sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv

Ai1dAegn 2n: Access methods, File
organization, B+Tree

Anuntpncg lNAecouoakng
Tunua Emotiung YtoAoyiotwy

ACCESS METHODS: FILE
ORGANIZATIONS, B+TREE

T
C

”‘-—-___________--”

CSD Univ. of Crete

Fall 2014

File Storage

® How to keep blocks of records on disk files
¢ but must support operations:
e scan all records

e search for a record id (“RID”)

e insert new records Page 1
e delete old records ¢ 7oL \ Data is stored
- / and retrieved
A whole set of { / Page 2 in the units of
records in a file — pages/blocks
>
- \] / I/O Cost
A py oD
Memory ||| —
in ‘ Disk

__ - g .

"% CSD Univ. of Crete Fall 2014

Alternative File Organizations

® Many alternatives exist, each ideal for some situation, and not so good in
others:

eHeap Files: Suitable when typical access is a file scan retrieving all
records

o Sorted Files: Best if records must be retrieved in some order, or only
a range’ of records is needed

eHashed Files: Good for equality selections
e File is a collection of buckets
. Bucket = primary page plus zero or more overflow pages
e Hashing function h:
. h(r) = bucket in which record r belongs
. h looks at only some of the fields of r, called the search fields

CSD Univ. of Crete Fall 2014

File Organization: Unordered Records

® Heap (or Pile) Files: Place records in the order they are inserted
¢ New records inserted at the end of the file

Insertion efficient studno name

: : .. S6
Deleting expensive reorganisation &
fragmentation Si
Searching expensive linear n/2 S5
Retrieval expensive sort S2
in order

%9 CSD Univ. of Crete Fall 2014

File Organization: Ordered Records

® Sorted (or Sequential) Files: Physically order the records of a file on disk
based on values of one of the fields — ordering field / ordering key

Insertion expensive reposition studno _name

Deleting expensive reorganisation & | |51
fragmentation S

Searching on more binary log>(n) <4

ordering key efficient

Searching on expensive linear n/2 56

non-ordering

Key |s1o

Retrieval in efficient no sort ‘

order of

ordering key

Fall 2014

=P "File Organization: Ordered Records
with Overflow Blocks

® Insertion is expensive: records studno name
must be inserted in the correct S1
order o block 1 |S2
¢ must locate the position in the <4
file where the record is to be
Inserted S7
e if there is free space insert block 2 |38
there .
e if no free space, insert the 00 -
record in an overflow block
i block N |S201
® |t is common to keep a separate 5203
unordered overflow (or transaction)
block for new records to improve
Insertion efficiency
o this is periodically merged with | ©Verfiow block
the main ordered file

CSD Univ. of Crete Fall 2014

File Organization: Hashed Records

e Hashed Files: The record with hash key value K is
stored in bucket i, where 1i=h(K), and h is the
hashing function

+ Blocks containing data can be viewed as

Hash Function «——Key

buckets Hashed | Values
e Collisions occur when a new record hashes to a Key
bucket that is already full 0 R1, R10
¢ An overflow file is kept for storing such records (|1 R1, R100,
+ Overflow records that hash to each Primary R37
bucket can be linked together bucket | ... R1, R2
e Overflow handling in dynamic databases:
¢ open addressing or chaining (closed hashing) R64, R5

e Hashing can be used not only for file organization,
but also for index-structure creation (more latter) Overflow

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Cost Model for Analysis

® We ignore CPU costs, for simplicity:
+B: The number of data blocks (pages) in a table
¢R: Number of records per block in a table
¢D: (Average) time to read or write disk block

+Measuring number of block I/O’s ignores gains of pre-fetching and
sequential access;

e thus, even I/O cost is only loosely approximated
¢Average-case analysis;
e based on several simplistic assumptions

® Good enough to show the overall trends!

CSD Univ. of Crete Fall 2014

Assumptions in Analysis

® Single record insert and delete
® Heap Files:
+Equality selection on key; exactly one match (scan 7% file on average)
+Range search requires scan entire file since unordered
e¢Insert always at end of file (load last page, add, write out)
¢Delete anywhere in the file (find page, delete record, write out)
® Sorted Files:
Selections on sort field(s), no overflow blocks for sorted files
+Range search requires find first, then sequentially retrieve
e¢Insert and delete in middle of file

o Files compacted after deletions or reordered after insertions (read in
remaining 0.5B pages, adjust, then write out)

® Hashed Files:
+No overflow buckets, 80% page occupancy

e CSD Univ. of Crete

Cost of Operations

Fall 2014

Heap File Sorted File Hashed File
Scan all
records BD BD 1.2BD
Equality
Search 0.5BD D (log, B) D
Range
Search BD D (log, B + #of 1.2BD
pages with matches)
Insert 2D Search + 2D
2 (0.5 BD)
Delete

Search + 2D| Search + BD 2D

10

f? i1 CSD Univ. of Crete
<.

® Single record retrieval

¢“Find student name whose #AM =
1487

® Range queries
+"Find all students with grade < 3.0”

® Sequentially scanning of file is costly!

