sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv
Ai1dAegn 3n: Access methods: Hash Indexes

Anuntpnc lNAegouodkng
Tunua Emotiung YtmoAoyiotwy

ACCESS METHODS:
HASH INDEXES

T
S

”“-___________--”

CSD Univ. of Crete Fall 2014

Hash-based Indexes

® Hash Tables
+ frequently used as main-memory data structures
¢ idea: use a hash function h taking as input a (hash) key and returning

an integer in the range [0, . .,B-1]; B is the number of available
buckets
& organization: a bucket array indexed [0, ..,B-1] stores the headers

of B linked lists; if a record has a search key K, then it will be stored in
the list for the bucket numbered h(K)

® Hash Tables in Secondary Storage vs main-memory:
& Bucket Is a unit of storage containing one or more records, typically a
disk block

e Records (or pointers) are placed in the block returned by the hash
function

e Chains of overflow blocks may be added to buckets to
accommodate more records

¢ Bucket array (directory) consists of block addresses rather than
pointers to lists

9 CSD Univ. of Crete

Block address

Hash Tables in Secondary Storage

on disk
K 0 \ \
RS T
/2 \\ >
h(K) 3 \\\
Bucket Directory /’*
| — I
B-1 -~

eHash file has relative bucket numbers 0 through B-1

eMap logical bucket numbers to physical disk block addresses

Fall 2014

CSD Univ. of Crete Fall 2014

How do we Choose a Hashing Function ?

® The hash function used should be such that the resulting integer appears
to be a random function of the search key

othus, buckets will have more or less equal numbers of records and the
average time to locate a record will be improved

+but still one bucket may receive more records than another because
some values are more “popular” than others (data skewing)

® Typical hash functions perform computation on the internal binary
representation of the search-key

® A function commonly used to hash on integer-valued keys is K mod B,
which yields an integer in the range 0 to B-1

+ B is often chosen to be a prime number
¢ in certain cases it is convenient to use a power of 2

® For character string keys, characters may be treated as integers (integers
are summed up, divided by B, and the remainder of the division is taken

as the result of the hash function) ‘

CSD Univ. of Crete Fall 2014

Choice of Good Hash Functions

® Desired property: expected number of record keys/bucket is the same for
all buckets (uniform distribution) and is relatively small; ideally all buckets
consist of only one page

¢ B must be large enough to minimize the occurrence of overflow chains

¢ B must not be so large that bucket occupancy is small and too much
space is wasted

® The worst hash function maps all search-key values to the same bucket

+ this makes access time proportional to the number of search-key
values in the file
® Potentially good hash functions: division or multiplication
h(K) = (a*K + a’) mod B,
h(K) = [fractional-part-of (K * ¢)] * B,
¢ ¢: golden ratio (0.6180339887 = (sqrt(5)-1)/2)

+ advantage: B (size of hash table) need not be a prime number but ¢
must be irrational

¢ Read Knuth Vol. 3 for more on good hashing functions 5

@ CSD Univ. of Crete

sh ables in Secondary Storage:

elndex is a collection of buckets

¢Bucket = primary page plus zero or more overflow page

(1) key -> h(key)

Fall 2014

wo Alternatives

»w

S

Frosemesmensnnaeess »

records

O Hash value determines the storage block directly
to implement a clustered primary index

(2) key -> h(key)

® Records located indirectly via index buckets

for a secondary index

/ record

key 14

Index File

%] CSD Univ. of Crete Fall 2014

Static Hash Tables

® Buckets contain data entries
+Buckets of records, not pointers

¢Need to search within the bucket for
the record with the key h(key) mod B

® One primary page per bucket
¢ Fixed, allocated sequentially
e Additional overflow pages key 2= *** Jndpycket
® Fixed number of buckets
oFile grows
e Long overflow chains can develop B-1 |— ...
e Performance degrade
oFile shrinks Primary Overflow
e Space wastage bucket pages
® Rehash file periodically Pages

