sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv
Ai1dAegn 5n: External sorting

Anuntpnc lNAegouodkng
Tunua Emotiung YtmoAoyiotwy



EXTERNAL SORTING




3 @‘fa CSD Univ. of Crete Fall 2014

Sorting

® A classic problem in computer science!

® Data requested in sorted order (sorted output)
¢e.g., find students in increasing grade point average (gpa) order
¢SELECT A,B, C FROM R ORDER BY A

® Sorting is first step in bulk loading B+ tree index

® Sorting useful for eliminating duplicates in a collection of records (Why?)
¢SELECT DISTINCT A,B, C FROM R

® Some operators rely on their input files being already sorted, or, more
often than not, sorted input files boost some operators’ performance

¢ Sort-merge join algorithm involves sorting




CSD Univ. of Crete Fall 2014

Sorting

® A file of records is sorted with respect to sort key k and ordering 0, if
for any two records rl, r2 with rl preceding r2 in the file, we have that
their corresponding keys are in 0-order:

orl 6 r2 <=> rl.k 0 r2.k

® A key may be a single attribute as well as an ordered list of attributes.
In the latter case, order is defined lexicographically

eExample: k = (A,B), 6 = <:
rl < r2 <=>rl.A < r2.A or
ril.A =r2.A and rl.B < r2.B




CSD Univ. of Crete Fall 2014

External Sorting

® Definition: Data lives on disk!

¢ external vs. internal sort: the collection of data items to be sorted Is
not stored in main memory

® External Sorting is a challenge even if data << memory
¢ The challenge is to overlap disk 1/Os with sorting in memory

¢ Most benchmarks (see next slide) are of this type, since memory is
so cheap

® Examples in textbooks: data >> memory

¢ These are classical examples, when memory was expensive, and
are still common

¢ Why not use virtual memory?




CSD Univ. of Crete Fall 2014

External Sorting Benchmarks

® Sorting has become a blood sport!
+Sort Benchmarks is the name of the game (http://sortbenchmark.org/)
® How fast we can sort 1M records of size 100 bytes?
¢ Typical DBMS: 5 minutes
+World record: 1second - Deprecated
e DCOM, cluster of 16 dual 400MHz Pentium I
® New benchmarks proposed:
¢Minute Sort: How many can you sort in 1 minute?
« Typical DBMS: 10MB (~100,000 records)

« Current world record: 1.42 TB
« 2100 nodes, 2 2.3Ghz hexcore Xeon E5-2630, 64 GB memory, 12x3TB disks

¢Penny Sort: How many can you sort for a penny’s worth of system
time?
 Current world record: 334 GB
« 2.7 Ghz AMD Sempron, 4 GB RAM,
« 5x320 GB 7200 RPM Samsung SpinPoint F4 HD332GJ, Linux




CSD Univ. of Crete Fall 2014

External Sorting Example

® Sort a relation in increasing order of the sort key values (under the
assumption that data >> memory)

¢ relation R: 10.000.000 tuples

¢ one of the fields in each tuple is the sort key (not necessarily a key)
¢ Records are of fixed length: 100 bytes; Total size of R: 1GB

+ Available main memory: 50MB

¢ Block size: 4.096 (= 212) bytes

¢ 40 records can fit in a block,
e R occupies 250.000 blocks

¢ Main memory can hold 12.800 blocks (= 50*220/212)

e If data were kept in main memory, efficient sorting algorithms (e.g.,
Quicksort) could be employed to perform sorting on the sort keys

® This approach does not perform well for data in secondary storage:

¢ need to move each block between secondary and main memory a
number of times, in a regular pattern




CSD Univ. of Crete Fall 2014

wo-Way Merge Sort

® Goal: even if the entire file does not fit into the available main memory,
we can sort it by breaking it into smaller subfiles (called runs), sorting
these subfiles and merging them into a larger subfiles using a minimal
amount of main memory at any given time

® |dea: to merge sorted runs, repeatedly compare the smallest remaining
keys of each run and output the record with the smaller key, until one of
the runs is exhausted
® Two-way Merge Sort: requires 3 buffers
¢Pass 0: Read a page (one after the other), sort it, write it
« only one buffer page is used
ePass 1, 2, 3, ..., etc.: sort runs and merge
« three buffer pages are used

