
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης

Βάσεων Δεδομένων
Διάλεξη 3η: Access methods: Hash Indexes

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

1

CSD Univ. of Crete Fall 2014

ACCESS METHODS:
HASH INDEXES

2

CSD Univ. of Crete Fall 2014

 Hash Tables

 frequently used as main-memory data structures

 idea: use a hash function h taking as input a (hash) key and returning
an integer in the range [0,..,B-1]; B is the number of available
buckets

 organization: a bucket array indexed [0,..,B-1] stores the headers
of B linked lists; if a record has a search key K, then it will be stored in
the list for the bucket numbered h(K)

 Hash Tables in Secondary Storage vs main-memory:

 Bucket is a unit of storage containing one or more records, typically a
disk block

 Records (or pointers) are placed in the block returned by the hash
function

 Chains of overflow blocks may be added to buckets to
accommodate more records

 Bucket array (directory) consists of block addresses rather than
pointers to lists

Hash-based Indexes

3

CSD Univ. of Crete Fall 2014

Hash Tables in Secondary Storage

Block address

on disk

Hash file has relative bucket numbers 0 through B-1

Map logical bucket numbers to physical disk block addresses

Bucket Directory
…

0
1
2
3

B-1

H(K)

K

4

CSD Univ. of Crete Fall 2014

How do we Choose a Hashing Function ?

 The hash function used should be such that the resulting integer appears

to be a random function of the search key

thus, buckets will have more or less equal numbers of records and the

average time to locate a record will be improved

but still one bucket may receive more records than another because

some values are more “popular” than others (data skewing)

 Typical hash functions perform computation on the internal binary

representation of the search-key

 A function commonly used to hash on integer-valued keys is K mod B,

which yields an integer in the range 0 to B-1

 B is often chosen to be a prime number

 in certain cases it is convenient to use a power of 2

 For character string keys, characters may be treated as integers (integers

are summed up, divided by B, and the remainder of the division is taken

as the result of the hash function)

5

CSD Univ. of Crete Fall 2014

Choice of Good Hash Functions

 Desired property: expected number of record keys/bucket is the same for
all buckets (uniform distribution) and is relatively small; ideally all buckets
consist of only one page

 B must be large enough to minimize the occurrence of overflow chains

 B must not be so large that bucket occupancy is small and too much
space is wasted

 The worst hash function maps all search-key values to the same bucket

 this makes access time proportional to the number of search-key
values in the file

 Potentially good hash functions: division or multiplication

h(K) = (a*K + a’) mod B,
h(K) = [fractional-part-of (K * φ)] * B,
 φ: golden ratio (0.6180339887 = (sqrt(5)-1)/2)
 advantage: B (size of hash table) need not be a prime number but φ

must be irrational

 Read Knuth Vol. 3 for more on good hashing functions

7

CSD Univ. of Crete Fall 2014

.

.

.

records

.

.

.

(1) key -> h(key)

(2) key -> h(key)

Index File

record
key 1

Hash value determines the storage block directly

to implement a clustered primary index

Records located indirectly via index buckets

for a secondary index

Hash Tables in Secondary Storage: Two Alternatives

Index is a collection of buckets

Bucket = primary page plus zero or more overflow pages

8

CSD Univ. of Crete Fall 2014

Static Hash Tables

 Buckets contain data entries

Buckets of records, not pointers

Need to search within the bucket for
the record with the key

 One primary page per bucket

Fixed, allocated sequentially

Additional overflow pages

 Fixed number of buckets

File grows

 Long overflow chains can develop

Performance degrade

File shrinks

Space wastage

 Rehash file periodically

h(key) mod B

h
key

Primary
bucket
pages

1
0

B-1

…

…

…

…

Block pointer

Overflow
pages

2ndbucket2

9

CSD Univ. of Crete Fall 2014

 Each bucket is identified by an address a
 Bucket at address a contains all index entries with search key v such

