multi-leveled Indexes: an Index for an Index

Why Two-level Index Is Faster?

The OI block is always in main memory

Only need to access one II block

Binary search of an index of 16 blocks 
may need up to 4 blocks



31

CSD Univ. of Crete Fall 2014

Ordering Field Non-ordering Field

Key field Primary Index Secondary Index (key)

Non-key Field Clustered Index Secondary Index (non-key)

Types of Search Keys

 Unordered data files

 lots of secondary indexes

 sometimes for unclustered primary indexes*

 Specify ordering field for file

 primary / clustered index

 field used most often for joins

*In the bibliography is considered that primary index are clustered

Unclustered primary indexes are called secondary key indexes



32

CSD Univ. of Crete Fall 2014

Types and Properties of Indexes

Type of
Index

Properties of Index Types

Number of (first 
level) Index Entries

Dense or
Sparse

Block
Anchoring
on the
Data File

Primary Number of blocks
in data file

Sparse / Yes / No*

Clustered Number of distinct
index field values

Sparse
Yes Alt  /
No Alt &

Secondary
(key*)

Number of records
in data file

Dense*

No

Secondary
(non-key)

Alt 

Number of distinct 
index field values

Dense No

Sparse NoSecondary
(non-key)
Alt  & 

Number of records
in data file

Sparse



33

CSD Univ. of Crete Fall 2014

Example

Assume Name is the primary key and indexes implemented with Alt 

Steve Rm 913

Bryan Rm 1026
Eric Rm 913

Fianny Rm 231

Teddy Rm 913

Raymond Rm 1026

1. Primary
2. Clustered
3. Dense

Bryan
Eric

Fianny
Raymond

Steve
Teddy

Name Name

1. Primary
2. Unclustered
3. Sparse

Bryan
Fianny
Steve

Name

Office



34

CSD Univ. of Crete Fall 2014

Example

Steve Rm 913

Bryan Rm 1026

Eric Rm 913

Fianny Rm 231

Teddy Rm 913

Raymond Rm 1026

Name Office

1. Secondary
2. Clustered
3. Dense

Rm 1026

Rm 913

Rm 231

Office

1. Secondary
2. Unclustered
3. Sparse

Rm 1026

Rm 231

Office

Assume Name is the primary key and Indexes implemented with Alt 



35

CSD Univ. of Crete Fall 2014

Tree-Structured Indexes

 Recall: 3 alternatives for data entries k*:
Actual data record with search key value k 
<k, rid of data record with search key value k>
<k, list of rids of data records with search key k>

 Choice is orthogonal to the indexing technique used to locate data entries 
k*; index quality is measured in terms of

Access time

Insertion/deletion time

Search condition types

Disk and RAM Space requirements

 Tree-Structured Indexes: Efficient support for range search, insertion and 
deletion

Indexed Sequential Access Method (ISAM)

Static index structure where insertions and deletions affect only leaf 
pages

 B+ tree

Dynamic index structure that adjusts gracefully to insertions and 
deletions



36

CSD Univ. of Crete Fall 2014

B+ -Tree Indexes

 The most commonly used variation of B-trees

“B” stands for “balanced”: all paths from 
the root to a leaf have the same length

Automatically maintain the number of 
indexing levels required for the size of the 
file being indexed (self-organized)

Manage block space so that each block is 
at least half-full

No overflow blocks needed

 Can be seen as a general form of multi-level 
indexes

 Measures

Order: the (maximum) number of indexing 
field values at each node

Height: the number of indexing levels from 
root to any leaf

Root node

Leaf nodes
Data Entries
Doubly Linked List
Sequence set

Internal nodes
Index Entries
Direct search



37

CSD Univ. of Crete Fall 2014

P0 K1 P1 K2 P2 Km Pm

B+-Tree Node

 A B+tree node contains m entries (occupancy) where

 n/2 <= m <= n (half-full), n = order of tree (fanout)

 m + 1 pointers to children

 P0 points to tree where K < K1

 Pi points to subtree where key values Ki<= K < Ki+1

 Pn points to tree where K >= Km

 A B-tree has record pointers also in non-leaf nodes

 In practice, B+trees are preferred, and widely used

to keys to keys to keys to keys
< K1 K1=<x<K2     K2<=x<k3 >Km

...