® If data is in sorted file
+ Binary search to find first such student
¢ Scan to find others

+ Cost of binary search can still be quite
high

Fall 2014

Single Record and Range Search

The BIG picture...

Query Optimization
and Execution

Files and Access Methods

Buffer Management

Disk Space Management

11

CSD Univ. of Crete Fall 2014

What is an Index?

® Databases tend to be very large: millions or billions of records
® Answers to ultimate queries tend to be small
+How to locate required records efficiently?
® Index: Data structure for locating efficiently records with given search key

record
value *@—» value

¢ Also facilitates a full scan of a relation if records not stored on physically
consecutive blocks

® An index on a file speeds up selections on the search key fields for the
iIndex

+Any subset of the fields of a relation can be the search key for an index
on the relation

o Search key is not the same as key (minimal set of fields that uniquely
identify a record in a relation) 12

"% CSD Univ. of Crete

Indexes

® An index is a collection of data
entries that supports efficient
retrieval of all data entries k* with a

Fall 2014

Alternative @

given key value k Directory
® Two issues:

eWhat is stored as a data entry k*

In an index ? Alternative @
+How are data entries organized

Directory

(index structure)?

(key, rid) pairs

® Three main alternatives:

OActual data record with Alternative ©

search key value k (key, list of rids) pairs

®<k, rid of data record
with search key value k> Aiopaug

®<k, Tist of rids of data
records with search key
value k>

hd

13

CSD Univ. of Crete Fall 2014

Index Data Entry k*

® Alternative @:
<¢Index and data records stored together
¢ A special file organization for data records
e Heap or sorted or hash file organization

¢ This alternative saves pointer lookups but can be expensive to
maintain with insertions and deletions

¢ At most one index on a given collection of data records can use Alt @

+Otherwise, duplicate data records, leading to redundant storage and
potential inconsistency
e Rest of the index use Alternative ® or ©
® Alternatives ® and ©:
¢Index data entries point to data records
e Typically much smaller than data records (easier to maintain)
e¢Alternative ® better space utilization than Alternative @

e But leads to variable sized data entries depending on the number
of data records with a given search key value

e Even worse, for large rid lists the data entry would have to span
multiple blocks! 14

CSD Univ. of Crete Fall 2014

Example

® On Left: Data stored in file hashed on age

¢ Alternative @: Data entries are actual data records

¢ Hash function identifies page on which record lies.; no index used
® On Right: Heap file with Unclustered Hash Index on sal

¢ Alternative ®: Data entries are <sal, rid> pairs (with rid shown as
arrow in figure)

¢ Hash function identifies appropriate bucket

File hashed on age

| Smith, 44, 3000 *\
h(age) = 00 Jones, 40, 6003] ‘:""" 3000 (% o
Tracy, 44, 5004 e - 3000 (sal) =
. ~~ 5004
- age) = .
No orderlng hi »| Ashby, 25, 3000 [5004 sal_ No orderlng
Basu, 33, 4003 |«
\ Bristow, 29, 2007 |+ :‘—4003 *’!h’(;;u
h(age) = 10 N~ 2007
4 Cass, 50, 5004 5003
ass
Lok {- 6003
Daniel, 22, 6003 """ |
File of <sal, rid> pairs 15

hashed on sal

CSD Univ. of Crete Fall 2014

Index Data Entry k*

® Choice of alternative for data entries is orthogonal to the index structure
used to speed up searches for data entries with a given search key value

® Index structures:
Tree-structured indexing
¢ Hash-based indexing
® What kinds of selections do they support?
+Selections of form field <op> constant
e Equality selections (op is =)
e Range selections (op is one of <, >, <=, >=, BETWEEN)
+More exotic selections:

e 2-dimensional (or n-dimensional) ranges (“east of Chania and west
of Heraklion and North of Plakias and South of Spili”)

e 2-dimensional (or n-dimensional) distances (“within 2 miles of
Heraklion™)

e Ranking queries (“10 restaurants closest to Knossos”)
e Regular expression matches, genome string matches, etc.
e One common n-dimensional index: R-tree w0

9] CSD Univ. of Crete Fall 2014

Index Classification

® Primary vs. Secondary indexes:

¢An index Is called primary if the search key is a set of fields that
Includes the primary key

e Usually implemented using Alternative @
¢An index is called unigue if the search key contains a candidate key
+No duplicates in the data entries

¢ In general, secondary index usually contains duplicates

® Secondary indexes facilitate the answering of queries involving conditions
on fields other than the primary key

+Secondary indexes do not determine the location of records (i.e.,
blocks) since these are organized according to primary indexes

¢ Alternatives @ and ® are not suitable for secondary indexes since they
do not (explicitly, at least) allow for duplicate entries

