sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv

Ai1dAegn 4n: Physical and Logical Database
Schema Tuning

Anuntpncg lNAecouoakng
Tunua Emotiung YtoAoyiotwy

PHYSICAL AND LOGICAL
DATABASE SCHEMA TUNING

T
C

”‘-—-___________--”

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Why Database Tuning?

® Troubleshooting (what is happening?):
+Make managers and users happy given an application and a DBMS

® Capacity Sizing:
+Buy the right DBMS given application requirements

® Application Programming:
+Coding your application for performance

Fall 2014

@ CSD Univ. of Crete

DISK SUBSYSTEM
SYBSYSTEM

Why Is Database

PARSER
OPTIMIZER

EXECUTION

SUBSY

LOCKING

uning hard?

The following query runs too
slowly

select *

from R

where R.a > 5;

® \What do you do?

® Troubleshooting
Methodology:

+Hypothesis formulation
e \What is the cause of

STEM

LOGGING
SUBSYSTEM

CACHE
MANAGER

the problem?
+Apply tuning principles to

propose a fix

MEM

DISK/
CONTROLLER

ORY CPU

NETWORK

e Hypothesis verification
(experiments)

%1 CSD Univ. of Crete Fall 2014

uning DB Design

® After designing schema

+Make clustering decisions

. stored
¢ Choose indexes rs?:g?'ee ¢ l I record

record returned

DBMS

+Refine the schemas (if necessary)
File Manager
. . t 7
® \We must begin by understanding the reques l T SBtlggle(d
qguery workload: block returned
¢ The most important queries and Disk Manager
how often they arise ,

data read
from disk

Stored Database

' isk I/O
¢The most important updates and ggera/tion
how often they arise

¢ The desired performance for these
gueries and updates

CSD Univ. of Crete Fall 2014

Understanding the Workload

® For each query in the workload:
¢Which relations does it access?
+Which attributes are retrieved?
+Which attributes are involved in selection/join conditions?
¢How selective are these conditions likely to be?

® For each update in the workload:
+Which relations are going to be updated?
¢Which attributes are involved in selection/join conditions?
¢How selective are these conditions likely to be?

¢ The type of update (INSERT/DELETE/UPDATE), and the attributes
that are affected

|\ CSD Univ. of Crete

Analyzing Database Queries and

all transactions

¢ stringent performance constraints
¢ influence access paths on selection fields

® Analyzing expected frequency of updates
+ volatile files
¢ reduce number of access paths

® Analyzing time constraints of queries and updates

Fall 2014

ransactions

® Expected frequency of invocation of queries and updates
¢ expected frequency of each field as a selection field or join field over

¢ expected frequency of retrieving and /or updating each record

"% CSD Univ. of Crete Fall 2014

Decisions to Make

® \Vhat indexes should we create?

¢ Which relations should have indexes? What field(s) should be
the search key? Should we build several indexes?

® For each index, what kind of index should it be?
¢ Clustered? Hash/tree? Dynamic/static? Dense/sparse?

® Should we make changes to the schema?

¢ Consider alternative normalized schemas? (Remember, there
are many choices in decomposing into BCNF, etc.)

¢ Horizontal partitioning, replication, views, ...

CSD Univ. of Crete Fall 2014

Recall Index Classification

® Index is a structure which provides
alternative access to the data

¢Primary - key in index same as

key in file . Alpha
e¢Secondary - key in index " Bravo
different from original file / Charley
o Clustered - key order in index Is Alpha — |
same as data file (only one per
table) (only P Delta _——— | Delta
eUnclustered - index tree stores | Golf —_| Echo
sorted keys, with leaf node \Foxtrot
pointer to look up data (multiple . Golf
per table)
+Dense - one index entry for each Hotel
record India
eSparse - one index entry for
each block

+Covered - contain all columns in
Select, Where, or Join clauses

"% CSD Univ. of Crete Fall 2014

Choice of Indexes

® One approach:
¢ Consider the most important queries to tune
+ Consider the best plan using the current indexes
¢ See if a better plan is possible with an additional index
¢ If so, create it

® Before creating an index, must also consider the impact on updates in
the workload!

