sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv
Ai1dAegn 6n: Query Execution

Anuntpnc lNAegouodkng
Tunua Emotiung YtmoAoyiotwy

QUERY EXECUTION:;
How to Implement Relational
Operations?

T
S

”“-___________--”

CSD Univ. of Crete Fall 2014

Introduction

® \We've covered the basic underlying storage, buffering, indexing and
sorting technology

+ Now we can move on to query processing
® Relational operators can be composed
¢ Each relational operator takes as input and returns a relation
¢ Optimize queries by composing operations in different ways
® Some database operations are EXPENSIVE
® Can greatly improve performance by being “smart”
¢ e.g., can speed up 1,000,000x over naive approach
® Main weapons are:
+ clever implementation technigues for operators
¢ exploiting “equivalencies” of relational operators
¢ using statistics and cost models to choose among these

7% CSD Univ. of Crete Fall 2014

Relational Operations

® We will consider how to implement:
eSelection (o) Selects a subset of rows from relation

oProjection (1) Deletes unwanted columns from relation
¢Join (Ppq) Allows us to combine two relations
¢ Set-difference (—) Tuplesin Rel. 1, but not in Rel. 2

eUnion (U) Tuplesin Rel. 1 and in Rel. 2
eAggregation (SUM, MIN, etc.) and GROUP BY

%] CSD Univ. of Crete Fall 2014

Evaluation of Relational Operators

® Techniques to implement operators
¢lteration
+Indexing
<+ Partitioning

® Access paths denote alternative algorithms + data structures used to
retrieve tuples from a relation

+File scan
+Binary search
+Index and matching selection condition

® Selectivity of access paths
+Number of pages retrieved: index + data pages
+Most selective access path minimize retrieval cost

%1 CSD Univ. of Crete Fall 2014

Schema for Examples

Sailors (s7d:integer, sname:string, rating:integer, age:real)
Reserves (s7d:integer, bi7d:inteqger, day:dates, rname:string)

® Sailors:
oEach tuple is 50 bytes long, 80 tuples per page, 500 pages

® Reserves:
oEach tuple is 40 bytes long, 100 tuples per page, 1000 pages

CSD Univ. of Crete Fall 2014

Simple Selections

SELECT
FROM Reserves R
WHERE R.s1d >= 35

® Algebraic form JR.attropvalue(R)
® Question: how best to perform?
® Depends on:

sWhat indexes/access paths are available

eWhat is the expected size of the result (in terms of number of tuples
and/or number of pages)

® Size of result (cardinality) approximated as
size of R * reduction factor
+“reduction factor” is usually called selectivity
sestimate selectivity is based on statistics 5

~% CSD Univ. of Crete Fall 2014

Simple Selections

® \With no index, unsorted:

¢ Must essentially scan all data pages of the relation to find the rows
satisfying selection condition: cost is M (#pages in R)

¢ For “Reserves” = 1000 I/Os

® \With no index, sorted:

¢ Use binary search (O (log,M)) to locate first data page containing row
in which attr = value

o Scan further to get all rows satisfying attr op value: costis O
(log,M) +[selectivity*#pages |
¢ For “Reserves” = 10 1/Os + [selectivity * 1000

® \With an index on selection attribute:
¢ Use index to find first index entry that points to a qualifying tuple of R

¢ Scan leaf pages of index to retrieve all data records in which key
value satisfies selection condition

¢ Retrieve corresponding data records
¢ Cost? !

CSD Univ. of Crete Fall 2014

Selections using Index

® Cost depends on #qualifying

tuples, and clustering {/
oCost: | B+ tree index
* 2-3 1/Os to get starting leaf | for s7d
page (typically small) ’
e + cost of retrieving data ”
records | .
10| 24| 35 3 347 > 70q 767 87¢4 901 > 904 903
® In example "Reserves’ relation, if—- _ R Tw
10% of tuples qualify (100 pages, e e e T e
876 ... | 901 ... |—>| 902 ... | 903 ... |

¢ Clustered index
e little more than 100 I/Os Data file

eUnclustered Index
e could be up to 10000 1I/Os!

‘?@ 1 CSD Univ. of Crete Fall 2014
, /‘v';

Selections using Unclustered Indexes

CLUSTERED Index entries UNCLUSTERED
direct search
for data entries

4 N 4 \
Data entries | | Data entries =
/4 1\ NN (Index File) mm X
/8 \\% atafile) /XN) N I
Data Records Data Records

® Important refinement for unclustered indexes:
OFind qualifying tuples
@ Sort the rid’s of the data records to be retrieved
®Fetch rids in order

e This ensures that each data page is looked at just once (though #
of such pages likely to be higher than with clustering) 5

® Clustered B* tree index on attr (for equality or range search):

¢ Locate first index entry corresponding to a data record in which
attr=value Cost = depth of tree

¢ Data records satisfying condition packed in sequence in successive
data pages; scan those pages

Cost: number of pages occupied by qualifying data records

DA index entries (containing
rows) that satisfy

condition
Alternative @

"% CSD Univ. of Crete Fall 2014

“Computing Selection o, op value) USING INdeX

10

7% CSD Univ. of Crete Fall 2014

~Computing Selection o e, op vatue) USING Index

® Unclustered B* tree index on attr (for equality or range search):
¢ Locate first index entry corresponding to a data record in which
attr=value
e Cost = depth of tree

¢ Index entries with pointers to data records satisfying condition are
packed in seguence in successive index pages

e Scan entries & sort rids to identify pages with qualifying data records
- Each page with at least one such record must be fetched once

e Cost: number of data records that satisfy selection condition

index entries (containing
row ids) that satisfy \
condition AN

Alternative @ 7\ A — _Data file_
B+ Tree \

} data page

\\

CSD Univ. of Crete Fall 2014

Computing Selection o ,+¢- - ya70e) USING Index

® Hash index on attr (for equality search only):
¢ Cost

e ~ 1.2 (primary) - 2.2 (secondary) — typical average cost of hashing
(>1 due to possible overflow chains)

e Finds the (unique) bucket containing all index entries satisfying
selection condition

Clustered index — all qualifying data records packed in the
bucket (a few pages)
. Cost: number of pages occupies by the bucket
¢ Unclustered index — sort rids in the index entries to identify
pages with qualifying data records
. Each page with at least one such record must be fetched once

. Cost: number of data records Iin bucket
12

e CSD Univ. of Crete

® Unclustered hash index on attr (for equality search)

N

—

data pages

Fall 2014

buckets

Selection Ocattr = value) USiﬂg Index

13

CSD Univ. of Crete Fall 2014

Choosing Indices

® DBMSs may allow user to specify Primary
0T¥ped(hash, B+ tree) and search key B-Tree
of Index .
eWhether or not it should be clustered | '”7[@(
® Using information about 1 access only | "
othe frequency (restis Sust: | "N
otype of queries bandwidth)
#size of tables
designer can use cost estimates to choose Secondary B-tree
appropriate indices dex
® Several commercial systems have tools ; Pay N
that suggest indices times
+ Simplifies job, but index suggestions > | aCCeS5
must be veérified cost
v
v