Block pointer

0 l— -

1 —> —— P> s nn

~ 91 CSD Univ. of Crete Fall 2014

Static Hash Tables

® Each bucket is identified by an address a

¢ Bucket at address a contains all index entries with search key v such
that h(v)=a

® Assumption: the address of the first block for bucket 1 is known
¢ may use a main-memory directory of pointers to blocks

¢ alternatively, the first block for each bucket may be placed in fixed,
consecutive locations on disk

e Example: h:{a,b,c,d,e,f} - {0,1,2,3}
h(a) = h(f) = 3, h(b) = 2, h(c) = h(e) =1, h(d) =0

T '\\
d i |c ie Db |3 T >plock headers

'\

~% CSD Univ. of Crete Fall 2014

Inserting into Static Hash Tables

®To insert record with key K:
¢ compute h (K)
¢ if bucket h(K) has space, insert the record in the block
¢ If not, insert it into one of the overflow blocks associated with the bucket

+ If none of them has space, add a new overflow block and store the
record there

— 2 records/bucket

INSERT: 0| d /
h(a) =1 1 5 = -]
h(b) = 2 -
h(c) = 1 , -
h(d) = 0

;]

Insert: h(e) = 1 10

/97 CSD Univ. of Crete

not

Fall 2014

Deleting from Static Hash Tables

® If record with search key K is to be deleted:
¢ search bucket h (K) for records with value K
¢ delete record(s) found
¢ optionally consolidate blocks on a chain after deletion

always a good idea to merge blocks of a chain: repeated

Insertions / deletions may cause blocks to be created / destroyed

at each step

Delet 0 5 | 2 records/bucket
elete:
e /
~ d
C g —
2
]
; £ “T¥naybe move
g — \\gll up 11

%9 CSD Univ. of Crete Fall 2014

Applications of Hash Tables

® Hashing can be used for both
primary and secondary indexes

® For a clustered primary index, secondary mndex ordered data tile
no separate index structure is g R 1
required as the hash function | 20 K 3
dictates the physical | 1 1
organization of the file 6 5
#The examples so far have been\ | 12 K A
clustered primary indexes 12 8
3 3 < B
® For a secondary index, the hash 4 3 A -
function computes a location in a 24 REx

secondary index file

+ This location contains a bucket
of physical addresses of records

that hash to this logical location .

/97 CSD Univ. of Crete

How Full should Buckets be?

® Space utilization:
utilization = # keys used 1n_a bucket
total # keys that fit in a block
+|f too small: wasting space
+If too big, overflows significant

® A good space utilization:
+depends on how good the hash function is
¢Rule of thumb: usually between 50% and 80%
o If U <50%, space is underutilized
o if U > 80%, overflows become significant

Fall 2014

13

.8 CSD Univ. of Crete
9

Fall 2014

Efficiency of Static Hash Tables

Searching for a key v:

©® Evaluate A(v)

® Fetch bucket at ~A(v)
® Search bucket

In an ideal case, we have enough buckets so that each bucket consists
of a single block

¢ Lookup: one disk I/O
¢ |Insert/ Delete: two disk I/O’s

In such a case, static hash tables (fixed B) perform better than simple
dense or sparse indexes, or even B+-trees

Dynamically growing files produce overflow chains, which negate the
efficiency of the hashing algorithm

¢ many blocks per chain may need to be searched
¢ hence, #blocks/bucket should be as low as possible

14

CSD Univ. of Crete Fall 2014

Static Hash Tables

\ K primary bucket page is full?
K Long Overflow Chains will degrade the
> performance
Solution: 1. Better Hash Function, 2.
More Buckets, 3. Dynamic Hashing.
Constant]] LR]]
Time

Fundamental Structure Overflow Pages
15

CSD Univ. of Crete Fall 2014

Dynamic Hash Tables

® Bucket (primary page) becomes full
+Why not re-organize the file by doubling # of buckets?
e Reading and writing all pages is expensive!