[— AINPUT 1 \’/
~_+{OUTPU [ ',
| ——INPUT 2~ T
- -
Disk Main memory buffers Disk ,




CSD Univ. of Crete Fall 2014

wo-Way Merge Sort

eDivide and conquer

Bf1 PP ;
esort runs and merg i > m’”(ggzl[[gzl]])r — B0 |
In different passes ngz po
ZA
G PG ¢ P Write, when
paéfe p""fe p1 =B(p2 = B)
File Y.
A ~- AN ~- J ‘ ElOF
Run 1 Run2  File X.
=
Merged run

® Pass 0 writes 25 sorted runs to disk, only one page of buffer space is used
® Pass 1 writes 25/2 = 2571 runs to disk, three pages of buffer space used
® Pass n writes 25/2" = 257" runs to disk, three pages of buffer space used

® Pass s writes a single sorted run (i.e., the complete sorted file) of size
2% = N to disk °




|\ CSD Univ. of Crete

® |In each pass we read all N
pages in the file, sort/merge,
and write N pages out again

® N pages in the file => the
number of passes (S)

=log, N |+

® So total cost Is:

1 read # of
& 1 write pages

Cost of Two-Way Merge Sort

2N([log, N ]+1)

NN

3,4 |6,2] 9.4 |8,7] |56 |3,1
3,4 (2,6 (4,9 |7.8 |56 (1,3] |2
\ / \
m 4’7 1,
4,6 8,9 5,6
\._A/ \_/
2,3
1
4,4 1,2|
6,7 3,5
8,9 6
1,2
2,3
3,4
4,5
# of 66
Merge 7,8
9

passes

Fall 2014

Input file
PASS 0

1-page runs
PASS 1

2-page runs

PASS 2

4-page runs

PASS 3

8-page runs




"% CSD Univ. of Crete Fall 2014

Multi-way Merge Sort

® Plain two-way merge sort algorithm uses no more than three pages of
buffer space at any point in time

+How we can use more than 3 buffer pages?

® (External) Multi-way Merge Sort aims at two improvements:

#Try to reduce the number of initial runs (avoid creating one-page runs
In Pass 0),

¢ Try to reduce the number of passes (merge more than 2 runs at a
time)

® As before, let
+N denote the number of pages in the file to be sorted and

+B buffer pages shall be available for sorting
10




I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Multi-way Merge Sort

® To sort a file with N pages using B buffer pages:

mPass 0 use B huffers:

m Read input data in B pages at the time and produce| N/B |
sorted runs of B pages each

e Last run may contain fewer pages

mPass 1, 2, ..., (until only a single run is left) use B-1 buffers for input
and 1 for output:

mSelect B — 1 runs from previous pass
m(B-1)-way merge in each pass
e Read each run into an input buffer; one page at a time

e Merge the runs and write to output buffer
e Force output buffer to disk one page at the time

| —
———— [ —{INPUT 1 . | |

e TN .7’OUTPUT .
| | - | |
—— | lNPUT B-1 ——

Disk B Main memory buffers Disk §

A 4

A 4




CSD Univ. of Crete Fall 2014

Multi-way Merge Sort

® Merging phase

+Merge groups of B-1 runs at a time to produce longer runs until only
one run (containing all records of input file) is left

¢ Read the first page of each sorted run into an input buffer

+Use a buffer for an output page holding as many elements of the first
elements in the generated sorted run (at each pass) as it can hold

® Runs are merged into one sorted run as follows:
o Find the smallest key among the first remaining elements of all the runs

+Move the smallest element to the first available position in the output
buffer

+If the output buffer is full, write it to disk and empty the buffer to hold the
next output page of the generated sorted run (at each pass)

+If the page from which the smallest element was chosen has no more
records, read the next page of the same run into the same input buffer

e if no blocks remain, leave the run’s buffer empty and do not consider
this run in further comparisons 12




CSD Univ. of Crete

Fall 2014

Multi-way Merge Sort

Bf1 |
p1
B2 - min(Bfi[p1], |
Read, when p2| Bf2[p2], B0 |
pl =B ey |
__________ Bikipk) | 7
Brk ‘
Pk Write, when
Bfo full
Current  Current Current
page page page
per 1 1
b ¢
Run 1 Run 2 Run k=n/m £ lOF
File X: | 9B