that h(v)=a

 Assumption: the address of the first block for bucket i is known

 may use a main-memory directory of pointers to blocks

 alternatively, the first block for each bucket may be placed in fixed,

consecutive locations on disk

 Example: h:{a,b,c,d,e,f} {0,1,2,3}

h(a) = h(f) = 3, h(b) = 2, h(c) = h(e) = 1, h(d) = 0

Static Hash Tables

block headers

0 1 2 3

d c e b a f

10

CSD Univ. of Crete Fall 2014

Inserting into Static Hash Tables

INSERT:

h(a) = 1

h(b) = 2

h(c) = 1

h(d) = 0

0

1

2

3

d

a

c

b

Insert: h(e) = 1

e

2 records/bucket

To insert record with key K:

 compute h(K)

 if bucket h(K) has space, insert the record in the block

 if not, insert it into one of the overflow blocks associated with the bucket

 if none of them has space, add a new overflow block and store the
record there

11

CSD Univ. of Crete Fall 2014

0

1

2

3

a

b

c

e

d

Delete:
e
f

f

g
maybe move

“g” up

c
d

Deleting from Static Hash Tables

 If record with search key K is to be deleted:

 search bucket h(K) for records with value K

 delete record(s) found

 optionally consolidate blocks on a chain after deletion

 not always a good idea to merge blocks of a chain: repeated
insertions / deletions may cause blocks to be created / destroyed
at each step

2 records/bucket

12

CSD Univ. of Crete Fall 2014

Applications of Hash Tables

 Hashing can be used for both
primary and secondary indexes

 For a clustered primary index,
no separate index structure is
required as the hash function
dictates the physical
organization of the file

The examples so far have been
clustered primary indexes

 For a secondary index, the hash
function computes a location in a
secondary index file

This location contains a bucket
of physical addresses of records
that hash to this logical location

13

CSD Univ. of Crete Fall 2014

 Space utilization:

utilization = # keys used in a bucket

total # keys that fit in a block

If too small: wasting space

If too big, overflows significant

 A good space utilization:

depends on how good the hash function is

Rule of thumb: usually between 50% and 80%

 If U < 50%, space is underutilized

 if U > 80%, overflows become significant

How Full should Buckets be?

14

CSD Univ. of Crete Fall 2014

Efficiency of Static Hash Tables

 Searching for a key v:

 Evaluate h(v)

 Fetch bucket at h(v)

 Search bucket

 In an ideal case, we have enough buckets so that each bucket consists
of a single block

 Lookup: one disk I/O

 Insert / Delete: two disk I/O’s

 In such a case, static hash tables (fixed B) perform better than simple
dense or sparse indexes, or even B+-trees

 Dynamically growing files produce overflow chains, which negate the
efficiency of the hashing algorithm

 many blocks per chain may need to be searched

 hence, #blocks/bucket should be as low as possible

15

CSD Univ. of Crete Fall 2014

Static Hash Tables

h(k) …
… …
…

K*

k

Primary Bucket Pages

Fundamental Structure

Long Overflow Chains will degrade the

performance

Solution: 1. Better Hash Function, 2.

More Buckets, 3. Dynamic Hashing.

Overflow Pages

What should do if the
primary bucket page is full?

Constant
Time

16

CSD Univ. of Crete Fall 2014

Dynamic Hash Tables

 Bucket (primary page) becomes full

Why not re-organize the file by doubling # of buckets?

Reading and writing all pages is expensive!

 Idea: the hash file size can grow and shrink “on the fly” in response to the
size of the data

B is allowed to vary

Trick lies in how hash function is adjusted!