® |dea: the hash file size can grow and shrink “on the fly” in response to the
size of the data

B is allowed to vary
¢ Trick lies in how hash function is adjusted!

® Two types of dynamic hashing:

¢Extensible: uses a directory that grows or shrinks depending on the
data distribution

e No overflow buckets
eLinear: No directory

e Splits buckets in linear order, uses overflow buckets
16

~ 91 CSD Univ. of Crete Fall 2014

Extensible Hashing

® First Idea

e Use a family of hash functions based on h:
h,(key)= h(key) mod 2k

e The range of hash function has to be Use i of k bits output by
extended to accommodate additional
buckets (use a sequence of k bits of
h(key) for some large k, e.g., 32)

#At any given time a unique hash, h,, is used
depending on the number of times buckets h(K) - | 00110101
have been split

hash function

4—/{—»

e bucket addresses use fewer bits (say 1 Y
bits from the beginning of the sequence); use | — grows
hence, directory will have 27 entries over time. ...

e each bucket stores j, indicating the
number of bits used for placing the

records in this block (7 < 1) .

CSD Univ. of Crete

Extensible Hashing

® Second ldea:

eUse directory of pointers to bucket
blocks, i.e., introduce a level of
iIndirection

Fall 2014

Use directory of pointers

¢ The directory’s size is a power of 2 and h(K)[]

may vary;

e double # of buckets by doubling the
directory

e splitting just the bucket that
overflowed!

¢ Directory much smaller than file, so
doubling it is much cheaper

e Only one page of data entries is split

0101

=2

11

Directory of Buckets

Buckets with data
records

+Certain buckets may share a block For simplicity, *0101"” represents a

(if the total number of records of record whose key is hashed to “0101”
Alternative @ 18

the buckets fit in a block)

%7 CSD Univ. of Crete Fall 2014

Extensible Hashing

® Global depth of directory (1) eExample: k=4,1=1

oFirst 1 bits of a binary number to tell which
bucket an entry belongs to

+Number of bits needed to express total

Holds records whose key
hashes to a sequence
beginning with 0

number of buckets 0001 1
. : Global Depth
¢E.g., 1=2=>4 buckets; 1=3=>8 buckets _O ° eP/'
- - : =1
e¢Increase 1 by 1 after a directory split of -~
o Distribute entries across a bucket and its — Buckets
split image based on 1th bit 1 — 1001 |1
® Local depth of bucket (3) Directory 1100
+Hash values of data entries in bucket Holds records whose key'
agree on the first j bits hashes to a sequence
eincrease j by 1 after a bucket split beginning with 1
¢Assign new] to split image Local Depth: Number of bits

oIf bucket with local depth j = global depth Used to determine membership
i is split, then double the directory of records in block 10

e i1 CSD Univ. of Crete

Look Up

Extensible Hashing

-

Fall 2014

Global Depth = max(Local Depth of all buckets)

Extract i bits

Global Depth

K {(n(K)—(01100101) Tells the # of bits needed to determine the address

Local Depth

\

0@

01

10

11

buckets

|

—
\

Directory of pointers to

Buckets
holding data
entries

20

7% CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

® To insert a record with key K:

o compute h(K); take the first 1 bits of the sequence returned and
follow the pointer in the directory indexed by these 1 bits (global
depth), leading to block b

¢ If there is room, place record in b
¢ if not, then, let j be the local depth stored in the block header b:
1. If j < 1 (local < global), then:
a) Split b in two

b) Distribute records in b to the two blocks based on the value of
the (J+1)-st bit: those with 0 stay in b and those with 1 go to
the new block

c) Update header of each block with the splitimage j+1
d) Adjust pointers in directory so that entries point to the correct
block depending on their (J+1)-st bit

21

CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

. It may so happen, that examining the j-th bit may send alll
records to one block

— In this case, the process is repeated with the next higher
value of the split image J