N— —
—_——

Merged run 13




CSD Univ. of Crete Fall 2014

Cost of Multi-way Merge Sort

® E.g., with 5 buffer pages, to sort 108 page file:

¢ Pass 0: |_108/ 5_| = 22 sorted runs of 5
pages each (last run is only 3 pages)

e Pass1: [22/4| =6 sorted runs of 20
pages each (last run is only 8 pages)

¢ Pass 2: 2 sorted runs, 80 pages [**
and 28 pages 62 2,3

¢ Pass 3. Sorted file of 108 pages :\ : / ¢,7| 1stoutput run
s \H?.. Z,4| 6,2 8,3

/]
® Number of passes: e >~ [o7 —
— & \v. ,--"’4 3:5
|_|Og B—1|_N / B—H-I_l 3,1 — < 2nd output run
2 Buffer poolwlith B=4 pages -
® Cost=2N * (# of passes) B

_ Pass 0 with B=4+1, N=7
¢ per pass = N Input + N output =2 N

14




CSD Univ. of Crete Fall 2014

Example (Cont'd)

® According to the available number of buffers and the relation size we
need 2 passes (10g,,,44 250.000/12.800 [|+1=2)

® Pass 0: sort main memory-sized portions of the data so that every record
belongs to a run that fits in main memory

+Need to create 20 runs (19*12.800 pages+ 1*6.800 pages = 250.000)
+1/0 required: 500.000 I/O ops

¢lIf each I/O op takes 15msec, we need 7.500 secs (125 mins) for
phase 1

® Pass 1: merge the sorted runs into a single sorted run
& run pages are read in an unpredictable order but exactly once
¢ hence, 250.000 page reads are needed for phase 2
¢ each record is placed only once in the output page
+ hence, 250.000 page writes are needed
& phase 2 requires 125 mins
® |[n total, 250 minutes will be required for the entire sort of our relation 15




Ve CSD Univ. of Crete

Fall 2014

Multi-way Merge Sort: Number of Passes

N B=3 B=5 B=9 B=1/ B=129 B=257
100 7/ 4 3 2 1 1
1000 10 5 4 3 2 2
10000 13 7/ 5 4 2 2
100000 17 9 6 5 3 3
1000000 20 10 / 5 3 3
10000000 23 12 8 6 4 3
100000000 26 14 9 7/ 4 4
1000000000 30 15 10 8 5 4

/O cost is 2N times number of passes

16




CSD Univ. of Crete

Multi-way Merge Sort I/O Savings

30 |B = 3 (two-way)

25

1 1 T I |

N=-2=2OCOTW
N~

~ ©

O B X X 4+

00 00 00 00 00 00|

20

15

# of Passes

10

1~
 E R

(|

oK
N

AN
1
|-

5>£ ; il
100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09
N [pages]

M

H

i

Sl
H
S

Fall 2014

17




"9 CSD Univ. of Crete Fall 2014

Minimizing the Number of Initial Runs

® Recall that the number of initial runs determines the number of passes
we need to make:

2N[log, ,[N/BT|+1 (e,r=0...[N/BI-1)

*

® Reducing the number of initial runs is a very desirable optimization for
Pass O

econsider an alternative of QuickSort that minimizes the required
number of passes by generating longer runs

® Replacement (tournament) Sort
+Assume all tuples are the same size

+Ignore for simplicity double buffering (more latter)
18




7% CSD Univ. of Crete Fall 2014

Replacement (Tournament) External Sort

® Replacement Sort:

¢ Produce runs of 2*(B-2) pages long on average (“snowplow” analogy)

¢ Assume one input and one output buffer; The remaining B — 2 buffer
pages are called the current set

® Keep two heaps in memory, H1 and
Top: Read in B-2 blocks into H1
Output: Move smallest record in H1 to output buffer

Read in a new record r into H1 r
If input buffer is empty, read another page ©
If r not smallest, then GOTO Output

else remove r from “heap” P
Output run HZ; GOTO Top gl»_;::::::: """"" r




7% CSD Univ. of Crete Fall 2014

Replacement (Tournament) External Sort

® Pick tuple in the current set with @ Terminate when all tuples in current
smallest k value that is still set are smaller than the largest tuple

greater than the largest k value in !N output buffer |
output buffer +Write out output buffer page (it

becomes the last page of the

+Append tuple to output buffer currently created run)

