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QUERY EXECUTION:
How to Implement Relational 

Operations?
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 We’ve covered the basic underlying storage, buffering, indexing and 

sorting technology

 Now we can move on to query processing

 Relational operators can be composed

 Each relational operator takes as input and returns a relation 

 Optimize queries by composing operations in different ways

 Some database operations are EXPENSIVE

 Can greatly improve performance by being “smart”

 e.g., can speed up 1,000,000x over naïve approach

 Main weapons are:

 clever implementation techniques for operators

 exploiting “equivalencies” of relational operators

 using statistics and cost models to choose among these

Introduction
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Relational Operations

 We will consider how to implement:

Selection (   )    Selects a subset of rows from relation

Projection (  )   Deletes unwanted columns from relation

Join (     )  Allows us to combine two relations

Set-difference ( — )  Tuples in Rel. 1, but not in Rel. 2

Union (   )  Tuples in Rel. 1 and in Rel. 2

Aggregation (SUM, MIN, etc.) and GROUP BY
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Evaluation of Relational Operators 

 Techniques to implement operators

Iteration

Indexing

Partitioning

 Access paths denote alternative algorithms + data structures used to 
retrieve tuples from a relation

File scan

Binary search

Index and matching selection condition

 Selectivity of access paths

Number of pages retrieved: index + data pages

Most selective access path minimize retrieval cost
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Schema for Examples

 Sailors:

Each tuple is 50 bytes long,  80 tuples per page, 500 pages 

 Reserves:

Each tuple is 40 bytes long,  100 tuples per page, 1000 pages

Sailors (sid:integer, sname:string, rating:integer, age:real)
Reserves (sid:integer, bid:integer, day:dates, rname:string)
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Simple Selections

 Algebraic form

 Question: how best to perform?  

 Depends on:

what indexes/access paths are available

what is the expected size of the result (in terms of number of tuples 

and/or number of pages)

 Size of result (cardinality) approximated as 

size of R * reduction factor

“reduction factor” is usually called selectivity

estimate selectivity is based on statistics

SELECT  *
FROM    Reserves R
WHERE   R.sid >= 35

)(. RvalueattrR op



7

CSD Univ. of Crete Fall 2014

Simple Selections

 With no index, unsorted:  

 Must essentially scan all data pages of the relation to find the rows 

satisfying selection condition: cost is M (#pages in R)

 For “Reserves” = 1000 I/Os

 With no index, sorted:

 Use binary search (O (log2M)) to locate first data page containing row 
in which attr = value

 Scan further to get all rows satisfying  attr op value: cost is O 
(log2M)  + selectivity*#pages

 For “Reserves” = 10 I/Os + selectivity * 1000

 With an index on selection attribute:  
 Use index to find first index entry that points to a qualifying tuple of R
 Scan leaf pages of index to retrieve all data records in which key 

value satisfies selection condition
 Retrieve corresponding data records
 Cost?
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 Cost depends on #qualifying 
tuples, and clustering

Cost:

 2-3 I/Os to get starting leaf 
page (typically small)

 + cost of retrieving data 
records

 In example “Reserves” relation, if 
10% of tuples qualify (100 pages, 
10000 tuples) 

Clustered index 
 little more than 100 I/Os

Unclustered Index
 could be up to 10000 I/Os! 

Selections using Index

B+ tree index 
for sid

Data file

347 903

10 24 35

  

700 767 876 901

   

902 903

 

123 200 246 347

   

101 110

 

35 110 347 901 903

10 ... 24 ... 101 ... 110 ...35 ...

123 ... 200 ... 246 ... 347 ... 700 ... 767 ...

902 ... 903 ...876 ... 901 ...
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 Important refinement for unclustered indexes:  

Find qualifying tuples

Sort the rid’s of the data records to be retrieved

Fetch rids in order

This ensures that each data page is looked at just once (though # 

of such pages likely to be higher than with clustering)

Selections using Unclustered Indexes

Index entries
direct search
for data entries

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED
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 Clustered  B+ tree index on attr (for equality or range search):

 Locate first  index entry corresponding to a data record in which  

attr=value Cost = depth of tree

 Data records satisfying condition packed in sequence in successive 

data pages; scan those pages

Cost:  number of pages occupied by qualifying data records

index entries (containing 
rows) that satisfy
condition
Alternative 

Computing Selection (attr  op  value) using Index

B+ Tree
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 Unclustered B+ tree index on attr (for equality or range search):

 Locate first index entry corresponding to a data record in which 
attr=value
 Cost = depth of tree