 Two types of dynamic hashing:

Extensible: uses a directory that grows or shrinks depending on the
data distribution

No overflow buckets

Linear: No directory

Splits buckets in linear order, uses overflow buckets

17

CSD Univ. of Crete Fall 2014

Extensible Hashing

 First Idea

Use a family of hash functions based on h:
hk(key)= h(key) mod 2

k

The range of hash function has to be
extended to accommodate additional
buckets (use a sequence of k bits of
h(key) for some large k, e.g., 32)

At any given time a unique hash, hk, is used
depending on the number of times buckets
have been split

 bucket addresses use fewer bits (say i
bits from the beginning of the sequence);
hence, directory will have 2i entries

 each bucket stores j, indicating the
number of bits used for placing the
records in this block (j i)

00110101

Use i of k bits output by

hash function

k

use i grows

over time….

h(K)

18

CSD Univ. of Crete Fall 2014

Extensible Hashing

 Second Idea:

Use directory of pointers to bucket
blocks, i.e., introduce a level of
indirection

The directory’s size is a power of 2 and
may vary;

 double # of buckets by doubling the
directory

 splitting just the bucket that
overflowed!

Directory much smaller than file, so
doubling it is much cheaper

Only one page of data entries is split

Certain buckets may share a block
(if the total number of records of
the buckets fit in a block)

Use directory of pointers

h(K)[i]

For simplicity, “0101” represents a

record whose key is hashed to “0101”

2

0101
Directory of Buckets

00

01

i=2

10

11

Buckets with data
records

Alternative

19

CSD Univ. of Crete Fall 2014

Extensible Hashing

 Global depth of directory (i)

First i bits of a binary number to tell which
bucket an entry belongs to

Number of bits needed to express total
number of buckets

E.g., i=2=>4 buckets; i=3=>8 buckets

Increase i by 1 after a directory split

Distribute entries across a bucket and its
split image based on ith bit

 Local depth of bucket (j)

Hash values of data entries in bucket
agree on the first j bits

Increase j by 1 after a bucket split

Assign new j to split image

If bucket with local depth j = global depth
i is split, then double the directory

0

1

Buckets

0001

1001

1100

1

1

Directory

Holds records whose key
hashes to a sequence
beginning with 0

Holds records whose key
hashes to a sequence
beginning with 1

Local Depth: Number of bits
used to determine membership

of records in block

i=1

Global Depth

Example: k=4,i=1

20

CSD Univ. of Crete Fall 2014

Extensible Hashing

h(k)
k

(01100101)

Extract i bits

Look Up

i
00
01
10
11

i1

i2

i3

Directory of pointers to
buckets

Buckets
holding data
entries

Global Depth
Local Depth

Global Depth = max(Local Depth of all buckets)

Tells the # of bits needed to determine the address

21

CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

 To insert a record with key K:

 compute h(K); take the first i bits of the sequence returned and

follow the pointer in the directory indexed by these i bits (global

depth), leading to block b

 if there is room, place record in b

 if not, then, let j be the local depth stored in the block header b:

1. If j < i (local < global), then:

a) Split b in two

b) Distribute records in b to the two blocks based on the value of

the (j+1)-st bit: those with 0 stay in b and those with 1 go to

the new block

c) Update header of each block with the split image j+1

d) Adjust pointers in directory so that entries point to the correct

block depending on their (j+1)-st bit

22

CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

 It may so happen, that examining the j-th bit may send all

records to one block

 In this case, the process is repeated with the next higher

value of the split image j

2. If j = i (local = global), then:

a) increment i by 1; double the size of the directory so it now

has 2i+1 entries

b) let w be a sequence of i bits indexing the entries of the

previous directory

 Then w0 and w1 each point to the same block that w pointed

to (entries share the block but the block hasn’t changed)

c) As in case 1, split b (since i>j)