2. Ifj 1 (local = global), then:

a) increment 1 by 1; double the size of the directory so it now
has 27+1 entries

b) let w be a sequence of 1 bits indexing the entries of the
previous directory

Then w, and w; each point to the same block that w pointed
to (entries share the block but the block hasn’t changed)

c) Asin case 1, split b (since 1>7)

22

e CSD Univ. of Crete

Buckets
0001
=1 / ____________
0 h
\\1001
Directory 1100

e record must go on the 2nd block
e block is full and must be split
o] =1 =1; 1++

00
01

10
11

Insertion into Extensible Hash

=2

abl

€S

® Example: insert record with value hashing to 1010 in the table

Fall 2014

e

Directory

Buckets
0001 1
1001 2
1010
1100 2

24

/% CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

® Example: insert records with values hashing to 0000 and 0111

0001 1 560015
//////, /////’6661 """
i=2 .
=2 D111 2
00 1001 |2 00 = O s
0 //////11616 """" 01 ,/////,
10 10 1001 |2
11 1100 |2 11 10107
e first block overflows \1100 ______ 2
e split block

o] < 1; J++

25

i1 CSD Univ. of Crete

0000 |2
0001
=2 0111 |2
00 //////’ ------------
01
10 1001 2
11 1010
\\\\\\x11oo 2

e block for 10 overflows
1++

000
001

010
011

100
101

110
111

Insertion into Extensible Hash

=3

Fall 2014

ables

0000 |2

0001
111 |2
1000 |3

//////’IGOI """
1010 |3

o I
2

26

/97 CSD Univ. of Crete

Deletion from Extensible Hash Tables

® To delete record with key K:
¢ remove data entry from bucket
¢ If bucket is empty
e merge bucket with its split image
e decrease local depth

e |f each directory element points to the same bucket as its split
image
. Halve directory
- Reduce global depth

Fall 2014

27

CSD Univ. of Crete Fall 2014

Analysis of Extensible Hash Tables

e With uniform distributed addresses, all the buckets tend to fill up at the
same time => split at the same time (Periodic and fluctuating)

+As buffer fills up to 90%

¢ After a concentrated series of splits drops to under 50%
® Space utilization of the bucket

oR (# of records), b (block size), B (# of Blocks)

eUtilization=R / b*B

eAverage utilization ~1n 2 (natural logarithm) = 0.69 ==> 69%

e recall normal B+-tree: 67%, B+-tree with redistribution: 85 %

® Space utilization for the directory

+How large a directory should we expect to have, given an expected
number of keys?
e estimated directory size = 3.92 /b*R(1+1/b) Flajolet (1983)
+Overall Load Factor (LF) of the file below 2 seeks, 75%~80%
utilization Litwin (1980)

e LF: The number of records in the file divided by the number of places for
the records in the primary area 28

~ % CSD Univ. of Crete

THA =111V 1911
SO0 = 1100 100
208 = 1140 1101
1331 = 1000 0100
BE =011 1000
Bl = 030 OOy
87 = 0100 0011
L1 = 00N g1t
A =0100 1110

i

0

10

"

I

010

A Pathological Case

100

]

on

100

101

110

T

"

200

208

55

1 digit
‘ot

L L

1
10

' [I !
CL 1=

3
3

® A pathological case: We need
a 32-entry table for 9 records

¢ Buckets are labeled with

the number of digits used.

The bucket factor is 2

000 — -
001 e el
010 f—
o1 =
100 ———
101 [
110 —_—
m 7
0000 1\~
0001 ——
0010 p——
001 —'/
ﬁ?oo —_——
2101 ————
0110 =
o ——
1000Q ~
1001 | e
1010 | =
101t | -
1100 —
:j;___._'

Fall 2014

00001

00010

oao11

00100

00101

ool 10

o011y

01000

0100Y

01010

01011

01100

01101

01110

o1in

10001

10010

10011

19100

10101

10110

1011Y

11000

11001

11010

11011

11100

1o

IARRL

s O N E

thn

29

%9 CSD Univ. of Crete Fall 2014

Efficiency of Extensible Hash Tables

® Example: 100MB file, 100 bytes/record, 4K pages contains 1.000.000
records (as data entries) and 25.000 directory entries

echances are high that directory will fit in memory
e With 80% utilization the directory size will be
. 1.2 *25.000 * 100 = 3.000.000 = 3M
® Pros:
eequality search can be answered with only one I/O to locate the record

