
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης

Βάσεων Δεδομένων
Διάλεξη 4η: Physical and Logical Database

Schema Tuning

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

1

CSD Univ. of Crete Fall 2014

PHYSICAL AND LOGICAL
DATABASE SCHEMA TUNING

2

CSD Univ. of Crete Fall 2014

Why Database Tuning?

 Troubleshooting (what is happening?):

Make managers and users happy given an application and a DBMS

 Capacity Sizing:

Buy the right DBMS given application requirements

 Application Programming:

Coding your application for performance

3

CSD Univ. of Crete Fall 2014

The following query runs too
slowly

select *
from R
where R.a > 5;

 What do you do?

 Troubleshooting
Methodology:

Hypothesis formulation

What is the cause of
the problem?

Apply tuning principles to
propose a fix

Hypothesis verification
(experiments)

PARSER
OPTIMIZER

EXECUTION
SUBSYSTEM

DISK
SYBSYSTEM

CACHE
MANAGER

LOGGING
SUBSYSTEM

LOCKING
SUBSYSTEM

NETWORK
DISK/

CONTROLLER
CPUMEMORY

sql commands

Why is Database Tuning hard?

4

CSD Univ. of Crete Fall 2014

 After designing schema

Make clustering decisions

Choose indexes

Refine the schemas (if necessary)

 We must begin by understanding the

query workload:

The most important queries and

how often they arise

The most important updates and

how often they arise

The desired performance for these

queries and updates

Tuning DB Design

DBMS

request
stored
record

stored
record
returned

request
stored
block

stored
block
returned

disk I/O
operation

data read
from disk

File Manager

Disk Manager

Stored Database

5

CSD Univ. of Crete Fall 2014

 For each query in the workload:

Which relations does it access?

Which attributes are retrieved?

Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?

 For each update in the workload:

Which relations are going to be updated?

Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?

The type of update (INSERT/DELETE/UPDATE), and the attributes

that are affected

Understanding the Workload

6

CSD Univ. of Crete Fall 2014

 Expected frequency of invocation of queries and updates

 expected frequency of each field as a selection field or join field over

all transactions

 expected frequency of retrieving and /or updating each record

 Analyzing time constraints of queries and updates

 stringent performance constraints

 influence access paths on selection fields

 Analyzing expected frequency of updates

 volatile files

 reduce number of access paths

Analyzing Database Queries and Transactions

7

CSD Univ. of Crete Fall 2014

Decisions to Make

 What indexes should we create?

 Which relations should have indexes? What field(s) should be

the search key? Should we build several indexes?

 For each index, what kind of index should it be?

 Clustered? Hash/tree? Dynamic/static? Dense/sparse?

 Should we make changes to the schema?

 Consider alternative normalized schemas? (Remember, there

are many choices in decomposing into BCNF, etc.)

 Horizontal partitioning, replication, views, ...

8

CSD Univ. of Crete Fall 2014

Recall Index Classification

 Index is a structure which provides
alternative access to the data

Primary - key in index same as
key in file

Secondary - key in index
different from original file

Clustered - key order in index is
same as data file (only one per
table)

Unclustered - index tree stores
sorted keys, with leaf node
pointer to look up data (multiple
per table)

Dense - one index entry for each
record

Sparse - one index entry for
each block

Covered - contain all columns in
Select, Where, or Join clauses

Alpha

Bravo

Charley

Delta

Echo

Foxtrot

Golf

Hotel

India

Alpha

Delta

Golf

9

CSD Univ. of Crete Fall 2014

Choice of Indexes

 One approach:

 Consider the most important queries to tune

 Consider the best plan using the current indexes

 See if a better plan is possible with an additional index

 If so, create it

 Before creating an index, must also consider the impact on updates in

the workload!

 Trade-off: indexes can make queries go faster, updates slower.

Require disk space, too

10

CSD Univ. of Crete Fall 2014

 Create indexes on Primary Key columns (default clustered)

 Avoid indexes that are too wide

 Don’t create indexes with less than 75% selectivity

Example: index on Yes/No column

 Attributes mentioned in a WHERE clause are candidates for index

search keys

Exact match condition suggests hash index

Range query suggests tree index

Clustering is especially useful for range queries, although it can

help on equality queries as well in the presence of duplicates

 Try to choose indexes that benefit as many queries as possible

 Since only one index can be clustered per relation, choose it based on

important queries that would benefit the most from clustering

Issues to Consider in Index Selection

11

CSD Univ. of Crete Fall 2014

 Multi-attribute search keys should be considered when a WHERE

clause contains several conditions

 If range selections are involved, order of attributes should be

carefully chosen to match the range ordering

 Such indexes can sometimes enable index-only strategies for

important queries

 When considering a join condition (indexes on foreign keys):

 Hash index on inner is very good for Index Nested Loops

 Should be clustered if join column is not key for inner, and inner

tuples need to be retrieved

 Clustered B+ tree on join column(s) good for Sort-Merge

Issues to Consider in Index Selection

12

CSD Univ. of Crete Fall 2014

 Hash index on D.dname supports ‘Toy’ selection

Given this, index on D.dno is not needed

 Hash index on E.dno allows us to get matching (inner) Emp tuples for

each selected (outer) Dept tuple

 What if WHERE included: “... AND E.age=25’’?