14

CSD Univ. of Crete Fall 2014

Choosing Indices - Examples

Primary
@ |f a frequently executed query that B-Tree
Involves index
#selection or a join
ehas a large result set l ow
>use a clustered B+ tree index ! e Gy high
(rest is ‘Yjust’
bandwidth)

e If a frequently executed query is
¢an equality search and Secondary B-tree
+has a small result set index

»an unclustered hash index is / !

best v Pay N

> Since only one clustered index 222225
on a table'is possible, choosing ‘
unclustered allows a different : cos
Index to be clustered L

e

15

- CSD Univ. of Crete

General Selection Conditions

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

Fall 2014

® Such selection conditions are first converted to Conjunctive Normal Form

(CNF):
o(day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)

® We only discuss the case with no ORs
ea conjunction of terms of the form attr op value

16

e CSD Univ. of Crete

Index Matching

® Hash index match selection condition if
+Condition has conjunctive terms of the form
attribute = value
+for each attribute in the index search key

® Example:
eHash index on search key <rname, bid, sid>
+Can retrieve tuples that satisfy condition
rname=‘Joe’ AND bid=5 AND sid=3
+Cannot retrieve all tuples that satisfy condition
rname="‘Joe’ AND bid=5
¢ 0r conditions on other attributes

Fall 2014

17

ﬁ@ 4 CSD Univ. of Crete Fall 2014
o~

Index Matching

® B-Tree index match selection condition if
+Condition has conjunctive terms of the form
attribute op value
ofor each attribute in a prefix of index search key

® Example:
#B+ tree index on search key <rname, bid, sid>
+Can retrieve tuples that satisfy conditions
rname=‘Joe’ AND bid=5 AND sid=3
rname="‘Joe’ AND bid=5
+Cannot retrieve tuples that satisfy condition
sid= 5 AND bid=3

18

/97 CSD Univ. of Crete

wo Approaches to General Selections

® First approach:
OFind the most selective access path
®Retrieve tuples using it, and
® Apply any remaining terms that don’t match the index

® Most selective access path:

+An index or file scan that we estimate will require the fewest page
1/Os

® Terms that match this index reduce the number of tuples retrieved,

¢0ther terms are used to discard some retrieved tuples, but do not
affect number of tuples/pages fetched

Fall 2014

19

| }?@ A CSD Univ. of Crete Fall 2014

Most Selective Index - Example

® Example: day<8/9/94 AND bid=5 AND sid=3
¢ A B+ tree index on day can be used;

e then, bid=5 AND sid=3 must be checked for each retrieved
tuple

o Similarly, a hash index on <b7d, s7d> could be used;
e then, day<8/9/94 must be checked

eHow about a B+tree on <rname, day> ?

eHow about a B+tree on <day, rname>?

+How about a Hash index on <day, rname> ?

20

7% CSD Univ. of Crete Fall 2014

Intersection of Rids

® Second approach: if we have two or more matching indexes :
O Get sets of rids of data records using each matching index
®Then intersect these sets of rids
®Retrieve the records and apply any remaining terms

® Example: day<8/9/94 AND bid=5 AND sid=3

¢ With a B+ tree index on day and a hash index on s7d, we can
retrieve rids of records satisfying day<&8,/9,/94 using the first, rids of
records satisfying s7d=3 using the second, then intersect, retrieve
records and check bid=5

+Note: commercial systems use various tricks to do this:
e bit maps, bloom filters, index joins

21

CSD Univ. of Crete Fall 2014

Bitmap Indices

® Bitmap indices are a special type of index designed for efficient querying
on multiple keys

¢ A bitmap is simply an array of bits
® Records in a relation are assumed to be numbered sequentially
+Given a number n (from 0) it must be easy to retrieve record n

® Applied on attributes with a relatively small number of distinct values
+E.g. gender, country, state, ...

¢E.g. Income-level (income broken up into a small number of levels
such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

® Bitmap indices are useful for queries on multiple attributes
e not particularly useful for single attribute queries
® Bitmap indices generally very small compared with relation size 22

CSD Univ. of Crete

Bitmap Indices

Fall 2014

® In its simplest form a bitmap index on an attribute has a bitmap for

each value of the attribute
+Bitmap has as many bits as records

+In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute, and is O otherwise

record incore Bitmaps for gender

number address -level m

10010

0 Perryridge L1

f

01101

Brooklyn L2
Jonestown L1
Brooklyn L4

Perryridge L3

Bitmaps for
income-level

LT (10100

L2 101000

L3 [00001
L4 00010

L5 00000

%9 CSD Univ. of Crete Fall 2014

Bitmap Indices

® Queries are answered using bitmap operations
¢ Intersection (and)
¢ Union (or)
¢ Complementation (not)

® Each operation takes two bitmaps of the same size and applies the
operation on corresponding bits to get the result bitmap

¢ Males with income level L1: 10010 AND 10100 = 10000
e Can then retrieve qualifying data records
e Counting number of qualifying data records is even faster
® Deletion needs to be handled properly
¢ Existence bitmap to note if there is a valid record at a record location
¢ Needed for complementation
e not(A4=v): (NOT bitmap-A-v) AND ExistenceBitmap
® Should keep bitmaps for all values, even null value
¢ To correctly handle SQL null semantics for NOT (A=V) :
e intersect above result with (NOT b7tmap-A-Null)

24

~% CSD Univ. of Crete Fall 2014

Projection

SELECT DISTINCT
R.s1d, R.bid
FROM Reserves R

® Algebraic form 7Z-R.attr1,R.attr2,...(R)

® To implement projection
¢ Remove unwanted attributes
¢ Eliminate any duplicate tuples
® Sort-based projection
® Hash-based projection

25

9 CSD Univ. of Crete Fall 2014

Big Sorts

Sort_—" Sort| ~__Sort

Merge ™~ Mergle _— Merge

®One-pass sort: The data has been read, sorted, and dumped to disc in
chunks, then re-read once to be merged into order, and dumped again

26

’P@ i CSD Univ. of Crete Fall 2014
—

Huge Sorts

Sort

Merge) k Merge 5

oMuIti-pass sort: After sorting the data in chunks, we can'’t re-read the top
of every chunk simultaneously, so we have multiple merge passes 27

Sort Based Projection

O Scan R, to produce a set of tuples containing only the desired attributes
(why do this 15t?)