® Typically, a relation has a primary index on its key attributes 17

. %% CSD Univ. of Crete Fall 2014

Primary Index on a Key Field

Primary key field Data File

_ studno name hons|tutor |year
Index File 1s1 jones |ca |vassilis |2
Block Ordering Block s2 brown [cis |dimitris |2
anchor key value point
S1 o« s10 smith |cs grigoris |2
S11 —
Ts11 bloggs [ca |grigoris |1
sl12 jones |cs nikos |1
5599 AN s20 peters |ca panos |3
AN
_ _ s501 |smith |cs vassilis |3
Data file could be physically ||g502 patel |cis |aggelos |3
ordered on a key field
(ordering key field) s508 |jones |cs aggelos |1
Alternative ® sparse 18599 |gower |cis |nikos |2 16

CSD Univ. of Crete Fall 2014
Secondary Index on a Non-Key Field
. Search field
Index File gl A '\\ Dept Name Staffno
v 3
w |5
Field Block / o pE
value pointer / - 6
7 C
1) O i et > ;
> o / R adp”
> o 8
I
5 el P e 974] L7 6
6 o / / | 8
8 N\ 4
\\ ../\/ %@/ >< 1
Index file cou % ~ Lo
e physically \ %z NE
ordered on a e % E
search key field \J/ 7\\ i
Alternative © t g
dense Blocks of record pointers Data File o

CSD Univ. of Crete

Index Classification

® Clustered vs. Unclustered indexes:

¢An Iindex iIs clustered if the order of data
records in a file is the same as or close to’
the order of data entries in the index

¢An index Is clustered if
e It uses Alternative @ (by definition)

e It uses Alternative ® or ® and the data
records are sorted on the search key

® Clustered: file can be clustered on at most one
search key (usually primary index)

¢ Cost of retrieving data records through index
varies greatly based on whether index is
clustered or not!

® Unclustered: file does not constrain table
organization (usually secondary index)

¢ There might be several unclustered indexes
per table

Fall 2014

Physical ordering

of data or index file
on di

SN

Records

Records

20

%3 CSD Univ. of Crete

Clustered Index

® To build a clustered index:

Fall 2014

#Sort the records in (heap) file on Data File
the index search key year |name |hons [tutor [studno
¢Leave some free space in each /1
page to absorb future insertions 1
/42
Index File
Clustering Block pointer Z
field value 2
1 7/l / /3
2 ‘<
3 «
Data file is physically ordered on a non :
necessarily key field (clustering field) 3
Alternative ® sparse 3

CSD Univ. of Crete

o If free space Is used up
subsequently, further insertions to
the page is handled using a linked
list of overflow pages

e Need to reorganize file periodically
to ensure good performance

® Clustered index is efficient for range
searches but expensive to maintain

Index File

Clustering Block pointer
field value

/
1 ‘|
2 e
3

Clustered Index with Separate Blocks

Data File

Fall 2014

year
y

name hons |tutor

studno

Block pointer

NNNN

NN

Block pointer

Separate blocks for each group of records
with the same cluster field value

Alternative ® sparse

A 4

W ww

Block pointer

CSD Univ. of Crete Fall 2014

Example - Cost of Range Search

® Data file has 10.000 pages, 100 rows in range
® Page transfers for rows (assuming 20 rows/page):
¢ Heap:
e 10.000 (entire file must be scanned)
+ File sorted on search key:
e log, 10.000 + (5 or 6) = 19
¢ Unclustered index:
e <100
¢ Clustered index:
e 50r6
® Page transfers for index entries (assuming 200 entries/page)

¢ Heap and sorted: O

¢ Unclustered secondary index: 1 or 2 (all entries for rows in the requested
range must be read)

¢ Clustered secondary index: 1 (only first entry must be read) 23

CSD Univ. of Crete Fall 2014

Index Classification

® Dense vs. Sparse indexes:

¢An index Is dense If it contains at least one data
entry for every search key value

e Alternative @ always leads to build dense
iIndex

e Alternative ® can be used to build a dense
or sparse index

. several data entries can have same
search key value if there are duplicates

e Alternative ® can be used to build a dense
index

#An index is sparse If it contains one data entry
for each records’ page in the data file

e indicates the block of records, so
. sparse indexes take less space
. index scanning is faster
« but...no existence test based on the index

® A file can have one sparse index and many dense
Indexes, because a sparse index relies on a unigue
physical ordering (clustering) of the data file on disk 2

Poiters are
assoclated

Fall 2014

91 CSD Univ. of Crete
Dense Secondary Index on a non-ordering Key Field
Index File Data File
Field Block pointer

value % '.% g
3 :\ 13
4 8

5 e
6 . 6
7 < 15
8] 3
17

9

10 o | 19
11 11
12 o) 16
13 4 2

'Y
ig 0/> 7
16 il 10
20
17 ol -

18 (.
19 o 4
20 1] 12
_ 18
Alternative @ 14

25

"9 CSD Univ. of Crete Fall 2014

Example

e On Left: same order of index data entries and records in the file
¢ Primary, Clustered, Sparse index on Name

e On Right: different order of index data entries and records in the file
¢ Secondary, Unclustered, Dense Index on Name

« Ashby, 25, 3000
/ Basu, 33, 4003 < 22
Bristow, 30, 2007 25
Ashby = 30
33
Cass Cass_, 50, 5004