+if the size of the bucket directory is small enough to be kept in main
memory no disk I/O is required to look-up the directory

® Cons:

¢ when the size of the bucket directory is doubled (if 1 is already large),
it may no longer fit in main memory

¢ if the number of records per block is small, block splitting may occur
earlier than actually required

® Can we do better? (smoother growth of bucket directories)

«In Linear Hashing, buckets are split from left to right, regardless of
which one overflowed (simple, but it works!!) 30

e CSD Univ. of Crete

® Global depth of directory
¢ Max # of bits needed to tell which bucket an entry belongs to

® Local depth of a bucket
¢ # of bits used to determine if an entry belongs to this bucket

® Use of least (vs most) significant bits enables efficient directory doubling

via copying!

Fall 2014

¢ doubled by copying it over and “fixing’ pointer to split image page

6 =110 00
= 00
- 01
1 00 "~ 0y
6* S~ \01 ~ o 1 0
S 6% <
<~ 10

Least Significant

VS.

6 =110
1 00
0 10
6* 01
11| 6*

Most Significant

00d
10
010
119 &
00

10
01
11

“Directory Doubling: Least vs. Most Significant Bits

31

~% CSD Univ. of Crete Fall 2014

Linear Hashing

® Handles the problem of long overflow chains

(chaining approach) without using a directory,
while it also handles duplicates

® First Idea: Use a family of hash functions h,,

h,, h,,
1olnitizal number of buckets B Use i low order bits of hash
oh (key) = h(key) mod(B * 2k) — k—
¢h is some hash function 01110101
e range is not 0 to B-1 ——
olf B = 290, for some d,, h; consists of grows—— j

applying h and looking at the last d; bits,
where d;= d, + 1

oh. doubles the range of h;

.Eg.B:32:25, h0= h mOd 32,d1= dO
+1=6h=hmod (32 * 2)

32

CSD Univ. of Crete Fall 2014

Linear Hashing

® Second ldea: Split buckets in ‘round-robin’
eCounter Level indicate current round number (initially 0)

+Bucket to split denoted by Next (initially
bucket O or first bucket)

The size of the table

B . o1= 2-eveIB=# buckets in file at the will grow gradually,

beginning of round Level but not double in size

¢ # buckets at beginning of round O,
denoted by B, is B 1,

Record blocks
+Round ends when all B, .1 buckets

have been split

33

ﬁ@ 4 CSD Univ. of Crete Fall 2014
o~

Linear Hashing

@ During round number Level, only hash functions h, ., .1
and h .,.7 . 1 are used, so at any given point in a round, we have:

+ buckets that have been split (0 to Next-1)

buckets that are yet to be split (Next to By, ,.1-1)

buckets created by splits in this round (B, oye1 10 2B, oye1-1 <
B1eve1+1)

34

Fall 2014

.8 CSD Univ. of Crete

Linear Hashing

e/n the middle of a round

Bucket to be split -I Buckets created by split in this round:
Next ‘ <« IfhLevel (key)
is in this range, must use
Buckets that existed at the hLevel+1(key)
beginning of this round: % to decide if entry is in
this is the range of *split image' bucket
h Level
BLeve1 -
Buckets available at the split image’ buckets:
beginning of the next round: | created (through §pl|tt!ng
this is the range of of other buckets) in this round
h Level + 1

2BLeve1 -1 - 35

1.

2.

3.