 Index entries with pointers to data records satisfying condition are 
packed in sequence in successive index pages

 Scan entries & sort rids to identify pages with qualifying data records

• Each page with at least one such record must be fetched once

 Cost: number of data records that satisfy selection condition

Computing Selection (attr  op  value) using Index

index entries (containing
row ids) that satisfy
condition
Alternative 

data page

Data file

B+ Tree
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 Hash index on attr (for equality search only):

 Cost

  1.2 (primary) - 2.2 (secondary) – typical average cost of hashing  

(>1 due to possible overflow chains) 

 Finds the (unique) bucket containing all index entries satisfying 

selection condition

Clustered index – all qualifying data records packed in the 

bucket (a few pages)

 Cost: number of pages occupies by the bucket

Unclustered index – sort rids in the index entries to identify 

pages with qualifying data records

 Each page with at least one such record must be fetched once

 Cost: number of data records in bucket

Computing Selection (attr  =  value) using Index
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 Unclustered hash index on attr (for equality search)

buckets

data pages

Computing Selection (attr  =  value) using Index
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Choosing Indices

 DBMSs may allow user to specify
Type (hash, B+ tree) and search key

of index
Whether or not it should be clustered

 Using information about 
the frequency
type of queries
size of tables

designer can use cost estimates to choose 
appropriate indices

 Several commercial systems have tools 
that suggest indices
Simplifies job, but index suggestions 

must be verified

low

high

Primary 
B-Tree 
index

1 access only

(rest is ‘just’        
bandwidth)

Secondary B-tree 
index

Pay N 
times 
access 
cost
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Choosing Indices - Examples

 If a frequently executed query that 
involves 
selection or a join 
has a large result set
use a clustered B+ tree index

 If a frequently executed query is 
an equality search and 
has a small result set
an unclustered hash index is 

best
Since only one clustered index 

on a table is possible, choosing 
unclustered allows a different 
index to be clustered

low

high

Primary 
B-Tree 
index

1 access only

(rest is ‘just’        
bandwidth)

Secondary B-tree 
index

Pay N 
times 
access 
cost
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General Selection Conditions

 Such selection conditions are first converted to Conjunctive Normal Form 

(CNF):

( day<8/9/94 OR bid=5 OR sid=3 ) AND

( rname=‘Paul’ OR bid=5 OR sid=3)

 We only discuss the case with no ORs 

a conjunction of terms of the form attr op value

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3
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Index Matching

 Hash index match selection condition if 

Condition has conjunctive terms of the form 

attribute = value

for each attribute in the index search key 

 Example: 

Hash index on search key <rname, bid, sid>

Can retrieve tuples that satisfy condition 

rname=‘Joe’ AND bid=5 AND sid=3

Cannot retrieve all tuples that satisfy condition

rname=‘Joe’ AND bid=5

or conditions on other attributes
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Index Matching

 B-Tree index match selection condition if 

Condition has conjunctive terms of the form 

attribute op value

for each attribute in a prefix of index search key 

 Example:

B+ tree index on search key <rname, bid, sid>

Can retrieve tuples that satisfy conditions 

rname=‘Joe’ AND bid=5 AND sid=3 

rname=‘Joe’ AND bid=5

Cannot retrieve tuples that satisfy condition

sid= 5 AND bid=3
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 First approach:

Find the most selective access path

Retrieve tuples using it, and 

Apply any remaining terms that don’t match the index

 Most selective access path:

An index or file scan that we estimate will require the fewest page 

I/Os

 Terms that match this index reduce the number of tuples retrieved; 

other terms are used to discard some retrieved tuples, but do not 

affect number of tuples/pages fetched

Two Approaches to General Selections
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 Example: day<8/9/94 AND bid=5 AND sid=3

 A B+ tree index on day can be used;

 then, bid=5 AND sid=3 must be checked for each retrieved 

tuple  

Similarly, a hash index on <bid, sid> could be used; 

 then, day<8/9/94 must be checked

How about a B+tree on <rname,day> ?

How about a B+tree on <day, rname> ?

How about a Hash index on <day, rname> ?