24

CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

 Example: insert record with value hashing to 1010 in the table

 record must go on the 2nd block

 block is full and must be split

 j = i = 1; i++

00

01

10

11

1001

1010

0001 1

2

1100 2

0

1

Buckets

0001

1001

1100

1

1

Directory

Directory

Bucketsi=1

i=2

25

CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

 Example: insert records with values hashing to 0000 and 0111

 first block overflows

 split block

 j < i; j++

00

01

10

11

1001

1010

0001 1

2

1100 2

00

01

10

11

0000 2

1001

1010

2

1100 2

0111 2

0001

i=2
i=2

26

CSD Univ. of Crete Fall 2014

Insertion into Extensible Hash Tables

 Example: insert record with value hashing to 1000

 block for 10 overflows

 j = i = 2; i++

00

01

10

11

0000 2

1001

1010

2

1100 2

0111 2

0001

000

001

010

011

0000 2

1000

1001

3

1010 3

0111 2

0001

100

101

110

111 1100 2

i=2
i=3

27

CSD Univ. of Crete Fall 2014

Deletion from Extensible Hash Tables

 To delete record with key K:

 remove data entry from bucket

 if bucket is empty

 merge bucket with its split image

 decrease local depth

 If each directory element points to the same bucket as its split

image

 Halve directory

 Reduce global depth

28

CSD Univ. of Crete Fall 2014

Analysis of Extensible Hash Tables

 With uniform distributed addresses, all the buckets tend to fill up at the
same time => split at the same time (Periodic and fluctuating)

As buffer fills up to 90%

After a concentrated series of splits drops to under 50%

 Space utilization of the bucket

R (# of records), b (block size), B (# of Blocks)

Utilization = R / b*B
Average utilization ~ln 2 (natural logarithm) = 0.69 ==> 69%

 recall normal B+-tree: 67%, B+-tree with redistribution: 85 %

 Space utilization for the directory

How large a directory should we expect to have, given an expected
number of keys?

 estimated directory size = 3.92/b*R(1+1/b) Flajolet (1983)

Overall Load Factor (LF) of the file below 2 seeks, 75%~80%
utilization Litwin (1980)
 LF: The number of records in the file divided by the number of places for

the records in the primary area

29

CSD Univ. of Crete Fall 2014

A Pathological Case

 A pathological case: We need

a 32-entry table for 9 records

Buckets are labeled with

the number of digits used.

The bucket factor is 2

30

CSD Univ. of Crete Fall 2014

Efficiency of Extensible Hash Tables

 Example: 100MB file, 100 bytes/record, 4K pages contains 1.000.000
records (as data entries) and 25.000 directory entries

chances are high that directory will fit in memory

With 80% utilization the directory size will be

 1.2 * 25.000 * 100 = 3.000.000 = 3M

 Pros:

equality search can be answered with only one I/O to locate the record

if the size of the bucket directory is small enough to be kept in main
memory no disk I/O is required to look-up the directory

 Cons:

 when the size of the bucket directory is doubled (if i is already large),
it may no longer fit in main memory

 if the number of records per block is small, block splitting may occur
earlier than actually required

 Can we do better? (smoother growth of bucket directories)

In Linear Hashing, buckets are split from left to right, regardless of
which one overflowed (simple, but it works!!)

31

CSD Univ. of Crete Fall 2014

Directory Doubling: Least vs. Most Significant Bits

00

01

10

11

2

000

001

010

011

3

100

101

110

111
vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*

6*

6*

6 = 110 000

100

010

110

001

101

011

111Least Significant Most Significant

 Global depth of directory

Max # of bits needed to tell which bucket an entry belongs to

 Local depth of a bucket

of bits used to determine if an entry belongs to this bucket

 Use of least (vs most) significant bits enables efficient directory doubling
via copying!

 doubled by copying it over and `fixing’ pointer to split image page

32

CSD Univ. of Crete Fall 2014

Linear Hashing

 Handles the problem of long overflow chains
(chaining approach) without using a directory,
while it also handles duplicates

 First Idea: Use a family of hash functions h0,
h1, h2, ...