L ™84 CSD Univ. of Crete

Searching Linear Hash Tables

e To find bucket for data entry K:

Apply hash function h .. to
search key h .,.1(K)

If it leads to an unsplit bucketb |k
(bucket Next to B, . 1)

> look for K there

If it leads to a split bucket b
(bucket O to Next-1), K can be
in b or bucket b + B, a1

> apply h, ove1 + 1(K) to find out

Fall 2014

active hash table buckets are those In

h .. s range: [0 2tevel B— 1]
[\
rehashed
'h
Level+1
Level {Next
J
\
.
?p"t rehashed
image >h
bU Ck@tS Level+1
y 36

ﬁ@ i1 CSD Univ. of Crete Fall 2014
o~

Linear Hashing: Bucket Splitting

® Allocate a new bucket, append it to the hash table (its position will be
2tevel B+ Next)

® Re-distribute the entries in bucket Next by rehashing them via h, . .1,1
(some entries remain in bucket Next, some go to bucket B*2-evel4+Next)

‘ 0 «— next

h level+1 ‘

2Ievef B — 1
- Dlevel B 4 pext

® increment Next by 1
38

. ~$7 CSD Univ. of Crete
) (.;,

Fall 2014

Linear Hashing: Rehashing

@ Hashing via h, ., has to take care of Next’s position:

hLeve1(key) ={

range of Njever i1 4

y

y

range of Ajeyer 4

X 2J’evef‘ B

0

—1

hash buckets

- — — — — -

< Next: we hit an already split bucket, rehash
>= Next: we hit a yet unsplit bucket, bucket found

buckets already split { Ajever 1)

next bucket to be split

unsplit buckets (fjeyer)

images of already split buckets (Ajever 1)

39

Linear Hashing: Split Rounds
® A bucket split increments Next by 1 to mark the next bucket to be split

® How would you propose to handle the situation if Next Is incremented
beyond the last current hash table position, i.e., Next> 2tevelg— 1?7

olf Next> 2tevelg— 1, all buckets in the current hash table are hashed
via h . .1.1 (see previous slides)

e¢Linear hashing thus proceeds in a round-robin fashion:
o If Next> 2tevelp— 1, then
. iIncrement level by 1,
. reset next to O (start splitting from the hash table top again)

® |n general, an overflowing bucket is not split immediately, but—due to
round-robin splitting—no later than in the following round

CSD Univ. of Crete Fall 2014

40

%] CSD Univ. of Crete Fall 2014

Insertion into Linear Hash Tables

® To insert a data entry K:
eLocate bucket by applying h, .7 (K) or h, ,e7.1(K)
e If bucket is full
e Add overflow page and insert data entry
e (Maybe) Split bucket Next

. Hash function h_ .., redistributes entries between bucket Next
and bucket Next + B . e

. Increment pointer Next
® Buckets are split round-robin, long overflow chains don’t occur
+in general, the spitted bucked is not the bucket which triggered the split!
scach bucket may use overflow pages
® Choose any criterion to "trigger’ split
e¢insertions filled a primary bucket page beyond c % capacity,
+o0r the overflow chain of a bucket grew longer than p pages, or . . .
® We will examine, in the sequel, the first growth method 43

/%1 CSD Univ. of Crete

Level=0, B=4, primary bucket capacity = 4

PRIMARY
Next=0PAGES
N\,
3244361

h h
1 0
000 00
001 01
010 10
011 11
——
low order
bits

(This info is for
Illustration only!) of the linear hashed file)

Example of Linear Hashing

O 25%5%*

14T18f1°13°|5\ Primary
— bucket page
3113517% 11¢
1

(The actual contents

h
1

000

001

011

100

® On split, h .1 IS USed to re-distribute entries

h
0

00
01

10

R

00

PRIMARY
PAGES

32¢

Y

xt=1

9% 25=f5*

14*(18110130J|'_<

3113517% 11f

Fall 2014

Level=0, Insert record such that hO(key)=43=101011,

OVERFLOW
PAGES

43%

44+36%

\ 4

44

e CSD Univ. of Crete

Example: End of a Round

Level=0 , Insert records such that h,(k)