Index Entry



38

CSD Univ. of Crete Fall 2014

B+-Tree Example

 Order n=3, integer key values

1
0
0

1
2
0

1
5
0

1
8
0

3
0

3 5 1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

min. occupancy max. occupancy



39

CSD Univ. of Crete Fall 2014

Sample non-Leaf (Internal) & Leaf Nodes

From internal node

to next leaf

in the sequence

1
5
0

1
5
6

1
7
9

To
 r

e
co

rd
 

w
it
h
 k

e
y
 1

5
0

To
 r

e
co

rd
 

w
it
h
 k

e
y
 1

5
6

To
 r

e
co

rd
 

w
it
h
 k

e
y
1
7
9

to keys to keys         to keys         to keys

< 120    120<= k<150   150<=k<180     >=180

1
2
0

1
5
0

1
8
0

From internal node

Internal Node Leaf Node



40

CSD Univ. of Crete Fall 2014

B+ -Tree Node Capacity

max occupancy min occupancy

Internal

Leaf

1
2
0

1
5
0

1
8
0

3
0

1
5
0

1
5
6

1
7
9

3
0

3
5



41

CSD Univ. of Crete Fall 2014

 Invariant rules on nodes

 The root has at least two pointers (balanced tree)

 All leaves are at the same lowest level (balanced tree)

 Pointers in leaves point to records except for “sequence pointer”

 Minimum 50% space occupancy for each node except the root; thus 
use at least (ceiling)

 Internal: (n+1)/2 pointers to nodes at the lower levels

 Leaf:      (n+1)/2 pointers to records; i-th pointer points to 
a record with the i-th key

(*) 1, if only one record in the file

The Shape of a B+ -Tree

Internal
(non-root) n+1 n (n+1)/2 (n+1)/2-1

Leaf
(non-root) n+1 n

Root n+1 n 2(*) 1

Max   Max   Min              Min 
ptrs    keys  ptrsdata    keys

(n+1)/2 (n+1)/2



42

CSD Univ. of Crete Fall 2014

B+ -Tree Node Size

 Parameter “n” affects:

The height of the tree (Why?): logn(N), where N = # of leaf nodes

The time of binary search within a node is very small compared to 
the disk I/O time

Thus, we want to have (on average) a large n to reduce the tree height

 If a node corresponds to a block, we choose a largest n to fill up the block 
space

n search key values and n+1 pointers should fit in a block

The value of n can be determined by the block size and the (key, 
pointer) types and sizes !!!

 Example: B=4096, K: integer (4 bytes), pointer: 8 bytes. How many keys 

and pointers fit in a node (= index block)?

4n+8(n+1) <= 4096, n=  4096 / 12 = 340

340 keys and 341 pointers could fit in a node

171 … 341 pointers in an internal node



43

CSD Univ. of Crete Fall 2014

B+ -Tree Node Size in Practice

 Order (fanout) concept replaced by physical space criterion in practice

(`at least half-full’)

 Index (internal) blocks can typically hold many more entries than 

leaf blocks (if we use Alternative )

 Variable sized records and search keys mean different nodes will 

contain different numbers of entries

 Even with fixed length fields, multiple records with the same search 

key value (duplicates) can lead to variable-sized data entries (if we 

use Alternative )

 Many real systems are even sloppier than this --- only reclaim space 

when a page is completely empty



44

CSD Univ. of Crete Fall 2014

 When a record is inserted in the data file, the B+-tree must be changed 
accordingly:

simple case

 leaf not full: just insert (key, pointer-to-record)

leaf overflow

Internal node overflow

new root

 Algorithm:

find the leaf node where the new key should be placed, and insert it 
in the block if there is space

if not, split the leaf in two and divide the keys between the two nodes 
so that each of them is at least half-full

if a new (key, pointer) needs to be added to the level above, 
apply the insertion strategy at the parent node

exception: if insertion propagates up to the root node and the root 
node has no room, split the root in two and create a new root node 
one level up with the nodes resulting from the split as its children

Record Insertion



45

CSD Univ. of Crete Fall 2014

Record Insertion Example

3 5 1
1

3
0

3
1

3
0

1
0
0

3
2

There is space available

Insert 32

n=3



46

CSD Univ. of Crete Fall 2014

Record Insertion Example

Leaf Overflow

Insert 7

n=3

3 5 1
1

3
0

3
1

3
0

1
0
0

3 5

7

7



47

CSD Univ. of Crete Fall 2014

Record Insertion Example

Internal Node

Overflow

Insert 160

n=31
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
6
0

1
8
0

1
6
0

1
7
9



48

CSD Univ. of Crete Fall 2014

Record Insertion Example

Insert 45

n=3

1
0

2
0

3
0

1 2 3 1
0

1
2

2
0

2
5

3
0

3
2

4
0

4
0

4
5

4
0

3
0New Root Node

Height grows at root 

=> balance maintained



49

CSD Univ. of Crete Fall 2014

Record Deletion

 When a record is deleted in the data file, the B+-tree must be changed 
accordingly:

Simple case: no underflow; Otherwise ...