Initial number of buckets B

hk(key) = h(key) mod(B * 2k)

h is some hash function

 range is not 0 to B-1

If B = 2d0, for some d0, hi consists of
applying h and looking at the last di bits,
where di= d0 + i

hi+1 doubles the range of hi
Eg. B = 32 = 25, h0= h mod 32, d1= d0
+ 1 = 6, h1= h mod (32 * 2)

01110101

grows

k

i

Use i low order bits of hash

33

CSD Univ. of Crete Fall 2014

Linear Hashing

 Second Idea: Split buckets in ‘round-robin’

Counter Level indicate current round number (initially 0)

Bucket to split denoted by Next (initially
bucket 0 or first bucket)

BLevel= 2
LevelB= # buckets in file at the

beginning of round Level

 # buckets at beginning of round 0,
denoted by B0 is B

Round ends when all BLevel buckets
have been split

The size of the table

will grow gradually,

but not double in size

Record blocks

34

CSD Univ. of Crete Fall 2014

Linear Hashing

 During round number Level, only hash functions hLevel
and hLevel + 1 are used, so at any given point in a round, we have:

 buckets that have been split (0 to Next-1)

 buckets that are yet to be split (Next to Blevel-1)

 buckets created by splits in this round (BLevel to 2BLevel-1 <
Blevel+1)

35

CSD Univ. of Crete Fall 2014

Linear Hashing

In the middle of a round

Level
h

Buckets that existed at the

beginning of this round:
this is the range of

Next
Bucket to be split

of other buckets) in this round

Levelh key)(

key)(

Buckets created by split in this round:
If
is in this range, must use
h Level+1

`split image' bucket
to decide if entry is in

created (through splitting
`split image' buckets:

2BLevel -1

BLevel

Level + 1
h

Buckets available at the

beginning of the next round:
this is the range of

36

CSD Univ. of Crete Fall 2014

Searching Linear Hash Tables

 To find bucket for data entry K:

1. Apply hash function hLevel to
search key hLevel(K)

2. If it leads to an unsplit bucket b
(bucket Next to BLevel)

 look for K there

3. If it leads to a split bucket b
(bucket 0 to Next-1), K can be
in b or bucket b + BLevel
 apply hLevel + 1(K) to find out

NexthLevel

rehashed
hLevel+1

Split
image
buckets

active hash table buckets are those in

hLavel ’s range: [0 .. 2Level B− 1]

rehashed
hLevel+1

38

CSD Univ. of Crete Fall 2014

Linear Hashing: Bucket Splitting

 Allocate a new bucket, append it to the hash table (its position will be

2Level B + Next)

 Re-distribute the entries in bucket Next by rehashing them via hLevel+1
(some entries remain in bucket Next, some go to bucket B*2Level+Next)

 increment Next by 1

B

B

39

CSD Univ. of Crete Fall 2014

Linear Hashing: Rehashing

 Hashing via hLevel has to take care of Next’s position:

hLevel(key) = < Next: we hit an already split bucket, rehash

>= Next: we hit a yet unsplit bucket, bucket found

B

40

CSD Univ. of Crete Fall 2014

Linear Hashing: Split Rounds

 A bucket split increments Next by 1 to mark the next bucket to be split

 How would you propose to handle the situation if Next is incremented

beyond the last current hash table position, i.e., Next> 2LevelB− 1?

If Next> 2LevelB− 1, all buckets in the current hash table are hashed

via hLevel+1 (see previous slides)

Linear hashing thus proceeds in a round-robin fashion:

 If Next> 2LevelB− 1, then

 increment level by 1,

 reset next to 0 (start splitting from the hash table top again)

 In general, an overflowing bucket is not split immediately, but—due to

round-robin splitting—no later than in the following round

43

CSD Univ. of Crete Fall 2014

Insertion into Linear Hash Tables

 To insert a data entry K:

Locate bucket by applying hLevel(K) or hLevel+1(K)

 If bucket is full

Add overflow page and insert data entry

 (Maybe) Split bucket Next

 Hash function hLevel+1 redistributes entries between bucket Next
and bucket Next + BLevel

 Increment pointer Next

 Buckets are split round-robin, long overflow chains don’t occur

in general, the spitted bucked is not the bucket which triggered the split!

each bucket may use overflow pages

 Choose any criterion to `trigger’ split

insertions filled a primary bucket page beyond c % capacity,

or the overflow chain of a bucket grew longer than p pages, or . . .