Smith \. Daniels, 22, 6003
Jones, 40, 6003 40
1T 44
Smith, 44, 3000 (44
Tracy, 44, 5004 50

Sparse Index Dense Index
on Name on Age

Alternative ® Data File Alternative ® 2

Index Classification

® Composite Index (also called a concatenated index): is an index that
you create on multiple fields in a table

oFields in a composite index can appear in any order and need not be
adjacent in the table

® Composite Search Keys: Search on a combination of fields

¢Equality query: Every field value is equal to a constant value e.g.,
Given a composite index with key <age,sal>:

eage=20 and sal =75
¢Range guery: Some field value is not a constant e.q., :
eage > 20 (any value for sal)
eage=20 and sal > 10
® Data entries in index sorted by search key to support range gueries
¢ Lexicographic order
+Like the dictionary, but on fields, not letters!

CSD Univ. of Crete Fall 2014

27

Fall 2014

L "3 CSD Univ. of Crete

Example
Examples of composite key indexes
11,80 \| using lexicographic order /11
1210 ™ 12
1220 ™\ name age sal 1)
13,75 N hob 12 10 L~ 13
<age, sal> cal 11 80 <age>
joe 12 20
10,12 10
2012~ = 20
713 Data records S o
o sorted by name N
<sal, age> <sal>
Data entries in index Data entries in index
sorted by <sal,age> Alternative & sorted by <sal>

CSD Univ. of Crete

Multilevel Indices

Fall 2014

® Even with a sparse index, index size

o

may still grow too large to fit in main

memory
eSearch a sparse index not
completely in main memory Is
expensive

® Multilevel index: treat primary index

kept on disk as a sequential file and outer index
construct a sparse index on it

+Reduce number of disk accesses
to index records

eouter index — a sparse index of
primary index
sinner index — the primary index file

+If even outer index is too large to fit
In main memory, yet another level of
Index can be created, and so on

+Indices at all levels must be updated
on insertion or deletion from the file

index

block 0

index
block 1

ane

inner index

data
block

data
block 1

CSD Univ. of Crete Fall 2014

Multi-leveled Indexes: an Index for an Index

e\Why Two-level Index Is Faster? 2
+The Ol block is always in main memor 5

+0nly need to access one Il block =
+Binary search of an index of 16 ptocks =
may need up to 4 blocks / 52

> 29

(]
[

85 80

82

85
89

r
/ % / =
. .I// =
41
= %] 44
> [39 / 46
25 :/// 44 $/> 51
55 1\ 51 Ca 52

85

N\ \ 55 .I,/' 22
e »[63
Outer Index (ﬁQ 71 i\ G

Inner Index (II) Primary Key Field Data File %0

CSD Univ. of Crete

ypes of Search Keys

® Unordered data files

lots of secondary indexes

¢ sometimes for unclustered primary indexes*
® Specify ordering field for file

¢ primary / clustered index

¢ field used most often for joins

Fall 2014

Ordering Field [Non-ordering Field

Key field Primary Index |Secondary Index (key)

Non-key Field § Clustered Index |Secondary Index (non-key)

*In the bibliography is considered that primary index are clustered
eUnclustered primary indexes are called secondary key indexes

31

":f\i CSD Univ. of Crete

Types and Properties of Indexes

Type of | Number of (first | Dense or
Index level) Index Entries| Sparse

Primary Number of blocks | Sparse/
In data file Dense*

Clustered [Number of distinct | sparse
Index field values

Secondary | Number of records | Sparse
(key*) in data file

Secondary ¥ Number of records | D
ense
(non-key) 1'in data file

Alt @
%ﬁcg[\ﬁlar Number of distinct | Sparse
AI? P2 &eé Index field values

Properties of Index Types

Block
Anchoring
on the
Data File

Yes / No*

Yes Alt @ /
No Alt ®&©

NO

NO

NO

Fall 2014

32

CSD Univ. of Crete Fall 2014

Example

®Assume Name is the primary key and indexes implemented with Alt &

Name Name Office
Bry_an "| Bryan |Rm 1026 Name
.ErIC > Eric Rm 913 Steve
Fianny "| Fianny | Rm 231 Fianny
Raymond "IRaymond|Rm 1026 Bryan
Steve "| Steve | Rm 913]
Teddy "| Teddy | Rm 913
1. Primary 1. Primary
2. Clustered 2. Unclustered

3. Dense 3. Sparse

33

CSD Univ. of Crete Fall 2014

Example

®Assume Name is the primary key and Indexes implemented with Alt &

Name Office
Fianny | Rm 231 Office

Office Steve | Rm 913 \ Rm 231
Rm 1026 Eric |Rm 913 \
[

Rm 231 Teddy | Rm 913 Ign:n 1901236
Raymond Rm 1026
Bryan |Rm 1026

1. Secondary 1. Secondary
2. Unclustered 2. Clustered
3. Sparse 3. Dense

34

CSD Univ. of Crete Fall 2014

ree-Structured Indexes

® Recall: 3 alternatives for data entries k*:
Actual data record with search keK value k
<k, rid of data record with search key value k>