37=100101, 22=10110,
29=11101, 66=1000010,
34 = 100010,

PRIMARY OVERFLOW
h1 | ho PAGES PAGES
000| 00 32%

001 | o1 9*25%

010| 10 66*1.8%10* 34
Next=3 -

o11| 11| [31*35*7x114 [43%

100| 00 44%36*

101| o1 5* 37* 29%

110| 10 14*30* 22%*

Level=1, B=8

h2 hy Flhoi
1
0oo |} og
L
1
001 |ioL
(N
1
010
Iy
i
011 | 11
1
n
100 | ido
11\
1\
101 |10l
1 1
|
110 |} 10
I 1
111F 111

PRIMARY

PAGES

Next=0

N

32%

9*25%

Fall 2014

OVERFLOW

PAGES

66*18*10*34*

50*

43*35% 11%*

44* 36*

5% 37%29*

14%* 30*22%*

31%7%

v

45

CSD Univ. of Crete Fall 2014

Analysis of Linear Hashing

® B: the current number of bucket blocks in use (at round number Level)

#As the table grows, the initial # of bucket blocks is increased but it may
not always be a power of 2

e Level: the # bits of h (k) used to address buckets is | 1Tog,B. (low-order
bits)

® R: number of records stored in hash table
einitially O and increased as records are added

® Utilization of the hash table is the number of stored records divided by the
number of possible storage places = R / B * ¢ (#entries/block)

eoratio R/B limited so that the average number of records per bucket is a
fixed fraction of the number of records that fit in one block

soverflow blocks are permitted, but the average number of overflow per
bucket will be <=1

® We will use this ratio to determine when to grow or shrink the hash table
+grow when R/B >= 90% and shrink when R/B <= 75%
ewe will use the average value of 85% as the threshold for growth 4

Fall 2014

~ 91 CSD Univ. of Crete

Insertion into Linear Hash Tables: Alternative Algo

® To insert record with key K:
¢ Compute h(K)=b and determine the 1-bit rightmost (b=a,a,..a;)
sequence of h(K) to use as the bucket number
e |f b<B the bucket with number b exists and the record is placed

there

e If B<b<2', then the bucket does not exist and we have to place
the record in bucket b—27-1 (this is the bucket we would obtain if

a, changed to 0)

. If the bucket we add has number 1a,..a;, then we split the
bucket numbered 0a,...a; and divide the records depending on

their last 1 bits
e |f B>27then i is incremented by 1 (leading 0O is added)
¢ Each time an insertion need to be performed, we examine the ratio
R/B and if it is too high, we increase B by 1 (R the # of records in
hash table)

48

o CSD Univ. of Crete

B=2
Level=1
R=3

1

Fall 2014

Linear Hashing Occupancy Example

® Example: B=2, Level=1, assume h produces 4-bit sequences (k=4)

records ending in O

records ending in 1

e |If R <=1.7B, and block holds 2 records then on the average, occupancy c
of a bucket does not exceed 85% (i.e., < 1.7/2) of the block capacity

49

A ’?@ 1 CSD Univ. of Crete Fall 2014

Linear Hashing: Second Example

® Example: 2 keys/block, R=3, B=2, Level =1 assume h produces 4-bit
sequences (k=4)

0000 0101 einsert 0101
1010 1111 enow R=4 >1.7B (R/B =2) | Rule
B = > B++ Level++
00 01 - get new bucket 10 and distribute
keys between buckets 00 and 10
10

Rule Ifh(k)[1] = (a; .. a;), < B, then
look at bucket h(k) [1];

else
look at bucket h(k) [1] - 21 = (0a, .. a;), 50

ﬁ@ i1 CSD Univ. of Crete Fall 2014
o~

Linear Hashing: Second Example

-> R=4, B=3, Level =2;
distribute keys between buckets 00 and 10:

0000 0101 1010
4016~ 1111
0 01 10

enow R=4 <1.7B (R/B = 1.33) !