¢Cost M I/Ostoscan R +
¢Cost T I/Os to write temp relation R’,
where M is # pages of R and T is # pages of R’

® Sort tuples using combination of attributes as key
¢Cost=0 (Tlog T)

® Scan sorted result, compare adjacent tuples and discard duplicates
¢ Cost=T

CSD Univ. of Crete Fall 2014

28

“$1 CSD Univ. of Crete Fall 2014

Example: Sort-based Proj. on "Reserves”

® Step 1:
¢Scan “Reserves” with 1000 I/Os

o¢lf atuple in R'is 10 bytes (i.e., size ratio 0.25) we need 250 I/Os to
write out R’

® Step 2:

+Given 20 buffer pages, sort R" in two passes at a cost of 2*2*250 I/Os
o# passes = log,y, | 250/20 |1 +1=2
e per pass = 2 * 250

® Step 3:
+250 I/Os to scan for duplicates

® Total cost: 1000 + 250 + 1000 + 250 = 2500 I/Os

29

| }?@ A CSD Univ. of Crete Fall 2014

Sort Based Projection Improvements

® Project out unwanted fields during Pass O of sorting

+Read in B pages of R and write out (2)B internally sorted pages (runs)
of temporary relation

¢ Tuples in runs are smaller than input tuples
e Size ratio depends on number and size of fields dropped
® Eliminate duplicates during the merging passes
+Number of result tuples smaller than input
¢ Difference depends on number of duplicates (very first merging pass)

Input
| Run 1 >‘ Buffer 1 \
Input
——»‘
l e Buffer 2
. e Output | __|

Buffer
Input /
_——
| Run k ‘ Buffegky

—» Output Run

30

~% CSD Univ. of Crete Fall 2014

Fxample: Tournament Sort-based Proj. on “Reserves”

® First pass:
¢Scan “Reserves” with 1000 1/Os
¢ Write out R’ with 250 I/Os

e With 20 buffer pages, the 250 pages are written out as 7 internally
sorted runs, each (except the last) about 40 pages (instead of
250/20 = 13 runs of 20 pages)

. Remember tournament sort that writes 2*B sorted pages

® Second pass:
+Read the runs at a cost of 250 1/0Os and merge them

® Total cost: 1000 + 250 + 250 = 1500 1/Os

31

‘?@ CSD Univ. of Crete

® Partitioning

Hash-Based Projection

¢ One input buffer page and B-1 output buffer pages
¢ Read R using one input buffer
¢ For each tuple do

e Discard unwanted fields

e Apply hash function h to combination of remaining fields

e Output tuple to one of the B-1 output buffer pages

| Input Run

Input
| Buffer

Hash
Function

b

A

\

AN

—> | Bucket 1

AY
\
A S

\
Hash
Table

V4

4
4
A

5 | Bucket K=

Fall 2014

32

%] CSD Univ. of Crete Fall 2014

Hash-Based Projection

® Duplicate elimination
o For each partition produced in the first phase
e Read in one page at a time

e Build an in-memory hash table by applying a hash function h2
(#h) to each tuple

e If a new tuple hashes to the same value as some existing tuple,
check if new tuple is a duplicate

e Discard duplicates as they are detected

o After entire partition has been read in, write tuples in hash table to
result file

+Clear in-memory hash table for next partition

33

) i1 CSD Univ. of Crete

Hash-Based Projection Cost

® Partitioning
¢ Read R =M 1/Os
¢ Write R =T I/Os
® Duplicate elimination
¢ Read in partitions = T 1/Os
® Total cost=M + 2T I/Os
® Example: “Reserve” relation
sassuming partitions fit in memory
eoread 1000 pages and write out partitions of projected tuples
e 250 pages
+do duplicates elimination on each partition
e total 250 page reads
¢ Total : = 1000 + 2*250 = 1500 1/O

Fall 2014

34

~% CSD Univ. of Crete Fall 2014

Remarks on Projections

® Sort-based projection is the standard approach

+Better if we have many duplicates or if the distribution of (hash) values
In very non-uniform (data skew)

+Result is sorted
+Same tricks apply to GROUP BY/Aggregation
® Index on relation contains all wanted attributes in its search key

+Retrieve the key values from the index without accessing the actual
relation: index only scan

+Apply projection techniques this smaller set of pages

® Ordered tree index contains all wanted attributes as prefix of search key,
even better:
¢ Retrieve data entries in order (index-only scan)
¢ Discard unwanted fields
+Compare adjacent tuples to check for duplicates

® Commercial Systems

+Informix uses hashing, IBM DB2, Oracle 8 and Sybase ASE uses
sorting. Microsoft SQL Server and Sybase ASIQ implement both
hash-based and sort-based algorithms %

CSD Univ. of Crete

® Algebraic form: RP]S
+ Joins are very common
+ Joins are very expensive

® Join operation can be implemented by

¢ Cross-producte.g,. R x S

Joins

Fall 2014

SELECT *

FROM
WHERE

Reserves R1l, Sailors S1
R1.s1d=S1.s1d

¢ Followed by selections and projections

® [nefficient

¢ Cross-product much larger than result of a join
® Note: join is associative and commutative

36

CSD Univ. of Crete Fall 2014

Joins

® Techniques to implement join @ Assume

Iteration mM pages in R, p, tuples per page
¢ Simple Nested Loops mN pages in S, p. tuples per page
+ Block Nested Loops ® Cost metric : # of I/Os
® Indexing m\We will ignore output costs
+ Index Nested Loops ® If R is “Reserves” and S is “Sailors”
® Partition mM = 1000, p, =100
+ Sort Merge Join mN = 500, p; =80
+ Hash Join ® Focus on natural joins with one join
® Factors affecting performance column
¢ Available buffer pages ®\We will consider more complex join

¢ Choice of inner vs. outer conditions later

relation

+ Join Selectivity factor
37

. ~$7 CSD Univ. of Crete

Simple Nested Loops Join

foreach tuple r in R do

foreach tuple s in S do
if ri == s; then add <r, s> to result

® For each tuple in the outer relation R, we scan the entire inner relation S

Fall 2014

® Total Cost = (psx *M)*N + M 1/Os where (p, * M) the # of R tuples
+in our example = 100*1000*500 + 1000 I/Os

¢At 10ms/IO, Total: ???
® \What assumptions are being
made here?
® What if smaller relation (S)
was outer?
® What is the cost if one relation
can fit entirely in memory?

Scan

L —

R

Main Memory

TN
N

Output

N~

38

e CSD Univ. of Crete

Simple Nested Loop Join

Tuple

R tuples

7

1 scan per R tuple
N pages per scan

Fall 2014

39

CSD Univ. of Crete Fall 2014

Page-Oriented Nested Loops Join

foreach page b, in R do
foreach page b, in S do
foreach tuple r in b, do
foreach tuple s in b do
1t ri == s; then add <r, s> to result

® For each page of R, get each page of S, and write out matching pairs of
tuples <, s>, where 7 isin R-page and sis in S-page

¢Improvement: in the worst case, each block in inner relation s is read
only once for each page in the outer relation (instead of once for
each tuple)

® Total Cost = M*N + M 1/Os
+in our example = 1000*500 + 1000 I/Os
® Choose smaller relation to be outer relation
«If smaller relation (S) is outer, Total cost = 500*1000 + 500

40

%9 CSD Univ. of Crete Fall 2014

“Block” Nested Loops Join

® Page-oriented nested loop (NL) doesn’t exploit extra page buffers
® Alternative approach:

¢ use one page as an input buffer for scanning the inner S,

¢ one page as the output buffer, and

¢ use all remaining buffer pages (B-2) to hold ""block™ (think “chunk”)
of outer R

® For each matching tuple 7 in R-chunk, sin S-page, add <7, s> to
result. Then read next R-chunk, scan S, etc.