Borrow keys from an adjacent sibling (if it doesn't become too empty); 
Else ...

Coalesce with a sibling node

Cases ,  or  at internal nodes

 Algorithm:

find the record (key, pointer) and delete it from the block where it 

resides;

 If the block is still half full, nothing needs to be done



50

CSD Univ. of Crete Fall 2014

Record Deletion

If deletion occurs at a record that is exactly half-full, tree needs to be 

adjusted. Let N be the node at which the deletion occurs:

 if one of the adjacent siblings of N has more than the minimum

(key,pointer), then one can be moved to N

 The parent of N may need to be adjusted as a result of this 

change

 if neither adjacent sibling can be used for providing a key, then 

node N and one of its siblings together have no more than the max 

number of records allowable

 These nodes can be merged (one is deleted)

 Keys at the parent need to be adjusted (by deleting a record)

 If the parent remains half full, no more changes are needed

 If not, the deletion is applied recursively at the parent node



51

CSD Univ. of Crete Fall 2014

Record Deletion Example

1
0

4
0

1
0
0

1
0

2
0

3
0

3
5

4
0

5
03
5

3
5

n=4

Delete 50

Borrow keys => min # of keys 

in a leaf = 5/2 = 2 



52

CSD Univ. of Crete Fall 2014

Record Deletion Example

n=4

Delete 50

Coalesce with a leaf sibling

2
0

4
0

1
0
0

2
0

3
0

4
0

5
04
0



53

CSD Univ. of Crete Fall 2014

Record Deletion Example

n=4

Delete 37

Internal node coalesce

4
0

4
5

3
0

3
7

2
5

2
6

2
0

2
2

1
0

1
41 3

1
0

2
0

3
0

4
04
0

3
0

2
5 => min # of keys in a 

non-leaf = (n+1)/2 - 1=3-1= 2 
New Root Node

2
5



54

CSD Univ. of Crete Fall 2014

B+ -Tree Deletions in Practice

 Often, coalescing is not implemented

Too hard and not worth it!

 later insertions may return the node back to its required minimum 

size

Compromise: Try redistributing keys with a sibling;

 If not possible, leave it there

if all accesses to the records go through the B+-tree, can place a 

"tombstone" for the deleted record at the leaf

Periodic global rebuilding may be used to remove tombstones 

when they start taking too much space



55

CSD Univ. of Crete Fall 2014

Searching B+ -Trees: Equality Queries

 Assuming no duplicates are contained, we need to find records with a 
given search-key value K

 If at a leaf, search the key values found there

 If the i-th leaf entry is K, then the i-th pointer points to the record

 If at an internal node with keys K1, K2, …, Kn  then

 if K< K1, go to the 1st child; if K i-1 <= K < Ki, go to the i-th child

 Recursively apply this process at the child node

1
0
0

1
2
0

1
5
0

1
8
0

3
0

3 5 1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

Search path for 

tuple with key 101



56

CSD Univ. of Crete Fall 2014

 B+-trees are also useful for answering queries in which a range of 

values are sought (range queries), i.e. use a comparison operator other 

than = or <>

 To find all records with key values in the range [a,b]:

 Search for key value a using the previous procedure; at the leaf 

node where a could be, search for keys >=a

 As long as the key values obtained are < b follow the next-block 

pointers to the subsequent blocks and keep examining the key 

values

 Repeat step 2 until a value >=b is found or the chain of blocks 

ends

 If b=, all the blocks in the leaf nodes are examined

 If a=-, the search starts at the leftmost leaf node

Searching B+ -Trees: Range Queries



57

CSD Univ. of Crete Fall 2014

Applications of B+ -Trees

 Can serve as a dense index: there is a (key, pointer) in leaf nodes 

for every record in a data file 

search key in B+ -Tree is the primary key of the data file

data file may or may not be sorted according to its primary key

 Can serve as a sparse index: there is a (key, pointer) in leaf nodes 

for every block of a data file that is sorted according to its primary key

 Can serve as a secondary index: if the file is sorted by a non-key 

attribute, there is a (key, pointer) in leaf nodes pointing to the first of 

records having this sort-key value

 For alternative  the B+ tree represents the index as well as the data file 

itself (i.e., a leaf node contains the actual data records)