+Output buffer remain sorted o Start a new run by reading tuples
+Add tuple from input buffer to from input buffer, moving them to
current set current set and writing to output
Input Curzﬁllt) set Output bufter
(1 buffer) (H2) Average
2 3 length of run
12 3 is 2(B-2)
4 ' 5
10
Append to 1 ] Append to
20

current set output




Fall 2014

= “NUmber of Passes of Replacement Sort using
Buffer Blocks

N B=1000 [B=5000 |B=10000 {B=50000
100 1 1 1 1
1000
10000
100000
1000000
10000000
100000000
1000000000

D W W N NDN =
W W W N N = =

oo o1 ph W W IN =
W NN DNNDNN PR =

® Buffer block = 32 pages and initial pass produces runs of size 2(B-2)

21




"% CSD Univ. of Crete Fall 2014

/O for External Merge Sort

® Actually, in previous algorithms we considered simple page-by-page 1/Os
+Much better than an 1/O per record !

® Transfer rate increases 40% per year; seek time and latency time
decreases by only 8% per year

#¢Is minimizing passes optimal for Pass 1, 2, ...?
+\Would merging as many runs as possible the best solution?

® |n fact, read a block of pages sequentially!
+For minimizing seek time and rotational delay

® Suggests we should make each (input/output) buffer be a block of pages
+But this will reduce fan-out during merge passes!

+In practice, most files still sorted in 2-3 passes
22




Fall 2014

CSD Univ. of Crete

Sequential vs Random I/Os for External Merge Sort

® Suppose we have 80 runs, each 80 pages long and we have 81 pages
of buffer space
® \We can merge all 80 runs in a single pass

¢ each page requires a seek to access (Why?)

¢ there are 80 pages per run, so 80 seeks per run

+ total cost = 80 runs * 80 seeks = 6400 seeks

® \We can merge all 80 runs in two steps

¢ 5 sets of 16 runs each
e read 80/16=5 pages of one run
e 16 runs result in sorted run of 1280 pages (16*80)
e each merge requires 80/5 * 16 = 256 seeks
e for 5 sets, we have 5 * 256 = 1280 seeks

¢ merge 5 runs of 1280 pages
e read 80/5=16 pages of one run => 1280/16=80 seeks in total
e 5 runs => 5*80 = 400 seeks

¢ total: 1280+400=1680 seeks!!!

® Number of passes increases, but number of seeks decreases! 2




ff;,, CSD Univ. of Crete

Streaming Data

Fall 2014

hrough Main Memory

® An important detail for sorting & other DB operations

® Simple case: Compute 7(x) for each record, write out the result
¢Read a page from INPUT to Input Buffer
oWrite 7 (x) for each item to Output Buffer
+When Input Buffer is consumed, read another page
+When Output Buffer fills, write it to OUTPUT

® Reads and Writes are not coordinated

v

/\ Input /\ Output —
Input f(x)

U Output

Memory Buffers

24




CSD Univ. of Crete Fall 2014

Double Buffering

® |ssue one read for 1024 bytes instead of 2 reads of 512 bytes (i.e. use a
large buffer size)

#A larger block allows more data to processed with each I/O

® To reduce wait time for I/O request to complete, can prefetch into
“shadow block’

® The idea is to avoid waiting for input (or output) buffer while CPU is idle

+Keep the CPU busy while the input buffer is reloaded (the output
buffer is appended to the current run)

il > < __ 2
! : *|INPUT 1| |OUTPUT ol -
———— [ [ "|INPUT 1'| |OUTPUT' _ee
b .
Disk block size Disk

B main memory buffers, two-way merge 2




CSD Univ. of Crete Fall 2014

Double Buffering while Sorting

® Potentially, more passes (because you're effectively using fewer buffers);
but, in practice, most files still sorted in 2-3 passes

INPUT 1
/ INPUT 1'\
e > < _
: L UNPUT 2L R [QuTPUT | .'
o, INPUT 2 SUTPUT XN
' IN o o0 o
D ——— b . —
Disk \ INPUT K block size -
Disk
INPUT K’

B main memory buffers, multi-way merge

26




)’ i1 CSD Univ. of Crete

Using B+ Trees for Sorting

® Scenario: Table to be sorted has B* tree index on sorting column(s)
¢ldea: Can retrieve records in order by traversing leaf pages

® |s this a good idea?
® Cases to consider:

+B+ tree Is clustered -- Good idea!
¢B+ tree is not clustered -- Could be a very bad idea!