¢ Trade-off: indexes can make queries go faster, updates slower.
Require disk space, too

CSD Univ. of Crete Fall 2014

Issues to Consider In Index Selection

® Create indexes on Primary Key columns (default clustered)

® Avoid indexes that are too wide

® Don’t create indexes with less than 75% selectivity
+Example: index on Yes/No column

® Attributes mentioned in a WHERE clause are candidates for index
search keys

¢ Exact match condition suggests hash index
¢Range query suggests tree index

e Clustering is especially useful for range queries, although it can
help on equality queries as well in the presence of duplicates

® Try to choose indexes that benefit as many gueries as possible

® Since only one index can be clustered per relation, choose it based on

Important queries that would benefit the most from clustering
10

"% CSD Univ. of Crete Fall 2014

Issues to Consider In Index Selection

® Multi-attribute search keys should be considered when a WHERE
clause contains several conditions

¢ If range selections are involved, order of attributes should be
carefully chosen to match the range ordering

¢ Such indexes can sometimes enable index-only strategies for
Important queries

® \When considering a join condition (indexes on foreign keys):
¢ Hash index on inner is very good for Index Nested Loops

e Should be clustered if join column is not key for inner, and inner
tuples need to be retrieved

¢ Clustered B+ tree on join column(s) good for Sort-Merge

11

CSD Univ. of Crete Fall 2014

Example 1

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

® Hash index on D. dname supports ‘Toy’ selection
#Given this, index on D. dno is not needed

® Hash index on E. dno allows us to get matching (inner) Emp tuples for
each selected (outer) Dept tuple

® What if WHERE included: “... AND E.age=25"7?

¢ Could retrieve Emp tuples using index on E.age, then join with Dept
tuples satisfying dname selection. Comparable to strategy that used
E.dno index

¢S50, If E.age index is already created, this query provides much less
motivation for adding an E.dno index

12

CSD Univ. of Crete Fall 2014

Example 2

SELECT E.ename, D.mgr

FROM Emp E, Dept D

WHERE E.sal BETWEEN 10000 AND 20000
AND E.hobby=°‘Stamps’ AND E.dno=D.dno

® Clearly, Emp should be the outer relation
#Suggests that we build a hash index on D. dno
® What index should we build on Emp?

¢B+ tree on £.sal could be used, OR an index on £. hobby could
be used. Only one of these is needed, and which is better depends
upon the selectivity of the conditions

e As a rule of thumb, equality selections more selective than range
selections

® As both examples indicate, our choice of indexes is guided by the
plan(s) that we expect an optimizer to consider for a query

+Have to understand optimizers! 13

CSD Univ. of Crete Fall 2014

Multi-Attribute Index Keys

® To retrieve Emp records with age=30 AND sa/=4000, an index on
<age, sal> would be better than an index on age or an index on sa/

¢ Such indexes also called composite or concatenated indexes
¢Choice of index key orthogonal to clustering etc.

e If condition is: 20<age<30 AND 3000<sa/<5000:
#Clustered tree index on <age, sal> or <sal, age> is best?

e If conditionis: age=30 AND 3000<sa/<5000:
¢ Clustered <age, sa /> index much better than <sa/, age> index!

® Composite indexes are larger, updated more often

14

8% CSD Univ. of Crete Fall 2014

Index-Only Plans

® A number of queries can SELECT D.mgr

- <E.dno> FROM Dept D, Emp E
be z:;mswered without dense unclusterred WHERE DF.)an;E _ dﬁo
retrieving any tuples from
one or more of the <E.dno,E.eid> SELECT D.mgr, E.eid

relations involved if a
suitable index is available

. FROM Dept D, Emp E
Tree index! WHERE D.dno=E.dno

SELECT E.dno, COUNT(*)

<E.dno> FROM Emp E
dense GROUP BY E.dno

<E.dno,E.sal> SELECT E.dno, MIN(CE.sal)
. FROM Emp E
Tree index! Group BY E.dno

SELECT AVG(E.sal)
<E. age,E.sal> FROM Emp E

or <E.sal, E.age> WHERE E.age=25 AND
Treel E.sal BETWEEN 3000 AND 5000 s

CSD Univ. of Crete Fall 2014

Some Schemas are Better than Others

® A relation schema is a relation name and a set of attributes
R(a int, b varchar[20]);

® A relation instance for R is a set of records over the attributes in the
schema for R

® Schemal: ® Space

onorderl(supplier_id, & Sche.ma 2 saves space
part_id, quantity ® Information preservation

supplier_address) ¢ Some supplier addresses
_ might get lost with schema 1
® Schema 2:

_ _ ® Performance trade-off
onorder2(supplier_id,
: : ¢ Frequent access to address of
part_id, quantity)

_ _ / supplier given an ordered
Supplier(supplier_id, part, then schema 1 is good

supplier_address) ¢ Many new orders, schema 1
IS not good 16

Recall Functional Dependencies

® X is a set of attributes of relation R, and A is a single attribute of R: X
determines A (the functional dependency X - A holds for R) iff:

o For any relation instance | of R, whenever there are two records r and
r’ in | with the same X values, they have the same A value as well

eONOrderl(supplier_id, part_id, quantity,
supplier_address)

. supplier_id - supplier_address is an interesting FD

¢ Attributes X from R constitute a key of R if X determines every
attribute in R and no proper subset of X determines an attribute in R

eONOrderl(supplier_id, part_id, quantity,
supplier_address)

. supplier_id, part_idis notakey
eSupplier(supplier_id, supplier_address)
. supplier_idis akey

CSD Univ. of Crete Fall 2014

17

CSD Univ. of Crete Fall 2014

Recall Functional Dependencies

® Arelation is normalized if every interesting functional dependency X =2 A
iInvolving attributes in R has the property that X is a key of R

e0nOrderl is not normalized
e0nOrder2 and Supplier are normalized

® Relation R is in BCNF if: for any nontrivial FD XY of R, X must be a
superkey

+X-=2>Y Is nontrivial If Y is not a subset of X
+X Is a superkey if X->(all attributes of R)
+Motivation: removing redundancy

® Relation R is in 3NF if: for each nontrivial FD X-2Y, either X is a
superkey, or Y is a member of some candidate key

+Motivation: preserve FDs

® A BCNF relation is also a 3NF relation, but not vice versa 18

CSD Univ. of Crete

Fall 2014

uning a Relational Schema

® The choice of relational schema should be guided by the workload, in
addition to redundancy issues:

¢ We may settle for a 3NF schema rather than BCNF

¢ Workload may influence the choice we make in decomposing a
relation into 3NF or BCNF

¢ We may further decompose a BCNF schema, or add an attribute!
¢ We might denormalize (i.e., undo a decomposition step)
¢ We might consider horizontal decompositions

® If such changes are made after a database is in use, called schema
evolution; might want to mask some of these changes from
applications by defining views

19

CSD Univ. of Crete Fall 2014

uning Normalization

® A single normalized relation XYZ is better than two normalized relations
XY and XZ

¢ if the single relation design allows queries to access X, Y and Z
together without requiring a join

® The two-relation design is better iff:

¢ Users access tend to partition between the two sets Y and Z most of
the time

¢ Attributes Y or Z have large values

20

%3 CSD Univ. of Crete Fall 2014

Schema Tuning

® Rule of Thumb:

¢lf ABC is normalized, and AB and AC are also normalized, then use
ABC, unless:

e Queries very rarely access ABC, but AB or AC (80% of the time)
e Attribute B or C values are large
® Example
+Schema 1.
eR1(bond_ID, 1ssue_date, maturity, ..)
eR2(bond_ID, date, price)
+Schema 2:

eR1(bond_ID, 1ssue_date, maturity, today_price,
yesterday_price,..,10dayago_price)

21

CSD Univ. of Crete Fall 2014

Example Schemas

Contracts (Cid, sid, Jid, Did, Pid, Qty, val)
Depts (Di1d, Budget, Report)

Suppliers (Sid, Address)

Parts (Pid, Cost)

Projects (Jid, Mgr)

® \We will concentrate on Contracts, denoted as CSIJDPQV

® The following dependencies hold: JP > C, SD 2> P
¢ Cis the primary key
¢ What are the candidate keys for CSJDPQV? C, JSD, JP
¢ What normal form is this relation schema in? 3NF

22

CSD Univ. of Crete Fall 2014

Denormalization

® Denormalizing means violating normalization for the sake of performance:

¢ speeds up performance when attributes from different normalized
relations are often accessed together

+ hurts performance for relations that are often updated
® Suppose that the following query Q is important:
¢ Is the value of a contract less than the budget of the department?
¢ Need a join between Contracts and Depts
® To speed up Q, we might add a field budget B to Contracts
¢ This introduces the FD: D - B wrt Contracts
¢ Thus, Contracts is no longer in 3NF
® \We might choose to modify Contracts
¢ If the query is sufficiently important, and