 For alternatives  or , the B+ tree lives in a file distinct from the actual 

data file; the pi are (one or more) rid(s) pointing into the data file



58

CSD Univ. of Crete Fall 2014

Clustered (primary) B+ -Tree (on candidate key) 

41

11 21 30 45 51

3 111315 2123 51533033 4143 45471

record with
search key 1

record with
search key 3

DATA BLOCKS WITH RECORDS

This example corresponds to dense B+-tree index: 
Every search key value appears in a leaf node

Alternative 



59

CSD Univ. of Crete Fall 2014

41

11 21 30 45 51

3 111315 2123 51533033 4143 45471

record with
search key 1

record with
search key 3

DATA BLOCKS WITH RECORDS

record with
search key 11

Unclustered (primary) B+ -Tree (on candidate key) 

Alternative 



60

CSD Univ. of Crete Fall 2014

Clustered (secondary) B+ -Tree 

(on non-candidate key)

41

11 21 30 45 51

3 111315 2123 51533033 4143 45471

records with
search key 1

record with
search key 3

DATA BLOCKS WITH RECORDS

Alternative 



61

CSD Univ. of Crete Fall 2014

Unclustered (secondary) B+ -Tree 

(on non-candidate key)

41

11 21 30 45 51

3 111315 2123 51533033 4143 45471

DATA BLOCKS WITH RECORDS

records with
search key 1

pointers to
records with
search key 3

pointers to

Alternative 



63

CSD Univ. of Crete Fall 2014

Assume that the average number of keys per node is n and there are K
search key values in the file 

The time of searching
= (Height of tree)
= (logn(K/n))
K/n ~ #Pages N

Analysis of B+ -Trees

K search key values in the file 

……

……

……

……

……

……

…… ……

…… …… ……

…… …… …… …… …… ……

……

A page

n



64

CSD Univ. of Crete Fall 2014

Analysis of B+ -Trees

 Each node has to perform at most n (i.e., #key) comparisons 

 The number of nodes visited is limited by the level of the tree

 A tree with l levels (height+1) has

 at most (n+1)(l-1) leaves

 at least (n+1/2)(l-1) leaves

 Each leaf has at least

 n+1/2 pointers to records if dense or 

 1 block of n+1 if sparse

 If there are K search key values in the file                                                             

the tree is no taller than log n+1 / 2  K/n+1

 Let n = 100, K = 1 million, each query will search up to only 4 nodes!

 Note that for a balanced binary tree, it may require about 20 block 

access on average per query

1

5

25

125

1

2

3

4

levelorder n=4height

0

1

2

3



65

CSD Univ. of Crete Fall 2014

Efficiency of B+ -Trees

 The main advantage of B+-trees is that search, insertion and deletion can 
be performed with few block accesses

 number of block accesses required is the number of levels of the tree 
+ 1 (lookup) or 2 (insert/delete)

 in most cases 3 levels are sufficient

 Example: Assume that on average a node has 255 #keys

a three-level B+-tree has at most 2552 = 65025 leaves with total of 
2553 or about 16,6 million pointers to records

if root block kept in main memory, each record can be accessed with 
2+1 disk I/Os;

If all 256 internal nodes are in main memory, record access requires 
1+1 disk I/Os (256 x 4 KB = 1 MB; quite feasible!)

 Is LRU a good policy for B+tree buffers? No! 