for each block of B-2 pages of R do
for each page of S do
{for all matching 1n-memory tuples
r in R-block and s 1n S-page

add <r, s> to result} i

e CSD Univ. of Crete

“Block” Nested Loop Join

B — 2 pages

/

M/ (B - 2)] blocks

1 scan per R block
N pages per scan

Fall 2014

42

"% CSD Univ. of Crete

® To find matching pairs of tuples efficiently
+Build a main-memory hash table for R

s#outer blocks =| # of pages of outer/ b
eTotalcost=M/(B-2)* N+ M

“Block” Nested Loops Join

® Cost: #outer blocks * Scan of inner + Scan of outer

lock size |

r blocks of R tuples
Input Buffer for r (k < B-1 pages)
__>|| 1 | /2 | M-2

Output Buffer
e e I e

Input Buffer for 8

rd s

-

Fall 2014

43

"% CSD Univ. of Crete Fall 2014

Examples of Block Nested Loops

® With 100 buffer pages of “Reserves” (R) as outer:

¢ Cost of scanning R is 1000 I/Os; a total of 10-page blocks

¢ Per chunk of R, we scan “Sailors” (S); 10*500 I/Os

¢ Total: 10*500 + 1000 = 6000 I10s

+ |f space for just 90 buffer pages of R, we would scan S 12 times
® With 100-page block of “Sailors” (S) as outer:

¢ Cost of scanning S is 500 I/Os; a total of 5 blocks

¢ Per block of S, we scan “Reserves” (R); 5*1000 1/Os

+ Total: 5*1000 + 500 = 5500 I0s

® If you consider seeks, it may be best to divide buffers evenly between
Rand S

¢ Disk arm “jogs” between read of S and write of output

+ If output is not going to disk, this is not an issue "

%7 CSD Univ. of Crete Fall 2014

Index Nested Loops Join

foreach tuple r in R do
foreach tuple s in S where ri == s; do
add <r, s> to result

® If there is an index on the join attribute of one relation
+Make indexed relation the inner relation (say S)
+Compare each tuple in R with tuples in the same partition (same value
In join attribute)
+Does not enumerate cross-product of R and S
® Costtoscan R =M I/Os

® Cost to retrieve matching S tuples depends on
¢ Index

e Hash index: 1.2 (primary) -2.2 (secondary) I/Os to find appropriate
bucket (probing)

e B+ tree: 2-4 1/0Os to find appropriate leaf
+Number of matching tuples
e Clustered index: 1 1/O per outer tuple r

e Unclustered index: up to 1 1/O per matching s tuple *®

"% CSD Univ. of Crete Fall 2014

Index Nested Loops Join

S

® The basic cost of the nested loop join is visible in the picture

+We do three indexed access into S, but need the three driving rows
from R first

46

~% CSD Univ. of Crete Fall 2014

Index Nested Loops Join

R Index S
/
Tuple /
.

1 probe per R tuple

R tuples

47

7% CSD Univ. of Crete Fall 2014

Examples of Index Nested Loops

® Hash-based index on s7d of “Sailors”
¢ 1.2 1/Os to retrieve the appropriate page of index
¢ At most one matching tuple since sid is the key of “Sailors”
¢ Cost to scan “Reserves” = 1000 I/Os

¢ Each “Reserves” tuple takes 1.2 1/0Os to get data entry in index + 1
/O to get matching “Sailors” tuple

¢ 1000*100 “Reserves” tuples takes 220000 I/Os
+ Total cost = 221000 I/Os

48

CSD Univ. of Crete Fall 2014

Examples of Index Nested Loops

® Hash-based index on s7d of “Reserves”
#Cost to scan “Sailors” = 500 page I/Os
oEach “Sailors” tuple can match O or more “Reserves” tuples
¢Assume uniform distribution
e Average of 2.5 reservations per sailor (100000 / 40000)

e Cost to retrieve reservation of a sailoris 1 or 2.5 1/0Os
depending on whether the index is clustered

+1 “Sailors” tuple takes 1.2 1/Os to find index page with data entries
+ 1 to 2.5 I/Os to retrieve matching “Reserves” tuples

+80*500 “Sailors” tuples (40000) take 88000 to 148000 I/Os
o Total cost range from 88500 to 148500 I/Os

49

CSD Univ. of Crete Fall 2014

Examples of Index Nested Loops

® B+-tree index on s7d of “Sailors” (as inner):
¢ Scan “Reserves”. 1000 page I/Os, 100*1000 tuples

¢ For each “Reserves” tuple: 2 1/Os to find index page with data entries
+ 1 |/O to get (the exactly one) matching “Sailors” tuple (clustered or
unclustered)

® B+-tree index on s7dof “Reserves” (as inner):
¢ Scan “Sailors™. 500 page 1/Os, 80*500 tuples

¢ For each “Sailors” tuple: 2 1/Os to find index page with data entries
+ cost of retrieving matching “Reserves” tuples

e Assuming uniform distribution, 2.5 reservations per sailor
(100000/ 40000) the cost of retrieving them is 1 or 2.5 1/Os
depending on whether the index is clustered

50

. ~$7 CSD Univ. of Crete

Sort-Merge Join

® (External) Sort R and S on the join attribute
+Group tuples with same value together

® Merge the sorted relations on the join attribute
+Scan R and S for qualifying tuples

oCompare R tuples in a partition with only the S tuples in the same

partition
® Useful if
+0One or both inputs already
sorted on join attribute(s)
+Output should be sorted |usorted

o
0

) sorted

on join attribute(s)

Cﬁ
Cﬁ

Scan

N
N

sorted

__
N
]

sorted

Main Memory

N

Fall 2014

Output

51

e CSD Univ. of Crete

operation

Fall 2014

Sort-Merge Join (RP><i=;S)

R

Sort

S

Merge Merge

Sort

To next step -
e.g. order by

® Once the two sets are in order, they can be shuffled together
¢ The shuffling can be quick - the sorting may be the most expensive

52

CSD Univ. of Crete Fall 2014

Sort-Merge Join (RP><i=;S)

® Merging step
+Scan start at first tuple in each relation

eAdvance scan of R until current R tuple > current S tuple
w.r.t. value in join attribute

eAdvance scan of S until current S tuple > current R tuple

e Alternate between such advances until current R tuple =
current S tuple

e All R tuples with same value in R1 (current R group) and all S
tuples with same value in Sj (current S group) match

e Output <r, s> for all pairs of such tuples
. Like a mini nested loop
¢ Resume scan of R and S
® R is scanned once; each S group is scanned once per matching R tuple
+Multiple scans of an S group will probably find needed pages in buffer

53

‘@ i CSD Univ. of Crete Fall 2014

Merge Step of a Sort-Merge Join

Input: relation r sorted on attribute A;
relation s sorted on attribute B
Output: re<,_ps