o1

‘?@ 1 CSD Univ. of Crete Fall 2014

Linear Hashing: Second Example

R=4, B=3, Level =2; insert 0001:

0001 e can have overflow chains!
e oW R/B becomes 5/3 < 1.7

0000 0101 | 1010
1111

52

3 CSD Univ. of Crete Fall 2014

Linear Hashing: Second Example

R=5, B=3, Level =2

e insert
0111
0001 e bucket 11 not in use
0111 > - redirect to 01
- e now R=6 > 1.7B
0000 0101 1010 > get new bucket 11
1111
00 01 10

Rule Ifh(k)[1] = (a; .. a;), < B, then
look at bucket h(k) [1];
else
look at bucket h(k) [1] - 21 = (0a, .. a;),

53

A ’?@ 1 CSD Univ. of Crete Fall 2014

Linear Hashing: Second Example

R=6, B=4, Level =2; distribute keys between 01 and 11

BO6T
It >/
0000 0101 | 1010 1111
0001 o1l
00 01 10 11

Overflow block no longer needed !

54

‘?@ i1 CSD Univ. of Crete Fall 2014

Linear Hashing: Second Example

Example Continued: How to grow beyond this?

B++
Level++ (Z) 3

0000 01601 1010 1111 0101

01671 0101

000 0o1 010 011 100 101
S 110 111 T

B =4+t (max used block) f
186~

101 —

55

~% CSD Univ. of Crete Fall 2014

Linear vs. Extensible Hashing

® Two schemes are quite similar
+Imagine Linear Hashing (LH) has a directory with elements 0 to B-1
o First split at bucket 0, add directory element B
e Imagine entire directory doubled at this point
e Elements <1,B+1>, <2,B+2>, ... are the same
e Only create directory element B, which differs from 0, now
+Second split at bucket 1, create directory element B+1
+ S0, directory can double gradually
¢ Also, primary bucket pages are created in order
e |f they are allocated in sequence too, then finding bucket i is easy
e Thus, we actually don’'t need a directory!

® L H is recommended when main storage is at a premium since it requires
no directory

o Particularly useful in a small computer environment

® EH could be useful if sufficient main memory is available to hold the
directory

+Doubling and halving the directory size is expensive >

CSD Univ. of Crete Fall 2014

Hashing vs. B+ trees

® |In a typical DBMS, you will find support for B+ trees as well as hash-based
iIndexing structures

+Cost of periodic re-organization
+Relative frequency of insertions and deletions

#ls it desirable to optimize average access time at the expense of worst-
case access time?

® |n a B+ tree, to locate a record with key k means to compare k with other
keys k' organized in a (tree-shaped) search data structure

® Hash indexes use the bits of k itself (independent of all other stored
records and their keys) to find the location of the associated record

® Hash indexes: best for equality searches, cannot support range searches
(also known as scatter storage)

¢ True, but they can be used to answer range queries in O(1+Z/B) 1/Os,
where Z is the number of results (Alstrup et all 2001; Brodal et all 2004)

® Although hash indexes supports multiple attribute keys, cannot support
partial key search 57

/97 CSD Univ. of Crete

References

® Based on slides from:
¢R. Ramakrishnan and J. Gehrke
oH. Garcia Molina
+J. Hellerstein
oL. Mong Li
+P. Kilpelainen
¢R. Lawrence
oM. H. Scholl

Fall 2014

58

TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= -]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang

XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong

2NMEIWMAT

2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.

2NUEIWHA AVO@POpPAC

Copyright TMavemotiuio Kpntng, AnuAtpng TMAeCoucAKNnG. «ZUCTAMOATA
Alaxeipiong Baceswv Aedopévwy. AlaAegn 3n: Access methods: Hash
IndexesAi1dAegn 2n: Access methods, File organization, B+Tree». '/Ekdoon:
1.0. HpdkAeio/P€Bupvo 2015. AiaBeoiyo amd 1 OIKTUAKR OleuBuvon:
http://www.csd.uoc.gr/~hy460/