Most Selective Index - Example
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Intersection of Rids

 Second approach: if we have two or more matching indexes :

Get sets of rids of data records using each matching index

Then intersect these sets of rids

Retrieve the records and apply any remaining terms

 Example: day<8/9/94 AND bid=5 AND sid=3

 With a B+ tree index on day and a hash index on sid, we can 

retrieve rids of records satisfying day<8/9/94 using the first, rids of 

records satisfying sid=3 using the second, then intersect, retrieve 

records and check bid=5

Note: commercial systems use various tricks to do this:

 bit maps, bloom filters, index joins
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Bitmap Indices

 Bitmap indices are a special type of index designed for efficient querying 

on multiple keys

A bitmap is simply an array of bits

 Records in a relation are assumed to be numbered sequentially

Given a number n (from 0) it must be easy to retrieve record n

 Applied on attributes with a relatively small number of distinct values

E.g. gender, country, state, …

E.g. income-level (income broken up into a small number of  levels 

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

 Bitmap indices are useful for queries on multiple attributes

not particularly useful for single attribute queries

 Bitmap indices generally very small compared with relation size
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Bitmap Indices

 In its simplest form a bitmap index on an attribute has a bitmap for 
each value of the attribute

Bitmap has as many bits as records

In a bitmap for value v, the bit for a record is 1 if the record has the 
value v for the attribute, and is 0 otherwise
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Bitmap Indices

 Queries are answered using bitmap operations

 Intersection (and)

 Union (or)

 Complementation (not) 

 Each operation takes two bitmaps of the same size and applies the 
operation on corresponding bits to get the result bitmap

 Males with income level L1:   10010 AND 10100 = 10000
 Can then retrieve qualifying data records

 Counting number of qualifying data records is even faster

 Deletion needs to be handled properly

 Existence bitmap to note if there is a valid record at a record location

 Needed for complementation

 not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
 Should keep bitmaps for all values, even null value

 To correctly handle SQL null semantics for  NOT(A=v) :

 intersect above result with  (NOT bitmap-A-Null)
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 Algebraic form 

 To implement projection

 Remove unwanted attributes

 Eliminate any duplicate tuples

 Sort-based projection

 Hash-based projection

SELECT DISTINCT
R.sid, R.bid

FROM     Reserves R

Projection

)(,...2.,1. RattrRattrR
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Big Sorts

Sort Sort Sort

Merge MergeMerge

One-pass sort: The data has been read, sorted, and dumped to disc in 

chunks, then re-read once to be merged into order, and dumped again 
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Huge Sorts

Sort

Merge 1 Merge 2

Merge 3

Multi-pass sort: After sorting the data in chunks, we can’t re-read the top 
of every chunk simultaneously, so we have multiple merge passes
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Sort Based Projection

Scan R, to produce a set of tuples containing only the desired attributes 
(why do this 1st?)

Cost M I/Os to scan R + 

Cost T I/Os to write temp relation R’, 

where M is # pages of R and T is # pages of R’

Sort tuples using combination of attributes as key

Cost = O (T log T)

Scan sorted result, compare adjacent tuples and discard duplicates

 Cost = T
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Example: Sort-based Proj. on “Reserves”

 Step 1: 

Scan “Reserves” with 1000 I/Os 

If a tuple in R’ is 10 bytes (i.e., size ratio 0.25) we need 250 I/Os to 
write out R’ 

 Step 2: 

Given 20 buffer pages, sort R’ in two passes at a cost of 2*2*250 I/Os 

 # passes =  log20-1  250/20   + 1 = 2

 per pass = 2 * 250 

 Step 3: 

250 I/Os to scan for duplicates

 Total cost: 1000 + 250 + 1000 + 250 = 2500 I/Os
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Sort Based Projection Improvements

 Project out unwanted fields during Pass 0 of sorting

Read in B pages of R and write out (2)B internally sorted pages (runs) 
of temporary relation 

Tuples in runs are smaller than input tuples

Size ratio depends on number and size of fields dropped

 Eliminate duplicates during the merging passes 

Number of result tuples smaller than input

Difference depends on number of duplicates (very first merging pass)

B-1
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Example: Tournament Sort-based Proj. on “Reserves”

 First pass: 

Scan “Reserves” with 1000 I/Os 

Write out R’ with 250 I/Os 

With 20 buffer pages, the 250 pages are written out as 7 internally 

sorted runs, each (except the last) about 40 pages (instead of 

250/20 = 13 runs of 20 pages)

 Remember tournament sort that writes 2*B sorted pages

 Second pass: 

Read the runs at a cost of 250 I/Os and merge them 

 Total cost: 1000 + 250 + 250 = 1500 I/Os



32

CSD Univ. of Crete Fall 2014

Hash-Based Projection

 Partitioning

 One input buffer page and B-1 output buffer pages

 Read R using one input buffer

 For each tuple do

 Discard unwanted fields

 Apply hash function h to combination of remaining fields

 Output tuple to one of the B-1 output buffer pages

B-1
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Hash-Based Projection

 Duplicate elimination

For each partition produced in the first phase

Read in one page at a time 

Build an in-memory hash table by applying a hash function h2
(≠h) to each tuple 

 If a new tuple hashes to the same value as some existing tuple, 
check if new tuple is a duplicate 