Result := {} // initialize Result
t, := getFirst(r) // get first tuple
ts := getFirst(s)
while !eof(r) and !eof(s) dof{
while !'eof(r) && t,[A] < t4[B] do
t, = getNext(r) // get next tuple
while !eof(r) and t.[A] > t,[B] do
t, = getNext(s)
if t.[A] = t4[B] = c then // for some const c
Result := (0p—.(r) X 0p—.(8)) U Result;
}

return Result;
54

‘.@ CSD Univ. of Crete Fall 2014

Example of Sort-Merge Join

R: S: Bl PR
=r,.A =1 —s,.B =1 e
=r,.A =3 =s5,.B = 2 ry s

’2”3./1 = :}53.8 = 3 ry 5,
=r.A = s,.B =3 7905
= 7. A = = i.B = 8 20y

re.A = ro S5

55

9 CSD Univ. of Crete

Fall 2014

Example of Sort-Merge Join

sid [sname |rating |age

22 |dustin 7 45.0
28 |yuppy 9 35.0
31 |lubber | 8 55.5
44 |guppy 5 35.0
o8 |rusty 10 [35.0

® Costtosort R =2 * M* (# merge
passes + 1) I/Os

® Costtosort S=2*N * (#merge
passes + 1) 1/0Os

® Cost to merge both = M+N 1/Os

sid |bid day rname
28 (103 |12/4/96 guppy
28 (103 |11/3/96 yuppy
31 |101 |10/10/96 | dustin
31 (102 |10/12/96 | lubber
31 (101 |10/11/96 | lubber
58 103 |11/12/96 | dustin

® With 35, 100 or 300 buffer pages,
both “Reserves” and “Sailors” can
be sorted in 2 passes;
total join cost =4 * 1000 + 4 * 500
+ 1000 + 500 = 7500 I/Os

mBNL cost: 2500 to 15000 1I/Os 56

. ~$7 CSD Univ. of Crete

Refinement of Sort-Merge Join

Fall 2014

® \We can combine the merging phases in the sorting of R and S with the
merging required for the join
¢ Sort: produce sorted runs of maximum size L for R and S
e Allocate 1 page buffer per run of each relation

e With B > /L , where L is the size of the larger relation, using the
tournament sorting that produces on average runs of size 2B in
Pass 0, #runs of each relation is < B/2

¢ Merge and join: merge the runs of R, merge the runs of S, and merge
the result streams as they are generated!

Memory

Sorted runs

o1 Merge

§E>>
a~,

Merge

Join

—[]-

57

CSD Univ. of Crete Fall 2014

Refined Sort-Merge Join Cost

® Sort-Merge Join has a cost of 3(M+N) I/Os
eoread + write each relation in Pass 0 +
eoread each relation in (only one) merging pass
+(+ writing of result tuples)

® Memory Requirement:

+To be able to merge in one pass, we should have enough memory
to accommodate one page from each run:

B>M/B+N/B=>B>+M+N =>B>+L
where L Is the size of the larger relation

® |n our example, cost goes down from 7500 to 4500 (3 * 1500) 1/Os

® In practice, cost of sort-merge join, like the cost of external sorting, Is
linear (very few passes)

58

~% CSD Univ. of Crete
f; /(\;

Hash-Join

Fall 2014

® Usually done with static number of hash buckets
¢ Alternatives use directories, are more complex:
e Extensible, Linear hashing

+Generally have fairly long overflow chains
® “Classic” (In-memory) Hash join

+Efficient when memory can hold one of the two
relations

® Simple hash-based join
¢ Efficient when memory is large

¢ Too many I/O operations with small memory
® GRACE hash-based join

¢ Separate partitioning phase, parallel execution
+Avoid bucket overflow

® Hybrid hash-based join
+Combines Simple and Grace hash-join
¢Better memory usage

Buckets from r

O

T+ A

Relation

IS

N

Buckets from s

>

“n

X
X

Join corresponding r and s buckets

59

e CSD Univ. of Crete

Hash-Join Basic Concepts

1

® Partitioning (Building) phase

¢Use same hash function h to hash
relations R and S on their join
attributes to the same hash file

® Probing (Matching) phase

¢Compares R (build input) tuples In
partition 1 with S tuples (probe
input) in same partition 1, then
join

+While applying a hash function to
two attributes, if the hash values
are different, then the two attribute
values can not be equal

® Best when the hash table fits in main
memory!

A

| Y |

A 4

Fall 2014

I~

A

A 4

A

A 4

A

.y

A 4

X

0
j\/
1

2 |
3

P
<

R

»
>

Partitions Partitions

of R

of S

60

Hash-Join: “Classic”

B
H .
Hashed
/4
Ve
7/
7
7/
7/
/7
First (smaller) Second (larger)
data set data set

@ The first table is hashed in memory (build), the second table is used to
probe the hash table for matches
min simple cases the cost is easy to calculate

CSD Univ. of Crete Fall 2014

61

ﬁ@ i1 CSD Univ. of Crete Fall 2014
o~

Hash-Join: “Classic”

R In-memory hash table
Emp Entry0 R2
Smith Entryl
boral En l’l‘}-" 2 R1, R3
Chang
Miller
S Entry5 R4
Proj
P1
P2 Emp Dept Proj Dept
P3 Smith 2 2 2
P4 Chang 12 6 12
P5 Maller 15 3 15
’6

R join S (output) 62

%9 CSD Univ. of Crete Fall 2014

Cost of Hash-Join: “Classic”

Read entire inner relation into hash
table (join attributes as key)

For each tuple from outer, look up 1n
hash table & join

® Build phase
¢Read R once and construct in-memory hash table
¢1/Os: M (# of pages of R)

® Probe phase
¢Read all of S tuples and search for matching tuples
¢1/Os: N (# of pages of S)

® Total Cost: M+N 1I/Os if we have enough memory to hold the inner
relation in memory

+How do you choose the relation for Build and for Probe? 63

%] CSD Univ. of Crete Fall 2014

Hash-Join: Simple

® What if we do not have enough memory?

+Use whatever memory is available as one bucket and write the rest
to disk

® Simple Hash Join
#Choose hash function /1 () so that each bucket of R fits in memory

+Scan R; keep the contents of first bucket in memory; write out the
rest on a new file

e hash the contents of first bucket, using /72 (), again, in memory
oScan S; for each tuple probe, or write-out
+Repeat this process until the entire join is performed
® Simple vs. “Classic” Hash Join
eldentical to “classic” if R fits in memory: special case, with one bucket
¢Performs well if R almost fits in memory: say, half of R fits
+But poorly otherwise

e introduces too many I/O operations (passes) when the memory is

not too large! N

CSD Univ. of Crete Fall 2014

Cost of Hash-Join: Simple

for each logical bucket 7 -- hil()
for each record r in R
1f r is 1n bucket 7 then
insert r into the hash table;-- h2()
else write r into Rtmp
for each record s in S
1f s 1s 1n bucket 7 then
probe the hash table; -- h2()
else write s i1nto Stmp

® Simple Hash-Join algorithm combines the partitioning work and probing
work into each iteration of the loop

® Assuming that the hash function divide relations uniformly into k buckets
ecach bucket j requires one more pass over R and j passes over S
e j buckets of R read; j-1 written; similarly for S
¢ The process terminates whenever either the Rtmp or Stmp is empty
oThe costisk* (M+N) I/O’s

e \We read and write buckets of each relation k times! %

/%9 CSD Univ. of Crete

Hash-Join: GRACE

Fall 2014

® Partitioning phase: Memory
¢Apply a hash function h (x) to the join O-
attributes of both R and S R— .
e Assume B-1 buckets L]
¢According to the hash value, each tuple O
IS put into a corresponding bucket -
o Write these buckets to disk as ~ >2frs
separate files (physical) (="
® Joining phase: 4|1