<k, 1ist of rids of data records with search key k>

® Choice Is orthogonal to the indexing technique used to locate data entries
k*: index quality is measured in terms of

#Access time

e¢Insertion/deletion time

+Search condition types

+Disk and RAM Space requirements

® Tree-Structured Indexes: Efficient support for range search, insertion and
deletion

¢Indexed Sequential Access Method (ISAM)

e Static index structure where insertions and deletions affect only leaf
pages
¢ B+ tree

e Dynamic index structure that adjusts gracefully to insertions and

. 35
deletions

ff;,, CSD Univ. of Crete

B+ -Tree Indexes

® The most commonly used variation of B-trees

"B’ stands for “balanced”: all paths from
the root to a leaf have the same length

e Automatically maintain the number of
iIndexing levels required for the size of the
file being indexed (self-organized)

+Manage block space so that each block is
at least half-full

+No overflow blocks needed
® Can be seen as a general form of multi-level

Root node

Internal nodes
¢Index Entries
o_Direct search

Indexes
® Measures

+Order: the (maximum) number of indexing
field values at each node

+Height: the number of indexing levels from
root to any leaf

Leaf nodes

¢Data Entries
+Doubly Linked List
+Sequence set

Fall 2014

36

"% CSD Univ. of Crete

B+-Tree Node

Index Entry
— /

po/K1P1[K2IP2| .. Km/Pm
K

PO/ K1 P
torkeys J eys \to keys ﬁeys

< K1 Kl=<x<K2 K2<=x<k3 >Km

® A B+tree node contains m entries (occupancy) where
¢ n/2 <= m <= n (half-full), n = order of tree (fanout)
¢ m + 1 pointers to children
e P, points to tree where K < K,
e P, points to subtree where key values Ki<= K < Ki,,
e P points to tree where K >=K_
® A B-tree has record pointers also in non-leaf nodes
+ In practice, B+trees are preferred, and widely used

Fall 2014

37

/9 CSD Univ. of Crete Fall 2014

B+-Tree Example

® Order n=3, integer key values

PIRSEN
min. occupancy / = max. occupancy
O O O
ST aA
nozi{sa B33 58 BB &8
b il

38

ff;,, CSD Univ. of Crete

Fall 2014

Sample non-Leaf (Internal) & Leaf Nodes

/ From internal node

V\

8 o o
/H/ ﬂ\ “N

150
—— 156
179

to keys to keys to keys to keys
<120 120<= k<150 150<=k<180 >=180

To record
with key 156

To record
with key 150

Torecord <«—1—
with key179

Internal Node Leaf Node

From internal node

|to next leaf

in the sequence

39

), i1 CSD Univ. of Crete

B+ -

~
Internal b

-

~
Leaf

<

N

ree Node Capacity

max occupancy min occupancy

N N
- A - A

150
180

30

‘\\
—1 120

«—
«—
<«
<«

|
!
|
!

7 150
<~ 156
— 179

Fall 2014

40

CSD Univ. of Crete Fall 2014

he Shape of a B+ -Tree

® Invariant rules on nodes
¢ The root has at least two pointers (balanced tree)
¢ All leaves are at the same lowest level (balanced tree)
¢ Pointers in leaves point to records except for “sequence pointer”

+ Minimum 50% space occupancy for each node except the root; thus
use at least (ceiling)

e Internal: | (n+1) /2| pointers to nodes at the lower levels

e Leaf: [(n+1)/2] pointers to records; i-th pointer points to
a record with the 1-th key

Max | Max | Min Min
ptrs | keys| ptrs—data| keys

Anternal T opg |0 | Tn+1)2] | Tn+1)21
(nolhe-er]cgot) n+l | n | L(n+1)/2] | L(n+1)/2]

Root n+1 n 2(%) 1
(*) 1, if only one record in the file s

e CSD Univ. of Crete Fall 2014

B+ -Tree Node Size

13 Y

® Parameter “n” affects:
¢ The height of the tree (Why?): 1og,,(N), where N = # of leaf nodes

e The time of binary search within a node is very small compared to
the disk 1/O time

¢ Thus, we want to have (on average) a large n to reduce the tree height

® |f a node corresponds to a block, we choose a largest n to fill up the block
space

+n search key values and n+1 pointers should fit in a block
¢ The value of n can be determined by the block size and the (key,
pointer) types and sizes !!!
® Example: B=4096, K: integer (4 bytes), pointer: 8 bytes. How many keys
and pointers fit in a node (= index block)?
+4n+8(n+1) <= 4096, n=| 4096 / 12 = 340
+340 keys and 341 pointers could fit in a node
+171 ... 341 pointers in an internal node 42

3 @‘fa CSD Univ. of Crete Fall 2014

B+ -Tree Node Size in Practice

® Order (fanout) concept replaced by physical space criterion in practice
("at least half-full’)

+ Index (internal) blocks can typically hold many more entries than
leaf blocks (if we use Alternative @)