¢ we cannot obtain adequate performance otherwise (i.e., by adding

indexes or by choosing an alternative 3NF schema) »

| ﬁ@ ¥ CSD Univ. of Crete Fall 2014
Y /;

(Vertical) Decomposition of a BCNF Relation

FD’s: JP - C, SD - P Keys: C, JSD, JP
® Suppose we choose {SDP, CSIJDQV}
¢ Both are in BCNF
¢ No reason to decompose further
® However, suppose that these gueries are important:
¢ Find the contracts held by supplier S
¢ Find the contracts that department D is involved In

® Decomposing CSJDQV further into CS, CD and CJQV could speed up
these queries (Why?)
® On the other hand, the following query is slower:
¢ Find the total value of all contracts held by supplier S

¢ Reason: need a join operation

24

e i3 CSD Univ. of Crete Fall 2014

Vertical Partitioning and Scan

® R (X)Y,2)
¢ X is an integer
¢ YZ are large strings

- ® Scan Query
® Vertical partitioning exhibits
- poor performance when all
attributes are accessed

No Partitioning - Vertical No Partltlonlng Vertical ® Vert|Ca| part|t|on|ng prOV|deS a
XYZ Partitioning - XYZ Partitioning - XY .
sped up if only two of the
attributes are accessed

0.02

o
o
=
al

Througput (queries/sec)

o
o
o
a1

o

25

CSD Univ. of Crete Fall 2014

Vertical Partitioning and Point Queries

® R (X)Y,2)
1000 ¢ X Is an integer
¢ YZ are large strings

800
6007;4@ ® A mix of point queries access

either XYZ or XY
® Vertical partitioning gives a

400

Throughput (queries/sec)

200 e o performance advantage if the
0 proportion of queries accessing
0 20 40 60 80 100 only XY is greater than 20%

% of access that only concern XY

® The join is not expensive
compared to a simple look-up

26

CSD Univ. of Crete Fall 2014

Horizontal Decompositions

® “Vertical” Decomposition: Relation is replaced by a collection of relations
that are projections

® “Horizontal” decomposition

¢ Sometimes, might want to replace relation by a collection of relations
that are selections

¢Each new relation has same schema as the original, but a subset of
the rows

¢ Collectively, new relations contain all rows of the original. Typically, the
new relations are disjoint

® Suppose contracts with value > 10000 are very often
¢Queries on Contracts will often contain the condition val > 10000
® One approach is to replace contracts by two new relations:

¢LargeContracts and SmallContracts, with the same attributes
CSJIDPQV

¢Performs like index on such queries, but no index overhead N

CSD Univ. of Crete Fall 2014

Denormalizing -- data

Settings:

Tineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE |,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS |,
L_SHIPDATE, L_COMMITDATE,

L_RECEIPTDATE, L_SHIPINSTRUCT |,
L_SHIPMODE , L_COMMENT);

region (R_REGIONKEY, R_NAME, R_COMMENT);
nation (N_NATIONKEY, N_NAME, N_REGIONKEY, N_COMMENT) ;

supplier(S_SUPPKEY, S_NAME, S_ADDRESS, S_NATIONKEY,
S_PHONE, S_ACCTBAL, S_COMMENT);

+600000 rows in lineitem, 25 nations, 5 regions, 500 suppliers

28

CSD Univ. of Crete Fall 2014

Denormalizing -- transactions

Tineitemdenormalized (L_ORDERKEY, L_PARTKEY ,

L_SUPPKEY, L_LINENUMBER, L_QUANTITY,
L_EXTENDEDPRICE |,

L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS |,
L_SHIPDATE, L_COMMITDATE,

L_RECEIPTDATE, L_SHIPINSTRUCT ,

L_SHIPMODE , L_COMMENT, |L_REGIONNAME] :

¢ 600000 rows in line item denormalized
Cold Buffer

¢ Dual Pentium Il (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives
(10000RPM), Windows 2000