+Get one partition of R and thepartitions || |

corresponding partition of S i

+Apply the “classic” hash algorithr_p J

using a different hash functlon astitions | | |

® Better than simple hashing, espeC|aIIy T

when little memory is available
¢ Twice as much work when memory is large
#Scan once for partitioning, once for hash/join

oad

B — | partitions of &

Memory

ed lOO0Og -0

N

For each 5 tuple,
|,._--—-'*' D probe and jon

66

%9 CSD Univ. of Crete

Hash-Join: GRACE

| Bob Smith | 1000 3.49
2 Jane Smith | 1012 0.70
3 Sara Dane 2 1012 0.49
/ 3 1001 279
Bucket 1| |Bucket 2| | Bucket 3| | Bucket 4| |Bucket 5
Hash Tdble
Outer Bucket 1 Inner Bucket 1
3 Sara Dane -..,_____* 4 3 1001 2.79
7 Bob Bob ~

Fall 2014

68

CSD Univ. of Crete

® Partition both relations
using hash function h1:
R tuples in partition 1
will only match S tuples
In partition I

® Read in a partition of R,
hash it using h2 (<> h1))

® Scan matching partition
of S, and probe hash
table for matches

Hash-Join: GRACE

Original

Fall 2014

R n OUTPUT Partitions
& 1 S
1
INPUT 2
hash 2
> function o0 4
e o o o 0 9
h B-1
B-1
~ ~
_ _Disk_ _ _ _B.main memory buffers_ _ _ _ _ _ Disk_ _.
Partitions Join Result
& Hash table for partition
hash Ri (k < B-2 pages) ——
fn .
h2 . o 0 0 -
0 0 o éhz . [20K 2K
Input bu_ffer Output .
i for Si buffer S,
Disk B main memory buffers Disk %

Hash-Join: GRACE

for each tuple r in R
apply hash function to the join attributes of r;
put r into the appropriate bucket R[1]}
for each tuple s in S
apply hash function to the join attributes of s;
put r 1nto the appropriate bucket S[1]}
for each bucket 1 < B-1
/* using a different hash function h2*/
build the hash table for R[1];:
for each tuple s in S[1i]
apply the hash function h2 to the join
attributes of S;
use s to probe the hash table;
output any matches to the result relation;

Y"»i& $1 CSD Univ. of Crete Fall 2014

70

CSD Univ. of Crete

Workload of Hash-Join: GRACE

S
0 1 2 3
bucketID = X mod 4 XX
Join on R.X = S.X 0| xxX
X XX
Rp>d S=R0OD SO + X X X
R1MX S1 + 1 X X X
R2 ™ S2 + R X X X
R3 D> S3 X X X
2 X X X
XXX
Nested-loop join considers all slots § § §
Hash join considers only those 3 XX
along the diagonal

Fall 2014

73

CSD Univ. of Crete Fall 2014

Observations on Hash-Join: GRACE

® Given B buffer pages, the maximum # of partitions is B-1

+B-1 > size of largest partition of R to be held in memory for the probing
phase

® Assuming uniformly sized partitions, the size of each R partition is M/(B-1)

® The number of pages in the (in-memory) hash table built during the
probing phase is f*M/(B-1) where f is the fudge factor

of = 1.2 is used to capture the (small) increase in size between the
partition and a hash table for the partition

® During the probing phase, in addition to the hash table for the R partition,
we require a buffer page for scanning the S partition, and an output buffer

¢ Therefore, we require B > *M/(B-1) +2
® Approximately, we need B /M for the Grace hash join to perform well

¢\We can always pick R to be the smaller relation, so:
B must be >\/m|n(M , N) 74

2

Cost of Hash-Join: GRACE

® Grace hash join
mAssume hash function /.7 () to partition R into VM subsets
mScan R, then S, placing into output buffer
e \When full, flush buffer to disk
mFor each R buffer, read from disk, make hash table (use /2 ())
mRead S buffer, lookup each tuple in hash, output on match

® Assume each partition fits into memory

m Cost for partitioning phase: Scan R and S once and write them out
once 2(M+N) 1/Os

m Cost for joining phase: Scan each partition once M+N 1/Os
m Total cost = 3(M+N) 1/Os

® |In our example joining “Reserves” and “Sailors™ relation costs
3(1000+500) = 4500 1/0s

ﬁ@ 1 CSD Univ. of Crete Fall 2014

75

71 CSD Univ. of Crete Fall 2014

Utilizing Extra Memory

® Suppose we are partitioning R (and S) into k partitions where B > f* M/
K, l.e. we can build an in-memory hash table for each partition

+The partitioning phase needs k +1 buffers, which leaves us with some
extra buffer space of B—-(k +1) pages

® |f this extra space is large enough to hold one partition, i.e., B—(k+1) >=f
*M / k, we can collect the entire first partition of R in memory during the
partitioning phase and need not write it to disk

e Similarly, during the partitioning of S, we can avoid storing its first
partition on disk and rather immediately probe the tuples in S’s first
partition against the in-memory first partition of R and write out results

¢ At the end of the partitioning phase for S, we are already done with
joining the first partitions
® The savings obtained result from not having to write out and read back in
the first partitions of R and S

¢ This version of hash join is called Hybrid Hash Join 76

/%9 CSD Univ. of Crete Fall 2014

Hybrid Hash-Join

® What if there is extra memory Memory C—_Disk 3
available? ; ',
+Use it to avoid writing/ R— v, = : :
rereading partitions of : :
both R and S! O l |
® Hybrid Hash-Join Works as Grace hash join, but &;

+Joining phase of one of (can be big) 1s kept 1n the main
the partitions is included ~Memory, as a hash table and

during the partitioning partitions R, ..., R, get to disk
phase wWhen partitioning S, tuples of the
#Useful when memory first bucket s, can be joined

sizes are relatively directly with &, ,

large, and the build Fi I"Ié.l-|-|y, join R; & S; f_or 7=2,...,kK
input is bigger than Savings: no need to write R; and S;

memory to disk or read back to memory
7

CSD Univ. of Crete

Partition Overflow

@ |f the hash function does not partition uniformly, one or
more R partitions may not fit in memory

® Two possible strategies to handle partition overflow:
+Overflow prevention (prevent from happening)

+Overflow resolution (handle overflow when it occurs)
® Case 1, overflow on disk: an R partition is larger than
memory size
¢ Solution (a) small partitions first and combine before
join;
¢ Solution (b) recursive partition
® Case 2, overflow in memory: the in-memory hash table
of R becomes too large
Solution: revise the partitioning scheme and keep a
smaller partition in memory

® See the duality in multi-pass merge sort here?