 We will examine, in the sequel, the first growth method

44

CSD Univ. of Crete Fall 2014

Example of Linear Hashing

 On split, hLevel+1 is used to re-distribute entries

0
hh

1

(This info is for
Illustration only!)

Level=0, B=4, primary bucket capacity = 4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed file)

Next=0

PRIMARY

PAGES

Data entry
with h(key)=5

Primary
bucket page

44*36*32*

25*9* 5*

14*18*10*30*

31*35* 11*7*

0
hh

1

Level=0, Insert record such that h0(key)=43=1010112

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44*36*

32*

25*9* 5*

14*18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100
low order

bits

45

CSD Univ. of Crete Fall 2014

Example: End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0 , Insert records such that h0(k)
37=1001012

29=111012

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7*11* 43*

44*36*

37* 29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1 , B=8

111

01

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9*25*

66*18*10*34*

35* 11*

44* 36*

5* 29*

43*

14* 30*22*

31*7*

50*

22=101102

66=10000102

34 = 1000102

h2

47

CSD Univ. of Crete Fall 2014

Analysis of Linear Hashing

 B: the current number of bucket blocks in use (at round number Level)

As the table grows, the initial # of bucket blocks is increased but it may
not always be a power of 2

 Level: the # bits of h(k) used to address buckets is log2B (low-order
bits)

 R: number of records stored in hash table

initially 0 and increased as records are added

 Utilization of the hash table is the number of stored records divided by the
number of possible storage places = R / B * c (#entries/block)

ratio R/B limited so that the average number of records per bucket is a
fixed fraction of the number of records that fit in one block

overflow blocks are permitted, but the average number of overflow per
bucket will be <= 1

 We will use this ratio to determine when to grow or shrink the hash table

grow when R/B >= 90% and shrink when R/B <= 75%

we will use the average value of 85% as the threshold for growth

48

CSD Univ. of Crete Fall 2014

Insertion into Linear Hash Tables: Alternative Algo

 To insert record with key K:

 Compute h(K)=b and determine the i-bit rightmost (b=a1a2…ai)
sequence of h(K) to use as the bucket number

 If b<B the bucket with number b exists and the record is placed

there

 If Bb<2i, then the bucket does not exist and we have to place

the record in bucket b–2i-1 (this is the bucket we would obtain if

a1 changed to 0)

 If the bucket we add has number 1a2…ai, then we split the

bucket numbered 0a2…aiand divide the records depending on

their last i bits

 If B>2i then i is incremented by 1 (leading 0 is added)

 Each time an insertion need to be performed, we examine the ratio

R/B and if it is too high, we increase B by 1 (R the # of records in

hash table)

49

CSD Univ. of Crete Fall 2014

Linear Hashing Occupancy Example

 Example: B=2, Level=1, assume h produces 4-bit sequences (k=4)

 If R <=1.7B, and block holds 2 records then on the average, occupancy c
of a bucket does not exceed 85% (i.e., 1.7/2) of the block capacity

B=2

Level=1

R=3

0000

1111

1010
0

1

records ending in 0

records ending in 1

50

CSD Univ. of Crete Fall 2014

00 01

1111

0000

1010

If h(k)[i] = (a1 … ai)2 < B, then

look at bucket h(k)[i];

else

look at bucket h(k)[i] - 2i-1 = (0a2 … ai)2

Rule

0101

Linear Hashing: Second Example

 Example: 2 keys/block, R=3, B=2, Level =1 assume h produces 4-bit

sequences (k=4)

•insert 0101

•now R=4 >1.7B (R/B = 2)

 B++ Level++
 get new bucket 10 and distribute

keys between buckets 00 and 10

Rule

10

51

CSD Univ. of Crete Fall 2014

-> R=4, B=3, Level =2;

distribute keys between buckets 00 and 10:

00 01 10

0101

1111

0000

1010

1010

Linear Hashing: Second Example

•now R=4 <1.7B (R/B = 1.33) !