Should try to keep root block in memory at all times; and

perhaps some internal node blocks from second level



66

CSD Univ. of Crete Fall 2014

B+ -Trees in Practice

 Typical order: 200

Typical space utilization (occupancy or fill-factor ): 67%

Average fanout = 132 (i.e., #keys) +1 =133 pointers

 Typical capacities:

Level 4: 1334= 312.900.700 pointers to records

Level 3: 1333= 2.352.637 pointers to leaves

 Example: Suppose there are 1.000.000.000 data entries

#Levels = log133(1.000.000.000/132) < 4 (dense case)

The cost is 5 pages read

 Can often hold top levels in buffer pool:

Level 1 = 1 page = 8 Kbytes

Level 2 = 133 pages = 1 Mbyte

Level 3 = 17689 pages = 133 MBytes



67

CSD Univ. of Crete Fall 2014

B+ -Tree Optimizations

 To improve performance, we want to reduce the height

 Two strategies for decreasing the number of leaf pages

shorten the data stored in leaf pages using compression techniques

increase index (internal)node fanout by compressing key representation

 These compression techniques:

reduce I/O costs 

but typically complicate insertion, deletion, and search algorithms

 Observation: Key values in inner index nodes are used only to direct traffic
to the appropriate leaf page

During the search procedure, we need to find the smallest index i in 
each visited node such that ki <= k < ki+1 and then we follow link pi

We do not need the key values ki in their entirety to use them as guides

Rather, we could arbitrarily chose any suitable value k’i such that k’i
separates the values to its left from those to its right. In particular, we 
can chose as short a value as possible

 Deciding the policy for maintaining B+tree is part of physical database 
design



68

CSD Univ. of Crete Fall 2014

Example: Prefix Compression

 Use prefix compression at the lower nodes

 Consider a page containing keys:

Manino, Manna, Mannari, Mannarino, Mannella, Mannelli

 “Man” is a common prefix, thus we can store keys as:

(3 ino)  (3 na) (5 ri)  (7 no)  (4 ella)  (7 i)

 Construct the strings:

(3, ino): “Man” + ino  Manino
(3 na): “Man” + na  Manna
(5 ri): “Manna” + ri  Mannari
 e.g., pick first 5 characters of previous string

(7 no): “Mannari” + no  Mannarino
(4 ella): “Mann” + ella  Mannella
(7 i): “Mannell” + I  Mannelli

 In general, while compressing, must leave each index entry greater than 
every key value (in any subtree) to its left



70

CSD Univ. of Crete Fall 2014

Bulk Loading of a B+ -Tree

 If we have a large collection of records, and we want to create a B+ tree 
on some field, doing so by repeatedly inserting records

is very slow

leads to minimal leaf utilization

does not give sequential storage of leaves (aka clustering)

 Bulk Loading can be done much more efficiently: Sort all data entries, 
insert pointer to first (leaf) page in a new (root) page

Fewer I/Os for building (i.e., buffer pool is utilized more effectively)

Fewer locks for concurrency control (tree traversals are saved)

Leaves will be stored sequentially (and linked, of course)

Better control of “fill factor” on pages (leaf nodes filled up completely) 

3*4* 6* 9* 10*11* 12*13* 20*22* 23*31* 35*36* 38*41* 44*

Sorted pages of data entries; not yet in B+ -treeRoot



71

CSD Univ. of Crete Fall 2014

 Index entries for leaf 

pages always entered into 

right-most index page just 

above leaf level

When this fills up, it 

splits 

Split may go up right-

most path to the root

 Much faster than repeated 

inserts, especially when 

one considers locking!

Time and Space 

efficient !

3* 4* 6* 9* 10*11* 12*13* 20*22* 23*31* 35*36* 38*41* 44*

Root

Data entry pages 

not yet in B+-Tree
3523126

10 20

3* 4* 6* 9* 10*11* 12*13* 20*22* 23*31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+-Tree

Data entry pages 

Bulk Loading



Τέλος Ενότητας 



Χρηματοδότηση 
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού 
έργου του διδάσκοντα. 

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει 
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. 

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 



Σημειώματα 



Σημείωμα αδειοδότησης 
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons 
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής 
Έκδοση.   Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,  
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης 
τους στο «Σημείωμα Χρήσης Έργων Τρίτων». 

 

 
 
[1] http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

•Ως Μη Εμπορική ορίζεται η χρήση: 

–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του 
έργου και αδειοδόχο 

–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο 

–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) 
από την προβολή του έργου σε διαδικτυακό τόπο 

 

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το 
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 
. 



Σημείωμα Αναφοράς 

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα 
Διαχείρισης Βάσεων Δεδομένων. Διάλεξη 2η: Access methods, File 
organization, B+Tree». Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από 
τη δικτυακή διεύθυνση: http://www.csd.uoc.gr/~hy460/ 

 