Discard duplicates as they are detected 

After entire partition has been read in, write tuples in hash table to 
result file

Clear in-memory hash table for next partition
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Hash-Based Projection Cost

 Partitioning

 Read R = M I/Os

 Write R’ = T I/Os

 Duplicate elimination

 Read in partitions = T I/Os

 Total cost = M + 2T I/Os

 Example: “Reserve” relation

assuming partitions fit in memory

read 1000 pages and write out partitions of projected tuples

 250 pages

do duplicates elimination on each partition

 total 250 page reads

Total : = 1000 + 2*250 = 1500 I/O
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Remarks on Projections

 Sort-based projection is the standard approach

Better if we have many duplicates or if the distribution of (hash) values 
in very non-uniform (data skew)

Result is sorted

Same tricks apply to GROUP BY/Aggregation

 Index on relation contains all wanted attributes in its search key

Retrieve the key values from the index without accessing the actual 
relation: index only scan

Apply projection techniques this smaller set of pages

 Ordered tree index contains all wanted attributes as prefix of search key, 
even better:
Retrieve data entries in order (index-only scan)
Discard unwanted fields
Compare adjacent tuples to check for duplicates

 Commercial Systems

Informix uses hashing, IBM DB2, Oracle 8 and Sybase ASE uses 
sorting. Microsoft SQL Server and  Sybase ASIQ implement both 
hash-based and sort-based algorithms
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 Algebraic form:  R       S

 Joins are very common

 Joins are very expensive

 Join operation can be implemented by 

 Cross-product e.g,. R  S 

 Followed by selections and projections 

 Inefficient

 Cross-product much larger than result of a join

 Note: join is associative and commutative 

SELECT *
FROM   Reserves R1, Sailors S1
WHERE  R1.sid=S1.sid



Joins
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Joins

 Techniques to implement join

 Iteration

 Simple Nested Loops

 Block Nested Loops

 Indexing

 Index Nested Loops

 Partition

 Sort Merge Join

 Hash Join

 Factors affecting performance

 Available buffer pages

 Choice of inner vs. outer  
relation

 Join Selectivity factor

 Assume

M pages in R, pR tuples per page

N pages in S, pS tuples per page

 Cost metric :  # of I/Os

We will ignore output costs

 If R is “Reserves” and S is “Sailors”

M = 1000, pR = 100

N = 500, pS = 80

 Focus on natural joins with one join 
column

We will consider more complex join 
conditions later



38

CSD Univ. of Crete Fall 2014

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

 For each tuple in the outer relation R, we scan the entire inner relation S 

 Total Cost =  (pR * M) * N + M  I/Os where (pR * M) the # of R tuples

in our example = 100*1000*500 + 1000 I/Os

At 10ms/IO, Total: ???

 What assumptions are being 

made here? 

 What if smaller relation (S) 

was outer?

 What is the cost if one relation 

can fit entirely in memory?

Simple Nested Loops Join
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Simple Nested Loop Join

R S

Tuple

1 scan per R tuple

N pages per scan
# R tuples
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 For each page of R, get each page of S, and write out matching pairs of 

tuples <r, s> , where r is in R-page and s is in S-page

Improvement: in the worst case, each block in inner relation s is read 
only once for each page in the outer relation (instead of once for 
each tuple)

 Total Cost  = M*N + M I/Os

in our example = 1000*500 + 1000 I/Os

 Choose smaller relation to be outer relation

If smaller relation (S) is outer, Total cost = 500*1000 + 500

foreach page bR in R do
foreach page bS in S do

foreach tuple r in bR do
foreach tuple s in bS do

if ri == sj then add <r, s> to result

Page-Oriented Nested Loops Join
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 Page-oriented nested loop (NL) doesn’t exploit extra page buffers

 Alternative approach: 

 use one page as an input buffer for scanning the inner S, 

 one page as the output buffer, and 

 use all remaining buffer pages (B-2) to hold ``block’’ (think “chunk”) 

of outer R

 For each matching tuple r in R-chunk, s in S-page, add <r, s> to

result. Then read next R-chunk, scan S, etc.