52

CSD Univ. of Crete Fall 2014

R=4, B=3, Level =2; insert 0001:

00 01 10

0101

1111

0000

0001

1010

• can have overflow chains!
• now R/B becomes 5/3 < 1.7

Linear Hashing: Second Example

53

CSD Univ. of Crete Fall 2014

R=5, B=3, Level =2

00 01 10

0101

1111

0000 1010

0001

• insert
0111

• bucket 11 not in use

0111

• now R=6 > 1.7B
 get new bucket 11

Linear Hashing: Second Example

If h(k)[i] = (a1 … ai)2 < B, then

look at bucket h(k)[i];

else

look at bucket h(k)[i] - 2i-1 = (0a2 … ai)2

Rule

 redirect to 01

54

CSD Univ. of Crete Fall 2014

R=6, B=4, Level =2; distribute keys between 01 and 11

00 01 10 11

0101

1111

0000 1010

0001

0111

1111

01110001

Linear Hashing: Second Example

Overflow block no longer needed !

55

CSD Univ. of Crete Fall 2014

Example Continued: How to grow beyond this?

00 01 10 11

111110100101

0101

0000

B = 11 (max used block)

B++
Level++ (2)

0 0 0 0
101 110 111

3

. . .

100

100

101

101

0101

0101

Linear Hashing: Second Example

56

CSD Univ. of Crete Fall 2014

Linear vs. Extensible Hashing

 Two schemes are quite similar

Imagine Linear Hashing (LH) has a directory with elements 0 to B-1

First split at bucket 0, add directory element B

 Imagine entire directory doubled at this point

Elements <1,B+1>, <2,B+2>, ... are the same

Only create directory element B, which differs from 0, now

Second split at bucket 1, create directory element B+1

So, directory can double gradually

Also, primary bucket pages are created in order

 If they are allocated in sequence too, then finding bucket i is easy

Thus, we actually don’t need a directory!

 LH is recommended when main storage is at a premium since it requires
no directory

Particularly useful in a small computer environment

 EH could be useful if sufficient main memory is available to hold the
directory

Doubling and halving the directory size is expensive

57

CSD Univ. of Crete Fall 2014

Hashing vs. B+ trees

 In a typical DBMS, you will find support for B+ trees as well as hash-based
indexing structures

Cost of periodic re-organization

Relative frequency of insertions and deletions

Is it desirable to optimize average access time at the expense of worst-
case access time?

 In a B+ tree, to locate a record with key k means to compare k with other
keys k’ organized in a (tree-shaped) search data structure

 Hash indexes use the bits of k itself (independent of all other stored
records and their keys) to find the location of the associated record

 Hash indexes: best for equality searches, cannot support range searches
(also known as scatter storage)

True, but they can be used to answer range queries in O(1+Z/B) I/Os,
where Z is the number of results (Alstrup et all 2001; Brodal et all 2004)

 Although hash indexes supports multiple attribute keys, cannot support
partial key search

58

CSD Univ. of Crete Fall 2014

References

 Based on slides from:

R. Ramakrishnan and J. Gehrke

H. Garcia Molina

J. Hellerstein

L. Mong Li

P. Kilpeläinen

R. Lawrence

M. H. Scholl

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:

–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο

–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο

–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Διάλεξη 3η: Access methods: Hash
IndexesΔιάλεξη 2η: Access methods, File organization, B+Tree». Έκδοση:
1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη δικτυακή διεύθυνση:
http://www.csd.uoc.gr/~hy460/