¢ Variable sized records and search keys mean different nodes will
contain different numbers of entries

+ Even with fixed length fields, multiple records with the same search
key value (duplicates) can lead to variable-sized data entries (if we
use Alternative ©)

® Many real systems are even sloppier than this --- only reclaim space
when a page is completely empty

43

CSD Univ. of Crete Fall 2014

Record Insertion

® When a record is inserted in the data file, the B+-tree must be changed
accordingly:
O@simple case
e leaf not full: just insert (key, pointer-to-record)
®leaf overflow
®Internal node overflow
A new root

® Algorithm:

+find the leaf node where the new key should be placed, and insert it
In the block if there is space

+if not, split the leaf in two and divide the keys between the two nodes
so that each of them is at least half-full

oif anew (key, pointer) needs to be added to the level above,
apply the insertion strategy at the parent node

eexception: if insertion propagates up to the root node and the root
node has no room, split the root in two and create a new root node
one level up with the nodes resulting from the split as its children "

)’@ i1 CSD Univ. of Crete NPT

Record Insertion Example
S n=3
i \\
A
/TN
'/ \ Insert 32
o T S g‘—’ There is space available
L
T o

@ CSD Univ. of Crete

Record Insertion Example

n=3

EVAAN

/N

i A8
-

4

i
o |

&

3
|
!

—— 31

—>

l

Leaf Overflow

N\

Insert 7

Fall 2014

46

Fall 2014

), i1 CSD Univ. of Crete

Record Insertion Example

Internal Node
Overflo

n=3

100
/160

Insert 160

\
{

\
| 120
) 150
| 18Q
T
180

%
%

l
<1150
—1-156

9

160
179
1180
—200

47

f? i1 CSD Univ. of Crete
<.

Fall 2014

Record Insertion Example

New Root Node

o
™M

N

/'?Q '\\

n=3

Height grows at root
=> palance maintained

N

o O o
~ — AN <
/ J‘ \\ / \\ Insert 45
SR E=E I8 | |’ayd QL
e e = i =

48

CSD Univ. of Crete Fall 2014

Record Deletion

® When a record is deleted in the data file, the B+-tree must be changed
accordingly:
@ Simple case: no underflow; Otherwise ...

®Borrow keys from an adjacent sibling (if it doesn't become too empty);
Else ...

® Coalesce with a sibling node
OCases 0, O or O at internal nodes

® Algorithm:

+find the record (key, pointer) and delete it from the block where it
resides;

e If the block is still half full, nothing needs to be done

49

/9 CSD Univ. of Crete Fall 2014

Record Deletion

+If deletion occurs at a record that is exactly half-full, tree needs to be
adjusted. Let N be the node at which the deletion occurs:

e if one of the adjacent siblings of N has more than the minimum
(key,pointer), then one can be moved to N

. The parent of N may need to be adjusted as a result of this
change

e if neither adjacent sibling can be used for providing a key, then
node N and one of its siblings together have no more than the max
number of records allowable

. These nodes can be merged (one is deleted)

. Keys at the parent need to be adjusted (by deleting a record)
— If the parent remains half full, no more changes are needed
— If not, the deletion is applied recursively at the parent node

50

| ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Record Deletion Example
n=4
o/
oN
o6 3 |
- 1 +— -— Delete 50
2R R g
| I Y —
IR e
Borrow keys =>min # of keys
inaleaf =|5/2/=2

A ‘?@ {1 CSD Univ. of Crete Fall 2014

Record Deletion Example

n=4
/
o6 8 .
- ‘/ \x<‘ /
— ooo_—> - Delete 50
N A <
— o

Coalesce with a leaf sibling

52

3 @‘fa CSD Univ. of Crete Fall 2014

Record Deletion Example

n=4
=> min # of keys in a
New Root Node >< non-leaf = [(n+1)/21]- 1=3-1=2

" / \ , Internal node coalesce

ﬂ?—\ S

/ / \\\ P o

—r. p T

o
™M
|
v

ol 2% 1’8 |8Y 20
| || | ||
v vy vy v oy

53

CSD Univ. of Crete

B+ -

Fall 2014

ree Deletions In Practice

® Often, coalescing is not implemented
¢ Too hard and not worth it!
e [ater insertions may return the node back to its required minimum

size

¢Compromise: Try redistributing keys with a sibling;
e If not possible, leave it there

+if all accesses to the records go through the B+-tree, can place a
"tombstone" for the deleted record at the leaf

e Periodic global rebuilding may be used to remove tombstones
when they start taking too much space

54

"9 CSD Univ. of Crete Fall 2014

Searching B+ -Trees: Equality Queries

S Search path for
// — \ tuple with key 101
o O O
) 8./ //' ﬂ/93\.
LN
o

/
3~ 52 PRERN 28
vy b

contained, we need to find records with a

i
T Q

Yy v v
® Assuming no duplicates are
given search-key value K

O |If at a leaf, search the key values found there

¢ |If the i-th leaf entry is K, then the i-th pointer points to the record
® If at an internal node with keys K, K,, ..., K, then