“Block” Nested Loops Join

for each block of B-2 pages of R do

for each page of S do 

{for all matching in-memory tuples 

r in R-block and s in S-page

add <r, s> to result}
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“Block” Nested Loop Join

B – 2 pages

1 scan per R block

N pages per scan
M / (B – 2) blocks

R S
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“Block” Nested Loops Join

 To find matching pairs of tuples efficiently

Build a main-memory hash table for R

 Cost:  #outer blocks * Scan of inner + Scan of outer 

#outer blocks =  # of pages of outer/ block size 

Total cost = M / (B-2) * N + M

blocks of R tuples

(k < B-1 pages)
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 With 100 buffer pages of “Reserves” (R) as outer:

 Cost of scanning R is 1000 I/Os;  a total of 10-page blocks

 Per chunk of R, we scan “Sailors” (S);  10*500 I/Os

 Total: 10*500 + 1000 = 6000 IOs

 If space for just 90 buffer pages of R, we would scan S 12 times

 With 100-page block of “Sailors” (S) as outer:

 Cost of scanning S is 500 I/Os; a total of 5 blocks

 Per block of S, we scan “Reserves” (R);  5*1000 I/Os

 Total: 5*1000 + 500 = 5500 IOs

 If you consider seeks, it may be best to divide buffers evenly between 

R and S

 Disk arm “jogs” between read of S and write of output

 If output is not going to disk, this is not an issue

Examples of Block Nested Loops
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 If there is an index on the join attribute of one relation

Make indexed relation the inner relation (say S)

Compare each tuple in R with tuples in the same partition (same value 
in join attribute)

Does not enumerate cross-product of R and S 

 Cost to scan R = M I/Os

 Cost to retrieve matching S tuples depends on
 Index

Hash index: 1.2 (primary) -2.2 (secondary) I/Os to find appropriate 
bucket (probing)

B+ tree: 2-4 I/Os to find appropriate leaf
Number of matching tuples

 Clustered index: 1 I/O per outer tuple r
 Unclustered index: up to 1 I/O per matching s tuple

foreach tuple r in R do
foreach tuple s in S where ri == sj  do

add <r, s> to result

Index Nested Loops Join
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Index Nested Loops Join

 The basic cost of the nested loop join is visible in the picture

We do three indexed access into S, but need the three driving rows 

from R first

R

S
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Index Nested Loops Join

R S

Tuple

Index

# R tuples

1 probe per R tuple
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Examples of Index Nested Loops

 Hash-based index on sid of “Sailors”

 1.2 I/Os to retrieve the appropriate page of index

 At most one matching tuple since sid is the key of “Sailors”

 Cost to scan “Reserves” = 1000 I/Os

 Each “Reserves” tuple takes 1.2 I/Os to get data entry in index + 1

I/O to get matching “Sailors” tuple

 1000*100 “Reserves” tuples takes 220000 I/Os

 Total cost = 221000 I/Os
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Examples of Index Nested Loops

 Hash-based index on sid of “Reserves”

Cost to scan “Sailors” = 500 page I/Os

Each “Sailors” tuple can match 0 or more “Reserves” tuples

Assume uniform distribution

Average of 2.5 reservations per sailor (100000 / 40000)

Cost to retrieve reservation of a sailor is 1 or 2.5 I/Os 

depending on whether the index is clustered

1 “Sailors” tuple takes 1.2 I/Os to find index page with data entries 

+ 1 to 2.5 I/Os to retrieve matching “Reserves” tuples

80*500 “Sailors” tuples (40000) take 88000 to 148000 I/Os

Total cost range from 88500 to 148500 I/Os 
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 B+-tree index on sid of “Sailors” (as inner):

 Scan “Reserves”:  1000 page I/Os, 100*1000 tuples

 For each “Reserves” tuple:  2 I/Os to find index page with data entries 

+ 1 I/O to get (the exactly one) matching “Sailors” tuple (clustered or 

unclustered)

 B+-tree index on sid of “Reserves” (as inner):

 Scan “Sailors”:  500 page I/Os, 80*500 tuples

 For each “Sailors” tuple:  2 I/Os to find index page with data entries    

+ cost of retrieving matching “Reserves” tuples

 Assuming uniform distribution, 2.5 reservations per sailor 

(100000/ 40000) the cost of retrieving them is 1 or 2.5 I/Os 

depending on whether the index is clustered

Examples of Index Nested Loops



51

CSD Univ. of Crete Fall 2014

Sort-Merge Join

 (External) Sort R and S on the join attribute

Group tuples with same value together

 Merge the sorted relations on the join attribute

Scan R and S for qualifying tuples

Compare R tuples in a partition with only the S tuples in the same 
partition

 Useful if

One or both inputs already 

sorted on join attribute(s)