Could retrieve Emp tuples using index on E.age, then join with Dept

tuples satisfying dname selection. Comparable to strategy that used

E.dno index

So, if E.age index is already created, this query provides much less

motivation for adding an E.dno index

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Example 1

13

CSD Univ. of Crete Fall 2014

 Clearly, Emp should be the outer relation

Suggests that we build a hash index on D.dno

 What index should we build on Emp?

B+ tree on E.sal could be used, OR an index on E.hobby could
be used. Only one of these is needed, and which is better depends
upon the selectivity of the conditions

As a rule of thumb, equality selections more selective than range
selections

 As both examples indicate, our choice of indexes is guided by the
plan(s) that we expect an optimizer to consider for a query

Have to understand optimizers!

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal BETWEEN 10000 AND 20000
AND E.hobby=‘Stamps’ AND E.dno=D.dno

Example 2

14

CSD Univ. of Crete Fall 2014

Multi-Attribute Index Keys

 To retrieve Emp records with age=30 AND sal=4000, an index on

<age,sal> would be better than an index on age or an index on sal

Such indexes also called composite or concatenated indexes

Choice of index key orthogonal to clustering etc.

 If condition is: 20<age<30 AND 3000<sal<5000:

Clustered tree index on <age,sal> or <sal,age> is best?

 If condition is: age=30 AND 3000<sal<5000:

Clustered <age,sal> index much better than <sal,age> index!

 Composite indexes are larger, updated more often

15

CSD Univ. of Crete Fall 2014

 A number of queries can

be answered without

retrieving any tuples from

one or more of the

relations involved if a

suitable index is available

SELECT D.mgr
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

<E.dno>
dense unclusterred

<E.dno,E.eid>

Tree index!

<E.dno>
dense

<E.dno,E.sal>

Tree index!

<E. age,E.sal>
or <E.sal, E.age>

Tree!

Index-Only Plans

16

CSD Univ. of Crete Fall 2014

Some Schemas are Better than Others

 Schema1:

OnOrder1(supplier_id,
part_id, quantity,
supplier_address)

 Schema 2:

OnOrder2(supplier_id,
part_id, quantity)

Supplier(supplier_id,
supplier_address)

 Space

 Schema 2 saves space

 Information preservation

 Some supplier addresses
might get lost with schema 1

 Performance trade-off

 Frequent access to address of
supplier given an ordered
part, then schema 1 is good

 Many new orders, schema 1
is not good

 A relation schema is a relation name and a set of attributes

R(a int, b varchar[20]);

 A relation instance for R is a set of records over the attributes in the

schema for R

17

CSD Univ. of Crete Fall 2014

Recall Functional Dependencies

 X is a set of attributes of relation R, and A is a single attribute of R: X

determines A (the functional dependency X A holds for R) iff:

For any relation instance I of R, whenever there are two records r and

r’ in I with the same X values, they have the same A value as well

OnOrder1(supplier_id, part_id, quantity,
supplier_address)

 supplier_id supplier_address is an interesting FD

Attributes X from R constitute a key of R if X determines every

attribute in R and no proper subset of X determines an attribute in R

OnOrder1(supplier_id, part_id, quantity,
supplier_address)

 supplier_id, part_id is not a key

Supplier(supplier_id, supplier_address)

 supplier_id is a key

18

CSD Univ. of Crete Fall 2014

Recall Functional Dependencies

 A relation is normalized if every interesting functional dependency X A
involving attributes in R has the property that X is a key of R

OnOrder1 is not normalized

OnOrder2 and Supplier are normalized

 Relation R is in BCNF if: for any nontrivial FD XY of R, X must be a
superkey

XY is nontrivial if Y is not a subset of X

X is a superkey if X(all attributes of R)

Motivation: removing redundancy

 Relation R is in 3NF if: for each nontrivial FD XY, either X is a
superkey, or Y is a member of some candidate key

Motivation: preserve FDs

 A BCNF relation is also a 3NF relation, but not vice versa

19

CSD Univ. of Crete Fall 2014

 The choice of relational schema should be guided by the workload, in

addition to redundancy issues:

 We may settle for a 3NF schema rather than BCNF

 Workload may influence the choice we make in decomposing a

relation into 3NF or BCNF

 We may further decompose a BCNF schema, or add an attribute!