Fall 2014

Iy 78

L " CSD Univ. of Crete

Duality of Sort and Hash

® Divide-and-conguer paradigm
¢ Sorting: physical division, logical combination
+Hashing: logical division, physical combination

® Handling very large inputs
+ Sorting: multi-level merge
eHashing: recursive partitioning

® |/O patterns
¢ Sorting: sequential write, random read (merge)
+Hashing: random write, sequential read (partition)

Fall 2014

79

i1 CSD Univ. of Crete

Hash-Join vs. Sort-Merge Join

® Both have a cost of 3(M+N) I/Os
+Assuming two-pass Sort-Merge join
® Memory requirement: hash join is lower
Jmin(M,N) <+M +N
+Hash join wins on this count if relation sizes differ greatly
#Also, Hash Join shown to be highly parallelizable
® Other factors
+Hash join performance depends on the guality of the hash
e Might not get evenly sized buckets
¢ Sort-Merge join can be adapted for inequality (=) join predicates
¢ Sort-Merge join wins if R and/or S are already sorted
¢ Sort-Merge join wins if the result needs to be in sorted order
¢ Sort-Merge join less sensitive to data skew

Fall 2014

81

i1 CSD Univ. of Crete Fall 2014

Remarks on Joins

® Hash join is very efficient but is only applicable to equijoin
¢ Three hash-based algorithms are proposed, out of which the hybrid
hash join is the best
¢ “Simple” is good for large memories
e Grace, for small memories

® Sort merge join performs better than nested loop when both relations
are large

eespecially true if one or both relations are already sorted on the
joining attributes

® Nested loop join performs well when one relation is large & one is small

#A special case is when the smaller relation can be entirely held in
main memory which implies that both relations need to be read in
only once

+When combined with the index on the joining attribute of the (Iarger)
iInner relation, excellent performance can yield

‘C&?i:‘ CSD Univ. of Crete

Putting it all

External
relation

Nested loop join

Charles
Carl
Mary
John
Jose
30 | Antonio
40 | Victor
40 | Matheus
G0 Michael
10
20
30
40
50
60
70
80
external

relation

ogether

10 . 10

g — o

20 / " 20

0)30

50 —— 40

60 I ST
External SOI’t merge JOIn Inner

relation

80 10

70 50 20

60 30 40

Inner
relation
build bk,
phase
f(key) P
probe bk
phase /
10 |
25
30
45

T2

Inner
relation

Hash join

Fall 2014

83

® Effective use of the buffer pool is crucial for efficient implementations of a

® Keep the following in mind:

CSD Univ. of Crete Fall 2014

Impact of Buffering

relational query engine
¢ Several operators use the size of available buffer space as a parameter

+When several operations are executed concurrently, estimating the
number of available buffer pages is guesswork

+When several operators execute concurrently, they share the buffer
pool

+Using an unclustered index for accessing records makes finding a page
in the buffer rather unlikely and dependent on (rather unpredictably!)
the size of the buffer

¢ Furthermore, each page access is likely to refer to a new page, there-
fore, the buffer pool fills quickly and we obtain a high level of I/O activity

+If an operation has a repeated pattern of page accesses, a clever
replacement policy and/or sufficient number of buffers can speed up the
operation significantly 84

CSD Univ. of Crete Fall 2014

Buffering and Repeated Access Patterns

® Repeated access patterns interact with buffer replacement policy e.g.,

¢ Simple nested loop join: for each outer tuple, scan all pages of the
Inner relation

e With enough buffer pages to hold inner, replacement policy does
not matter

e Otherwise, LRU is worst (sequential flooding)

. MRU gives best buffer utilization, the first B — 2 pages of the
iInner will always stay in the buffer (pinning a few pages is best)

+ Block nested loop join: for each block of the outer, scan all pages of
the inner relation

e Since only one unpinned page is available for the scan of the inner,
the replacement policy makes no difference

¢ Index nested loop join: for each tuple in the outer, use the index to find
matching tuples in the inner relation

e For duplicate values in the join attributes of the outer relation, we
obtain repeated access patterns for the inner tuples and the index

. The effect can be maximized by sorting the outer tuples on the
join attributes 85

"% CSD Univ. of Crete Fall 2014

“1/0 Cost and Buffer Requirements for Join Algos

Join Algorithm Buffer size B Approx. Cost I/0s
Page-oriented Nested Loop Join =N+ 1 M+N
Block Nested Loop Join >= 2 (M/(B-2))*N + M
Simple Sort Merge Join > sqrt(N) 5% (M+N)
Improved Sort Merge Join > sqrt(M+N) 3% (M+N)
Grace Hash Join > sqrt(N) 3% (M+N)
Hybrid Hash Join >> sqrt(N) (3-2B/N) *(M+N)

® Cost to generate the output relation are not considered, i.e., the minimum
required buffer size is 2 pages (one page for each of the two relations)

® The two relations to be joined are R and S, and M and N denote the
number of pages of S and R, respectively

® Moreover, we assume N <= M and that R has a hashed index on the join

attribute 86

‘?@ i1 CSD Univ. of Crete Fall 2014

Performance Notes on Join Algorithms

Seconds
1,000 | (a)
\ — |R| = 20MB
500 | (b) 1S = 40MB
a) Sort-Merge
b) Simple Hash
S c) GRACE
% b (d) (<) C]} H'_'-jbrld
50 il
\)3
G e | , | 1 , Hegabytes of

3 real mepory

1 e 5 10 20 50
87

General Join Conditions

® Equalities over several attributes: e.qg., R.s7d = S.s7d AND
R.rname = S.sname

eoFor Index Nested Loop Join, build index on <s7d, sname> (ifSis
inner); or use existing indexes on s7dor sname

oFor Sort-Merge and Hash Join, sort/partition on combination of the
two join attributes <s7d, rname>and <si7d, sname>

® Range conditions over attributes: e.q., R.rname < S.sname
oFor Index Nested Loop Join, need (clustered!) B+ tree index

. Range probes on inner; # matches likely to be much higher than
for equality joins

oHash Join, Sort Merge Join not applicable!
+Block Nested Loop Join quite likely to be the best join method here

‘?@ 4 CSD Univ. of Crete Fall 2014
o~ N

88

~% CSD Univ. of Crete Fall 2014

Set Operations

® Intersection and cross-product are special cases of join
® Union (Distinct) and Except similar; we’ll do union

® Sorting based approach to union:
¢ Sort both relations R and S (on combination of all attributes)

#Scan sorted relations R and S in parallel and merge them,
eliminating duplicates

¢ Alternative: Merge runs from Pass O for both relations

® Hash based approach to union:
ePartition R and S using hash function /.1

eFor each S-partition, build in-memory hash table (using /.2), scan
corresponding R-partition and add tuples to table while discarding
duplicates

95

CSD Univ. of Crete Fall 2014

Aggregate Operations (AVG, MIN, etc.)

SELECT AVG(S.age)
FROM Sailors S
GROUP BY S.rating

® Basic algorithm
¢ Scan entire relation

e Given B+-tree index whose search key includes all attributes in
the SELECT or WHERE clauses, can do index-only scan

+Maintain running information
e SUM: Total of values retrieved
e AVG: (Total, Count) of values retrieved
e COUNT: Count of tuples retrieved
e MIN: Smallest value retrieved

e MAX: Largest value retrieved
96

CSD Univ. of Crete Fall 2014

Aggregate Operations (AVG, MIN, etc.)