Output should be sorted 

on join attribute(s)
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Sort-Merge Join  (R         S)

 Once the two sets are in order, they can be shuffled together

The shuffling can be quick - the sorting may be the most expensive 
operation

i=j

R

Sort

S

Sort
Merge Merge

To next step -

e.g. order by
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Sort-Merge Join  (R         S)

 Merging step

Scan start at first tuple in each relation

Advance scan of R until current R tuple > current S tuple
w.r.t. value in join attribute

Advance scan of S until current S tuple > current R tuple

Alternate between such advances until current R tuple = 
current S tuple

 All R tuples with same value in Ri (current R group) and all S 
tuples with same value in Sj (current S group) match

 Output <r, s> for all pairs of such tuples

 Like a mini nested loop

 Resume scan of R and S

 R is scanned once; each S group is scanned once per matching R tuple

Multiple scans of an S group will probably find needed pages in buffer

i=j
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Merge Step of a Sort-Merge Join
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Example of Sort-Merge Join
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 Cost to sort R = 2 * M* (# merge 

passes + 1) I/Os

 Cost to sort S = 2 * N * (#merge 

passes + 1) I/Os

 Cost to merge both = M+N I/Os

sid sname rating age 

22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid bid day rname 

28 103 12/4/96 guppy 

28 103 11/3/96 yuppy 

31 101 10/10/96 dustin 

31 102 10/12/96 lubber 

31 101 10/11/96 lubber 

58 103 11/12/96 dustin 
 

  

Example of Sort-Merge Join

 With 35, 100 or 300 buffer pages, 

both “Reserves” and “Sailors” can 

be sorted in 2 passes;              

total join cost = 4 * 1000 + 4 * 500 

+ 1000 + 500 = 7500 I/Os

BNL cost:  2500 to 15000 I/Os
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Refinement of Sort-Merge Join

 We can combine the merging phases in the sorting of R and S with the 

merging required for the join

 Sort: produce sorted runs of maximum size L for R and S

 Allocate 1 page buffer per run of each relation

 With B >       , where L is the size of the larger relation, using the 

tournament sorting that produces on average runs of size 2B in 

Pass 0, #runs of each relation is < B/2

 Merge and join: merge the runs of R, merge the runs of S, and merge 

the result streams as they are generated!

L
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Refined Sort-Merge Join Cost 

 Sort-Merge Join has a cost of 3(M+N) I/Os

read + write each relation in Pass 0 + 

read each relation in (only one) merging pass 

(+ writing of result tuples)

 Memory Requirement:

To be able to merge in one pass, we should have enough memory 
to accommodate one page from each run:

B > M / B + N / B => B >                => B > 

where L is the size of the larger relation

 In our example, cost goes down from 7500 to 4500 (3 * 1500) I/Os

 In practice, cost of sort-merge join, like the cost of external sorting, is 
linear (very few passes)

NM  L
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Hash-Join

 Usually done with static number of hash buckets

Alternatives use directories, are more complex:

Extensible, Linear hashing

Generally have fairly long overflow chains

 “Classic” (In-memory) Hash join

Efficient when memory can hold one of the two
relations

 Simple hash-based join

Efficient when memory is large

Too many I/O operations with small memory

 GRACE hash-based join

Separate partitioning phase, parallel execution

Avoid bucket overflow

 Hybrid hash-based join

Combines Simple and Grace hash-join

Better memory usage
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Hash-Join Basic Concepts

 Partitioning (Building) phase

Use same hash function h to hash 
relations R and S on their join 
attributes to the same hash file

 Probing (Matching) phase

Compares R (build input) tuples in 
partition i with S tuples (probe 
input) in  same partition i, then 
join

While applying a hash function to 
two attributes, if the hash values 
are different, then the two attribute 
values can not be equal

 Best when the hash table fits in main 
memory!

.
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Hash-Join: “Classic”

First (smaller)

data set

Hashed

Second (larger)

data set

The first table is hashed in memory (build), the second table is used to 

probe the hash table for matches

In simple cases the cost is easy to calculate
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Hash-Join: “Classic”
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Cost of Hash-Join: “Classic”

 Build phase

Read R once and construct in-memory hash table

I/Os: M (# of pages of R)

 Probe phase

Read all of S tuples and search for matching tuples

I/Os: N (# of pages of S)

 Total Cost: M+N I/Os if we have enough memory to hold the inner 
relation in memory

How do you choose the relation for Build and for Probe?