Fall 2014

27




Fall 2014

'@fz& CSD Univ. of Crete

Clustered B+ Tree Used for Sorting

® Cost: root to the left-most leaf,
then retrieve all leaf pages
(<key, record> pair

L Index
organization) (Directs search)
o If <key, rid> pair N

organization is used?

------

3 Data Entries
s ("Sequence set”)

¢ Additional cost of retrievin% l //// \x
data records: each page #4,

fetched just once

ffffff

Data Records

Always better than external sorting!

28




), i1 CSD Univ. of Crete

Unclustered B+ Tree Used for Sorting

® each data entry contains <key, r7d> of a data record
+In the worst case, one I/O per data record!

Index
(Directs search)

= Data Entries
1 ("Sequence set")

N

Data Records

Fall 2014

29




"% CSD Univ. of Crete Fall 2014

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1.000 10.000

1.000 2.000 1.000 10.000 100.000
10.000 40.000 10.000 100.000 1.000.000
100.000 600.000 100.000 1.000.000 10.000.000
1.000.000 8.000.000 |1.000.000 |10.000.000 100.000.000
10.000.000 |80.000.000 |10.000.000 /100.000.000 |1.000.000.000

p Is the # of records per page (p = 100 is realistic)
B = 1000 and block buffer=32 pages for sorting

Cost: p * N (compared to N when index is clustered)
30




CSD Univ. of Crete Fall 2014

External Sorting vs. Unclustered Index

et m-n 4—m———7———————————F——————F§
1e+08 | it ;
1e+07 | i u
g 1e+06 : H n
® 100000 2 u
) _
g 10000 O n
S 40003 »
100 é B+ tree clustered B
I External Merge Sort X
10 B+ tree unclustered, p=10 %X [
g1 _B+ tree unclustered, p =100 O

100 1000 10000 100000 1e+06 1e+07

N [pages]
® The plot assumes available buffer space for sorting of B = 257 pages

® For even modest file sizes, therefore, sorting by using an unclustered
B+ tree index is clearly inferior to external sorting




CSD Univ. of Crete Fall 2014

Summary

External sorting is important
¢ DBMS may dedicate part of buffer pool for sorting!
External merge sort minimizes disk 1/O cost:

¢ Pass 0: Produces sorted runs of size B (# buffer pages). Later
passes:. merge runs

¢ # of runs merged at a time depends on B, and block size
¢ Larger block size means less I/O cost per page
¢ Larger block size means smaller # runs merged
# In practice, # of runs rarely more than 2 or 3
Choice of internal sort algorithm may matter:
¢ Quicksort: Quick!
¢ Replacement sort: slower (2x), longer runs
The best sorts are wildly fast:
& Despite 40+ years of research, we're still improving!
Clustered B+ tree is good for sorting
# unclustered tree is usually very bad 32




CSD Univ. of Crete

Fall 2014

Complexity of Main Memory Sort Algorithms

stability | space time

best average worst
Bubble Sort stable little O(n) O(n2) O(n2)
Insertion Sort stable little O(n) O(n2) O(n2)
Quick Sort untable | O(logn) | O(nlogn) | O(nlogn) O(n2)
Merge Sort stable O(n) O(nlogn) | O(nlogn) | O(nlogn)
Heap Sort untable little O(nlogn) | O(nlogn) | O(nlogn)
Radix Sort stable O(np) | O(nlogn) | O(nlogn) | O(nlogn)

34




A ‘?@ i1 CSD Univ. of Crete Fall 2014

References

® Based on slides from:
¢R. Ramakrishnan and J. Gehrke
¢ J. Hellerstein
oM. H. Schaoll

35




TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= - ]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang



XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong




2NMEIWMAT



2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.



2NUEIWHA AVO@POpPAC

Copyright TMavemotiuio Kpntng, AnuAtpng TMAeCoucAKNnG. «ZUCTAMOATA
Alaxeipiong Baocewv Aedopévwy. AlaAeén 5n:. External sorting». 'Ekdoon:
1.0. HpdkAeio/P€Bupvo 2015. AiaBeéoiyo amd 1 OIKTUOKR OleuBuvon:
http://www.csd.uoc.gr/~hy460/