® Sort based approach to grouping:

¢ Sort on group-by attributes, then scan relation and compute aggregate
for each group

e Can improve upon this by combining sorting and aggregate
computation

+Given B+-tree index whose search key includes all attributes in
SELECT, WHERE and GROUP BY clauses, can do index-only scan

e if group-by attributes form prefix of search key, can retrieve data
entries/tuples in group-by order

® Hash based approach to grouping:
+Build a hash table on grouping attribute
e¢Entries of the form <grouping-value, running information>
¢ For each tuple scanned
e Probe hash table to find entry for the group to which tuple belongs to
e Update running information o7

CSD Univ. of Crete Fall 2014

Evaluation of Relational Expressions

® So far: we have seen algorithms for individual operations
® Alternatives for evaluating an entire expression tree:

o Materialization: Evaluate expression one operation at a time

e Generate results of an expression whose inputs are relations or
are already computed, materialize (store) it on disk and repeat

e Use temporary relations to hold intermediate results

+Pipelining: Evaluate several operations simultaneously in a pipeline

e pass on tuples to parent operations even as an operation is being
executed

e results are passed from one operation to next, no need for temp
relations

98

7% CSD Univ. of Crete Fall 2014

Materialization

® Materialized evaluation:

¢ Evaluate one operation at a time,
starting at the lowest-level

T
¢ Use intermediate results shame
materialized into temporary
relations to evaluate next-level <]
operations sid=sid

S~

® Example: compute and store rating > 5 Reserves

O-rating>5 (SAI LORS)

then compute the store its join with
“Reserves”, and finally compute the
projections on sname

Sailors

99

e i1 CSD Univ. of Crete

Materialization

® Materialized evaluation is always applicable

® Cost of writing results to disk and reading
them back can be quite high

+Our cost formulas for operations ignore
cost of writing results to disk, so

e Overall cost = Sum of costs of
iIndividual operations + cost of writing
Intermediate results to disk

® Double buffering: Use two output buffers for
each operation, when one is full write it to
disk while the other is getting filled

¢ Allows overlap of disk writes with
computation and reduces execution time

Materialized

asynchronous

Fall 2014

100

CSD Univ. of Crete

Pipelining

® Pipelined evaluation : Evaluate several
operations simultaneously, passing the

® Pipelining may not always be possible synchronous
(more latter)

¢ Streaming Input vs. Output

Fall 2014

results of one operation on to the next Pipelined
¢ Much cheaper than materialization: X
no need to store a temporary QEP QEP I
relation to disk / ~ s ~
® Example: in previous expression tree, F :' .\ P /'
don’t store result of T L
ratlng>5 (SAI LORS) L _[r——*“"
Instead, pass tuples directly to the g”f Q) / Q A
join \—;—f \ /
+ Similarly, don’t store result of join, T
pass tuples directly to projection
asynchronous

101

CSD Univ. of Crete

How to Implement Pipelining?

O Implement pipeline by
constructing single, complex
operation that combines
operations that constitute pipeline

+too complex, little code reuse

User
application

® Instead, model each operation as consumer
separate process (or thread),
adjacent processes are | QEP
connected via buffer ;
® Pipelines can be executed in two
| producer

ways (control flow):

+Demand driven: “pulling data
up an operation tree from top”

¢Producer driven: “pushing data
up an operation tree from
below”

Data-
source

-

Fall 2014

Data
flow

102

7% CSD Univ. of Crete Fall 2014

Pipelining Execution

® |In demand driven (lazy evaluation)

+System repeatedly requests next tuple from top
level operation

+Each operation requests next tuple from children
operations as required, in order to output its next
tuple

+In between calls, operation has to maintain “state”
SO it knows what to return next
® In produce-driven (eager pipelining)
+Operators produce tuples eagerly and pass them
up to their parents

e Buffer maintained between operators, child
puts tuples in buffer, parent removes tuples QEP
from buffer

o if buffer is full, child waits till there is space in
the buffer, and then generates more tuples

+System schedules operations that have space in Data
output buffer and can process more input tuples 103

demand driven

QE
] Data flow

produce-driven

[Data flow

i1 CSD Univ. of Crete Fall 2014

Pipelining vs. Materialization

® Many operations (or certain implementations of them) allow us to pipeline
l.e., to accept one or both arguments in a stream without seeing the entire
relation before starting

+If not then the argument must be materialized (stored on disk if it is
large) before beginning
® Some examples:
+Projection, Selection allow pipelining
+Intersection does not allow pipelining

oNested loop join allows the outer argument to be pipelined but not the
Inner

e Index join allows pipelining of the non indexed argument

¢ Sort or hash join allows pipelining of either argument but there are
problems if both are

e Sort join requires sharing of memory for sorting runs (subfiles)
e Hash join requires buffers for buckets of both relations in memory ,,,

CSD Univ. of Crete Fall 2014

Pipelining vs. Materialization

® Some algorithms are not able to output

tuple A

results even as they get input tuples L o
(e.g., sort, merge-join or hash-join) i G
+In such cases intermediate results T -
must be written to disk and then read A S
back @ AN
® Algorithm variants are possible to B i
generate (at least some) results onthe 0. f % uple

fly, as input tuples are read Iin

+Pipelined (symetric) hash join: Hybrid 1 1
hash join, modified to buffer partition
O tuples of both relations in-memory,

reading them as they become

available, and output results of any robe
matches between partition O tuples _ _
« When a new R, tuple is found, Build Build
match it with eX|st|ng Sy tuples
output matches, and save it in R, Probe

e Symmetrically for S, tuples R S 105

7% CSD Univ. of Crete Fall 2014

Summary

® A virtue of relational DBMSs: queries are composed of a few basic
operators

¢ The implementation of these operators can be carefully tuned to
Improve performances (and it is important to do this!)

#Access paths are the alternative ways to retrieve tuples from a relation

+Index matches selection condition if it can be used to only retrieve
tuples that satisfy selection condition

¢ Selectivity of an access path w.r.t a query is the total number of pages

® Many alternative implementation techniques for each operator; no
universally superior technique for most operators

® Must consider available alternatives for each operation in a query and
choose best one based on system statistics, etc.

¢ This is part of the broader task of optimizing a query composed of

several operators 112

CSD Univ. of Crete Fall 2014

References

® Based on slides from:
¢R. Ramakrishnan and J. Gehrke
oH. Garcia Molina
¢ J. Hellerstein
+C. Faloutsos
¢L. Mong Li
oM. H. Scholl
#A. Silberschatz, H. Korth and S. Sudarshan
oP. Lewis, A. Bernstein and M. Kifer
+J. Lewis: “How the CBO works” www.jlcomp.demon.co.uk

113

TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= -]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang

XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong

2NMEIWMAT

2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.

2NUEIWHA AVO@POpPAC

Copyright TMavemotiuio Kpntng, AnuAtpng TMAeCoucAKNnG. «ZUCTAMOATA
Alaxeipiong Bacswv Aedopévwy. AldAegn 6n: Query Execution». 'Ekdoon:
1.0. HpdkAeio/P€Bupvo 2015. AiaBeéoiyo amd 1 OIKTUOKR OleuBuvon:
http://www.csd.uoc.gr/~hy460/