Read entire inner relation into hash 
table (join attributes as key)

For each tuple from outer, look up in 
hash table & join
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Hash-Join: Simple

 What if we do not have enough memory?

Use whatever memory is available as one bucket and write the rest 
to disk

 Simple Hash Join

Choose hash function h1() so that each bucket of R fits in memory

Scan R; keep the contents of first bucket in memory; write out the 
rest on a new file

 hash the contents of first bucket, using h2(), again, in memory

Scan S; for each tuple probe, or write-out

Repeat this process until the entire join is performed

 Simple vs. “Classic” Hash Join

Identical to “classic” if R fits in memory: special case, with one bucket

Performs well if R almost fits in memory: say, half of R fits

But poorly otherwise

 introduces too many I/O operations (passes) when the memory is 
not too large!
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Cost of Hash-Join: Simple

 Simple Hash-Join algorithm combines the partitioning work and probing 
work into each iteration of the loop

 Assuming that the hash function divide relations uniformly into k buckets 

each bucket j requires one more pass over R and j passes over S

j buckets of R read; j-1 written; similarly for S

The process terminates whenever either the Rtmp or Stmp is empty

The cost is k * (M+N) I/O’s

We read and write buckets of each relation k times!

for each logical bucket j -- h1()
for each record r in R
if r is in bucket j then

insert r into the hash table;-- h2()
else write r into Rtmp

for each record s in S
if s is in bucket j then

probe the hash table;                     -- h2()
else write s into Stmp



66

CSD Univ. of Crete Fall 2014

Hash-Join: GRACE

 Partitioning phase:

Apply a hash function h(x) to the join 
attributes of both R and S

Assume B-1 buckets

According to the hash value, each tuple       
is put into a corresponding bucket

Write these buckets to disk as      
separate files (physical)

 Joining phase:

Get one partition of R and the    
corresponding partition of S 

Apply the “classic” hash algorithm            
using a different hash function

 Better than simple hashing, especially
when little memory is available

Twice as much work when memory is large

Scan once for partitioning, once for hash/join

B
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Hash-Join: GRACE

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Outer Bucket 1 Inner Bucket 1
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Hash-Join: GRACE

 Partition both relations 

using hash function h1:  

R tuples in partition i
will only match S tuples 

in partition I

 Read in a partition of R, 
hash it using h2 (<> h1!) 

 Scan matching partition 

of S, and probe hash 

table for matches

Partitions
of R & S

Input buffer
for Si

Hash table for partition

Ri (k < B-2 pages)

B main memory buffersDisk

Output 

buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original 
Relation

OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .



70

CSD Univ. of Crete Fall 2014

Hash-Join: GRACE

for each tuple r in R 
apply hash function to the join attributes of r;
put r into the appropriate bucket R[i]}

for each tuple s in S
apply hash function to the join attributes of s;
put r into the appropriate bucket S[i]}

for each bucket i < B-1
/* using a different hash function h2*/
build the hash table for R[i]; 
for each tuple s in S[i]

apply the hash function h2 to the join 
attributes of S;

use s to probe the hash table;
output any matches to the result relation;
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Workload of Hash-Join: GRACE

X X X

X X X 

X X X

X X X

X X X

X X X

X X X  

X X X

X X X

X X X

X X X

X X X

R

S

0

1

2

3

0            1           2          3
bucketID = X mod 4
Join on R.X = S.X

R       S = R0      S0 +

R1      S1 +

R2      S2 +

R3      S3

Nested-loop join considers all slots

Hash join considers only those 

along the diagonal
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Observations on Hash-Join: GRACE

 Given B buffer pages, the maximum # of partitions is B-1

B-1 > size of largest partition of R to be held in memory for the probing 

phase

 Assuming uniformly sized partitions, the size of each R partition is M/(B-1)

 The number of pages in the (in-memory) hash table built during the 

probing phase is f*M/(B-1) where f is the fudge factor

f ≈ 1.2 is used to capture the (small) increase in size between the 

partition and a hash table for the partition

 During the probing phase, in addition to the hash table for the R partition, 

we require a buffer page for scanning the S partition, and an output buffer

Therefore, we require B > f*M/(B-1) +2

 Approximately, we need B > for the Grace hash join to perform well

We can always pick R to be the smaller relation, so:

B must be >

M

),min( NM
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Cost of Hash-Join: GRACE

 Grace hash join

Assume hash function h1() to partition R into         subsets

Scan R, then S, placing into output buffer

When full, flush buffer to disk

For each R buffer, read from disk, make hash table (use h2())