¢

29

CSD Univ. of Crete Fall 2014

Queries on Normalized vs. Denormalized Schemas

Queries:

select L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER,
L_QUANTITY, L_EXTENDEDPRICE, L_DISCOUNT, L_TAX,
L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT, R_NAME

from LINEITEM, REGION, SUPPLIER, NATION
where L_SUPPKEY = S_SUPPKEY

and S_NATIONKEY = N_NATIONKEY

and N_REGIONKEY = R_REGIONKEY

and R_NAME = 'EUROPE':

select L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER,
L_QUANTITY, L_EXTENDEDPRICE, L_DISCOUNT, L_TAX,
L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT,
L_REGIONNAME

from LINEITEMDENORMALIZED
where L_REGIONNAME = 'EUROPE'; 30

CSD Univ. of Crete

Fall 2014

Denormalization

0.002

0.0015

Throughput (Queries/sec)

0.001 -

0.0005 A

normalized

denormalized

® TPC-H schema

® Query: find all lineitems whose
supplier is in Europe

® With a normalized schema this
guery is a 4-way join

® |f we denormalize lineitem and
add the name of the region for
each lineitem (foreign key
denormalization) throughput
Improves 30%

31

CSD Univ. of Crete Fall 2014

Masking Conceptual Schema Changes

CREATE VIEW Contracts(cid, sid, jid, did, pid, gty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT
FROM SmallContracts

® The replacement of Contracts by LargeContracts and SmallContracts
can be masked by the view

® However, queries with the condition va />10000 must be asked wrt
LargeContracts for efficient execution: so users concerned with
performance have to be aware of the change

32

uning Queries and Views

® If a query runs slower than expected, check if an index needs to be re-
built, or if statistics are too old

® Sometimes, the DBMS may not be executing the plan you had in mind
Common areas of weakness:

¢ Selections involving null values
¢ Selections involving arithmetic or string expressions
¢ Selections involving OR conditions

¢ Lack of evaluation features like index-only strategies or certain join
methods or poor size estimation

® Check the plan that is being used! Then adjust the choice of indexes or
rewrite the query/view

¢ More later in the this course...

CSD Univ. of Crete Fall 2014

33

CSD Univ. of Crete Fall 2014

Summary

® DB design consists of several tasks:
erequirements analysis
econceptual design
+schema refinement
ephysical design and tuning

® In general, have to go back and forth between these tasks to refine a DB
design, and decisions in one task can influence the choices in another task

® Understanding the nature of the workload for the application, and the
performance goals, is essential to developing a good design

® Indexes must be chosen to speed up important queries (and perhaps some
updates!)

¢Index maintenance overhead on updates to key fields
¢Choose indexes that can help many queries, if possible
¢Build indexes to support index-only strategies

¢ Clustering is an important decision; only one index on a given relation
can be clustered!

¢Order of fields in composite index key can be important 42

"% CSD Univ. of Crete Fall 2014

Summary

® Static indexes may have to be periodically re-built
® Statistics have to be periodically updated

® Over time, indexes have to be fine-tuned (dropped, created, re-built, ...)
for performance

¢ Should determine the plan used by the system, and adjust the choice
of indexes appropriately

® System may still not find a good plan:
+S0, may have to rewrite the query/view

¢Avoid nested queries, temporary relations, complex conditions, and
operations like DISTINCT and GROUP BY (more in following assisting
lectures)

43

References

® Raghu Ramakrishnan and Johannes Gehrke - Database Management
Systems, 3rd edition, McGraw-Hill 2002, chapter 16

® Dennis Shasha and Phillipe Bonnet - Tuning: Principles Experiments
and Troubleshooting Techniques, Morgan Kaufmann Publishers 2002

e S, Chaudhuri, V. Narasayya An Efficient, Cost-Driven Index Selection
Tool for Microsoft SQL Server VLDB, Athens, 1997

CSD Univ. of Crete Fall 2014

44

TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= -]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang

XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong

2NMEIWMAT

2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.

2NUEIWHA AVO@POpPAC

Copyright TMavemotiuio Kpntng, AnuAtpng TMAeCoucAKNnG. «ZUCTAMOATA
Alaxeipiong Baceswv Aegdopévwy. AlaAeg¢n 4n:. Physical and Logical
Database Schema Tuning». 'Ekdoon: 1.0. HpdkAcio/P£Bupuvo 2015. AlaBéoiuo
atro 1n dIKTUAKK) dIEUBuvan: http://www.csd.uoc.gr/~hy460/