 We might denormalize (i.e., undo a decomposition step)

 We might consider horizontal decompositions

 If such changes are made after a database is in use, called schema

evolution; might want to mask some of these changes from

applications by defining views

Tuning a Relational Schema

20

CSD Univ. of Crete Fall 2014

Tuning Normalization

 A single normalized relation XYZ is better than two normalized relations

XY and XZ

 if the single relation design allows queries to access X, Y and Z

together without requiring a join

 The two-relation design is better iff:

 Users access tend to partition between the two sets Y and Z most of

the time

 Attributes Y or Z have large values

21

CSD Univ. of Crete Fall 2014

Schema Tuning

 Rule of Thumb:

If ABC is normalized, and AB and AC are also normalized, then use

ABC, unless:

Queries very rarely access ABC, but AB or AC (80% of the time)

Attribute B or C values are large

 Example

Schema 1:

R1(bond_ID, issue_date, maturity, …)

R2(bond_ID, date, price)

Schema 2:

R1(bond_ID, issue_date, maturity, today_price,
yesterday_price,…,10dayago_price)

22

CSD Univ. of Crete Fall 2014

Example Schemas

 We will concentrate on Contracts, denoted as CSJDPQV

 The following dependencies hold: JP C, SD P

 C is the primary key

 What are the candidate keys for CSJDPQV? C, JSD, JP

 What normal form is this relation schema in? 3NF

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)

23

CSD Univ. of Crete Fall 2014

Denormalization

 Denormalizing means violating normalization for the sake of performance:

 speeds up performance when attributes from different normalized

relations are often accessed together

 hurts performance for relations that are often updated

 Suppose that the following query Q is important:

 Is the value of a contract less than the budget of the department?

 Need a join between Contracts and Depts

 To speed up Q, we might add a field budget B to Contracts

 This introduces the FD: D B wrt Contracts

 Thus, Contracts is no longer in 3NF

 We might choose to modify Contracts

 if the query is sufficiently important, and

 we cannot obtain adequate performance otherwise (i.e., by adding

indexes or by choosing an alternative 3NF schema)

24

CSD Univ. of Crete Fall 2014

FD’s: JP C, SD P Keys: C, JSD, JP

 Suppose we choose {SDP, CSJDQV}

 Both are in BCNF

 No reason to decompose further

 However, suppose that these queries are important:

 Find the contracts held by supplier S

 Find the contracts that department D is involved in

 Decomposing CSJDQV further into CS, CD and CJQV could speed up

these queries (Why?)

 On the other hand, the following query is slower:

 Find the total value of all contracts held by supplier S

 Reason: need a join operation

(Vertical) Decomposition of a BCNF Relation

25

CSD Univ. of Crete Fall 2014

Vertical Partitioning and Scan

 R (X,Y,Z)

 X is an integer

 YZ are large strings

 Scan Query

 Vertical partitioning exhibits
poor performance when all
attributes are accessed

 Vertical partitioning provides a
sped up if only two of the
attributes are accessed

0

0.005

0.01

0.015

0.02

No Partitioning -

XYZ

Vertical

Partitioning - XYZ

No Partitioning -

XY

Vertical

Partitioning - XY

T
h

ro
u

g
p

u
t

(q
u

e
ri

e
s
/s

e
c
)

26

CSD Univ. of Crete Fall 2014

Vertical Partitioning and Point Queries

 R (X,Y,Z)

 X is an integer

 YZ are large strings

 A mix of point queries access
either XYZ or XY

 Vertical partitioning gives a
performance advantage if the
proportion of queries accessing
only XY is greater than 20%

 The join is not expensive
compared to a simple look-up

0

200

400

600

800

1000

0 20 40 60 80 100

% of access that only concern XY

T
h

ro
u

g
h

p
u

t
(q

u
e
ri

e
s
/s

e
c
)

no vertical partitioning

vertical partitioning

27

CSD Univ. of Crete Fall 2014

 “Vertical” Decomposition: Relation is replaced by a collection of relations
that are projections

 “Horizontal” decomposition

Sometimes, might want to replace relation by a collection of relations
that are selections

Each new relation has same schema as the original, but a subset of
the rows

Collectively, new relations contain all rows of the original. Typically, the
new relations are disjoint

 Suppose contracts with value > 10000 are very often

Queries on Contracts will often contain the condition val > 10000

 One approach is to replace contracts by two new relations:

LargeContracts and SmallContracts, with the same attributes
CSJDPQV

Performs like index on such queries, but no index overhead

Horizontal Decompositions

28

CSD Univ. of Crete Fall 2014

Denormalizing -- data

Settings:

lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,
L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

region(R_REGIONKEY, R_NAME, R_COMMENT);

nation(N_NATIONKEY, N_NAME, N_REGIONKEY, N_COMMENT);

supplier(S_SUPPKEY, S_NAME, S_ADDRESS, S_NATIONKEY,
S_PHONE, S_ACCTBAL, S_COMMENT);

600000 rows in lineitem, 25 nations, 5 regions, 500 suppliers

29

CSD Univ. of Crete Fall 2014

Denormalizing -- transactions

lineitemdenormalized (L_ORDERKEY, L_PARTKEY ,
L_SUPPKEY, L_LINENUMBER, L_QUANTITY,
L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT, L_REGIONNAME);

 600000 rows in line item denormalized

 Cold Buffer

 Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000

30

CSD Univ. of Crete Fall 2014

Queries on Normalized vs. Denormalized Schemas

Queries:

select L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER,
L_QUANTITY, L_EXTENDEDPRICE, L_DISCOUNT, L_TAX,
L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT, R_NAME

from LINEITEM, REGION, SUPPLIER, NATION

Where L_SUPPKEY = S_SUPPKEY

and S_NATIONKEY = N_NATIONKEY

and N_REGIONKEY = R_REGIONKEY

and R_NAME = 'EUROPE';

select L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER,
L_QUANTITY, L_EXTENDEDPRICE, L_DISCOUNT, L_TAX,
L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT,
L_REGIONNAME

from LINEITEMDENORMALIZED

where L_REGIONNAME = 'EUROPE';

31

CSD Univ. of Crete Fall 2014

Denormalization

 TPC-H schema

 Query: find all lineitems whose
supplier is in Europe

 With a normalized schema this
query is a 4-way join

 If we denormalize lineitem and
add the name of the region for
each lineitem (foreign key
denormalization) throughput
improves 30%

0

0.0005

0.001

0.0015

0.002

normalized denormalized

T
h

ro
u

g
h

p
u

t
(Q

u
e
ri

e
s
/s

e
c
)

32

CSD Univ. of Crete Fall 2014

 The replacement of Contracts by LargeContracts and SmallContracts

can be masked by the view

 However, queries with the condition val>10000 must be asked wrt

LargeContracts for efficient execution: so users concerned with

performance have to be aware of the change

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts

Masking Conceptual Schema Changes

33

CSD Univ. of Crete Fall 2014

Tuning Queries and Views

 If a query runs slower than expected, check if an index needs to be re-

built, or if statistics are too old

 Sometimes, the DBMS may not be executing the plan you had in mind

Common areas of weakness:

 Selections involving null values

 Selections involving arithmetic or string expressions

 Selections involving OR conditions

 Lack of evaluation features like index-only strategies or certain join

methods or poor size estimation

 Check the plan that is being used! Then adjust the choice of indexes or

rewrite the query/view

 More later in the this course…

42

CSD Univ. of Crete Fall 2014

Summary

 DB design consists of several tasks:

requirements analysis

conceptual design

schema refinement

physical design and tuning

 In general, have to go back and forth between these tasks to refine a DB
design, and decisions in one task can influence the choices in another task

 Understanding the nature of the workload for the application, and the
performance goals, is essential to developing a good design

 Indexes must be chosen to speed up important queries (and perhaps some
updates!)

Index maintenance overhead on updates to key fields

Choose indexes that can help many queries, if possible

Build indexes to support index-only strategies

Clustering is an important decision; only one index on a given relation
can be clustered!

Order of fields in composite index key can be important

43

CSD Univ. of Crete Fall 2014

Summary

 Static indexes may have to be periodically re-built

 Statistics have to be periodically updated

 Over time, indexes have to be fine-tuned (dropped, created, re-built, ...)
for performance

Should determine the plan used by the system, and adjust the choice
of indexes appropriately

 System may still not find a good plan:

So, may have to rewrite the query/view

Avoid nested queries, temporary relations, complex conditions, and
operations like DISTINCT and GROUP BY (more in following assisting
lectures)

44

CSD Univ. of Crete Fall 2014

References

 Raghu Ramakrishnan and Johannes Gehrke - Database Management

Systems, 3rd edition, McGraw-Hill 2002, chapter 16

 Dennis Shasha and Phillipe Bonnet - Tuning: Principles Experiments

and Troubleshooting Techniques, Morgan Kaufmann Publishers 2002

 S, Chaudhuri, V. Narasayya An Efficient, Cost-Driven Index Selection

Tool for Microsoft SQL Server VLDB, Athens, 1997

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:

–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο

–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο

–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Διάλεξη 4η: Physical and Logical
Database Schema Tuning». Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο
από τη δικτυακή διεύθυνση: http://www.csd.uoc.gr/~hy460/