¢ if K<K,, go to the 15t child; if K i1 <= K < K, go to the i-th child
® Recursively apply this process at the child node 55

CSD Univ. of Crete Fall 2014

Searching B+ -Trees: Range Queries

® B+-trees are also useful for answering queries in which a range of
values are sought (range queries), i.e. use a comparison operator other
than = or <>

¢ To find all records with key values in the range [a,b]:

©® Search for key value a using the previous procedure; at the leaf
node where a could be, search for keys >=a

® As long as the key values obtained are < b follow the next-block
pointers to the subsequent blocks and keep examining the key
values

® Repeat step 2 until a value >=b is found or the chain of blocks
ends

¢ |If b=, all the blocks in the leaf nodes are examined
¢ If a=-o0, the search starts at the leftmost leaf node

56

CSD Univ. of Crete Fall 2014

Applications of B+ -Trees

® Can serve as a dense index: there is a (key, pointer) in leaf nodes
for every record in a data file

esearch key in B+ -Tree is the primary key of the data file
+data file may or may not be sorted according to its primary key

® Can serve as a sparse index: there is a (key, pointer) in leaf nodes
for every block of a data file that is sorted according to its primary key

® Can serve as a secondary index: if the file is sorted by a non-key
attribute, there is a (key, pointer) in leaf nodes pointing to the first of
records having this sort-key value

® For alternative @ the B+ tree represents the index as well as the data file
itself (i.e., a leaf node contains the actual data records)

® For alternatives ® or ©, the B+ tree lives in a file distinct from the actual

data file; the p; are (one or more) rid(s) pointing into the data file
S7

91 CSD Univ. of Crete Fall 2014

Clustered (primary) B+ -Tree (on candidate key)

41
(112130, 145|517
1|3 __11\13 15 ___21\23 ||3933 ___41\43 ||a547 ___51\53

/ \

record with record with Alternative @
search key 1search key 3

DATA BLOCKS WITH RECORDS

This example corresponds to dense B+-tree index:
Every search key value appears in a leaf node

58

-
{1321 3] 45 51‘
)! ‘} ™ (1NN
1|3 n141315 _mz*za 13033 _n4*43 |[4547 _ms*sa
DATA BLOCKS WITH RECORDS
record with record with record with Alternative ®

search key 11 search key 3 search key 1

CSD Univ. of Crete Fall 2014

Unclustered (primary) B+ -Tree (on candidate key)

59

CSD Univ. of Crete

Clustered (secondary) B+ -Tree

N_Non-cand; K
E
11[21‘ 3q a5 51‘
13 141:15 /2423 3033 .__4443. 4547 ._.5453.

DATA BLOCKS WITH RECORDS

records with
search key 1

\

record with
search key 3

Alternative ®

Fall 2014

60

CSD Univ. of Crete

3¢

Unclustered (secondary) B+ -Tree
N Non- |

| k

.

45 51|

H2123

3033

N
U
S
N

14143 115153

pointers to
ecords with

pointers to

records with
search key 3

Alternative ©

DATA BLOCKS WITH RECORDS

Fall 2014

61

CSD Univ. of Crete Fall 2014
Analysis of B+ -Trees
Assume that the average number of keys per node is n and there are K
search key values in the file ; ;
The time of searching
A page = 0(Height of tree)
...... = 0(10g,(K/n))
A K/n ~ #Pages N
I\ [" e T T
=50 @ —w—
s LAY, o~
.................................... =500 -
. =1000 -0
- 6
.................. g
‘/l l \ /l ------ l\?z; i
— .3 - e
T~ o ﬁ e
K search key values in the file 10 100 1000 10000 100000 1e+06 1e+07
N [pages]
63

CSD Univ. of Crete

Fall 2014

Analysis of B+ -Trees

® Each node has to perform at most n (i.e., #key) comparisons
® The number of nodes visited is limited by the level of the tree

A tree with 1 levels (height+1) has height order n=4 |evel
¢ at most (n+1) -1 leaves 0 1
¢ atleast (n+1/2) "1 leaves { 5 2

Each leaf has at least , / >c \ -
¢ n+1/2 pointers to records if dense or

¢ 1 block of n+1 if sparse
If there are K search key values in the file y

the tree is no taller than . Tog r,,; , 5 T K/n+1J
¢ Let n =100, K = 1 million, each query will search up to only 4 nodes!

+ Note that for a balanced binary tree, it may require about 20 block
access on average per query

64

CSD Univ. of Crete Fall 2014

Efficiency of B+ -Trees

® The main advantage of B+-trees is that search, insertion and deletion can
be performed with few block accesses

¢ number of block accesses required is the number of levels of the tree
+ 1 (lookup) or 2 (insert/delete)

¢ In most cases 3 levels are sufficient
® Example: Assume that on average a node has 255 #keys

e¢a three-level B+-tree has at most 2552 = 65025 leaves with total of
2553 or about 16,6 million pointers to records

+if root block kept in main memory, each record can be accessed with
2+1 disk 1/Os;

oIf all 256 internal nodes are in main memory, record access requires
1+1 disk I/Os (256 x 4 KB = 1 MB; quite feasible!)

® |s LRU a good policy for B+tree buffers? No!
+Should try to keep root block in memory at all times; and

¢perhaps some internal node blocks from second level
65

CSD Univ. of Crete Fall 2014

B+ -Trees In Practice

® Typical order: 200
¢ Typical space utilization (occupancy or fill-factor). 67%
¢Average fanout = 132 (i.e., #keys) +1 =133 pointers

® Typical capacities:
elLevel 4: 1334= 312.900.700 pointers to records
elevel 3: 1333= 2.352.637 pointers to leaves

® Example: Suppose there are 1.000.000.000 data entries
o#Levels = log,35(1.000.000.000/132) < 4 (dense case)
o The cost is 5 pages read

® Can often hold top levels in buffer pool:
eLevel 1 =1 page = 8 Kbytes
eLevel 2 = 133 pages = 1 Mbyte
eLevel 3 =17689 pages = 133 MBytes

66

CSD Univ. of Crete Fall 2014

B+ -Tree Optimizations

® To improve performance, we want to reduce the height
® Two strategies for decreasing the number of leaf pages
¢shorten the data stored in leaf pages using compression techniques
e¢increase index (internal)node fanout by compressing key representation
® These compression techniques:
ereduce I/O costs
+but typically complicate insertion, deletion, and search algorithms

® Observation: Key values in inner index nodes are used only to direct traffic
to the appropriate leaf page

+During the search procedure, we need to find the smallest index i in
each visited node such that k; <= k < ki+1 and then we follow link p;

+We do not need the key values K: in thelr entirety to use them as guides

+Rather, we could arbitrarily Chose any suitable value k’; such that k',
separates the values to its left from those to its right. In particular, we
can chose as short a value as possible

® Deciding the policy for maintaining B+tree is part of physical database
design 67

CSD Univ. of Crete Fall 2014

Example: Prefix Compression

® Use prefix compression at the lower nodes
® Consider a page containing keys:
Manino, Manna, Mannari, Mannarino, Mannella, Mannelli

® “Man” is a common prefix, thus we can store keys as:
(31no) @B na) (5 ri) (7 no) 4 ella) (7 1)

® Construct the strings:
(3, 1no): “Man” + ino = Manino
(3 na): “Man” + na = Manna
(5 r1): “Manna” + ri - Mannari
> e.g., pick first 5 characters of previous string
(7 no): “Mannari” + no = Mannarino
(4 ella): “Mann” + ella = Mannella
(7 1): “Mannell” + I - Mannells

® |In general, while compressing, must leave each index entry greater than

every key value (in any subtree) to its left .

CSD Univ. of Crete Fall 2014

Bulk Loading of a B+ -Tree

® |f we have a large collection of records, and we want to create a B+ tree
on some field, doing so by repeatedly inserting records

#is very slow
e¢leads to minimal leaf utilization
edoes not give sequential storage of leaves (aka clustering)

® Bulk Loading can be done much more efficiently: Sort all data entries,
Insert pointer to first (leaf) page in a new (root) page

oFewer I/Os for building (i.e., buffer pool is utilized more effectively)

¢ Fewer locks for concurrency control (tree traversals are saved)

¢ Leaves will be stored sequentially (and linked, of course)

+Better control of “fill factor” on pages (leaf nodes filled up completely)

N

Root Sorted pages of data entries; not yet in B+ -tree

—

/
3"}4"|‘ 6X 9% [10*11*| |12*13H|20%*|22*||23*31*||35*/36%* 38*41>|i 44*

70

Fall 2014

'@fz& CSD Univ. of Crete

Bulk Loading
® Index entries for leaf Root || 10]]20]
pages always entered into / !
right-most index page just [[e 12 23| 35] :Ztta ee:ti;y::f’::ee
above leaf level V/ / l / l fy
+When this fills up, it . 2PN PR .
splits 3+ 44 |64 9% [10f11}[12}13} zoﬁzi 23131k [35B61([38a1} (a4}

¢ Split may go up right-

most path to the root Root 1] 20|
® Much faster than repeated / \
: . 10| 35| Data entry pages
Inserts, especially when A i not yet in B+-Tree
one considers locking! / \ l \
: 6 12 23 38
¢ Time and Space | — H— p—h
efficient ! = v/ l / l / \

3% 4% | 6% 9% [10M11% [12¥1.3% 20122 231§1T|< 3554 38117 |44F .

TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= -]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang

XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong

2NMEIWMAT

2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.

2NUEIWHA AVO@POpPAC

Copyright TMavemotiuio Kpntng, AnuAtpng TMAeCoucAKNnG. «ZUCTAMOATA
Alaxeipiong Bdaocewv Acdopévwy. AlIdAeEn 2n: Access methods, File
organization, B+Tree». 'Ekdoon: 1.0. HpdakAeio/P£Bupuvo 2015. AlaBéoipo atrd
TN dIKTUAKN OIEVBuvan: http://www.csd.uoc.gr/~hy460/