Read S buffer, lookup each tuple in hash, output on match

 Assume each partition fits into memory

Cost for partitioning phase: Scan R and S once and write them out 
once 2(M+N) I/Os

Cost for joining phase: Scan each partition once M+N I/Os

Total cost = 3(M+N) I/Os 

 In our example joining “Reserves” and “Sailors” relation costs 
3(1000+500) = 4500 I/Os

M
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Utilizing Extra Memory

 Suppose we are partitioning R (and S) into k partitions where B > f * M /
k , i.e. we can build an in-memory hash table for each partition

The partitioning phase needs k +1 buffers, which leaves us with some 
extra buffer space of B−(k +1) pages

 If this extra space is large enough to hold one partition, i.e., B−(k+1) >= f 
* M / k, we can collect the entire first partition of R in memory during the 
partitioning phase and need not write it to disk

 Similarly, during the partitioning of S, we can avoid storing its first 
partition on disk and rather immediately probe the tuples in S’s first 
partition against the in-memory first partition of R and write out results

At the end of the partitioning phase for S, we are already done with 
joining the first partitions

 The savings obtained result from not having to write out and read back in 
the first partitions of R and S

This version of hash join is called Hybrid Hash Join
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Hybrid Hash-Join

 What if there is extra memory
available?

Use it to avoid writing/
rereading partitions of 
both R and S!

 Hybrid Hash-Join

Joining phase of one of          
the partitions is included 
during the partitioning 
phase

Useful when memory    
sizes are relatively        
large, and the build        
input is bigger than  
memory

Works as Grace hash join, but R1
(can be big) is kept in the main 
memory, as a hash table and 
partitions R2, ..., RM get to disk

When partitioning S, tuples of the 
first bucket S1 can be joined 
directly with R1
Finally, join Ri & Si for i=2,...,k
Savings: no need to write R1 and S1
to disk or read back to memory
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Partition Overflow

 If the hash function does not partition uniformly, one or 

more R partitions may not fit in memory

 Two possible strategies to handle partition overflow:

Overflow prevention (prevent from happening)

Overflow resolution (handle overflow when it occurs)

 Case 1, overflow on disk: an R partition is larger than 

memory size

Solution (a) small partitions first and combine before 

join; 

Solution (b) recursive partition

 Case 2, overflow in memory: the in-memory hash table 

of R becomes too large

Solution: revise the partitioning scheme and keep a 

smaller partition in memory

 See the duality in multi-pass merge sort here?
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Duality of Sort and Hash

 Divide-and-conquer paradigm

Sorting: physical division, logical combination

Hashing: logical division, physical combination

 Handling very large inputs

Sorting: multi-level merge

Hashing: recursive partitioning

 I/O patterns

Sorting: sequential write, random read (merge)

Hashing: random write, sequential read (partition)
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Hash-Join vs. Sort-Merge Join 

 Both have a cost of 3(M+N) I/Os

Assuming two-pass Sort-Merge join 

 Memory requirement: hash join is lower

Hash join wins on this count if relation sizes differ greatly

Also, Hash Join shown to be highly parallelizable

 Other factors

Hash join performance depends on the quality of the hash

Might not get evenly sized buckets

Sort-Merge join can be adapted for inequality (!=) join predicates

Sort-Merge join wins if R and/or S are already sorted

Sort-Merge join wins if the result needs to be in sorted order

Sort-Merge join less sensitive to data skew

NMNM ),min(
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Remarks on Joins

 Hash join is very efficient but is only applicable to equijoin

Three hash-based algorithms are proposed, out of which the hybrid 
hash join is the best

 “Simple” is good for large memories

Grace, for small memories

 Sort merge join performs better than nested loop when both relations 
are large

especially true if one or both relations are already sorted on the 
joining attributes

 Nested loop join performs well when one relation is large & one is small

A special case is when the smaller relation can be entirely held in 
main memory which implies that both relations need to be read in 
only once

When combined with the index on the joining attribute of the (larger) 
inner relation, excellent performance can yield
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Putting it all Together

Hash join

Sort merge join

Nested loop join
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Impact of Buffering

 Effective use of the buffer pool is crucial for efficient implementations of a 
relational query engine

Several operators use the size of available buffer space as a parameter

When several operations are executed concurrently, estimating the 
number of available buffer pages is guesswork

 Keep the following in mind:

When several operators execute concurrently, they share the buffer 
pool

Using an unclustered index for accessing records makes finding a page 
in the buffer rather unlikely and dependent on (rather unpredictably!) 
the size of the buffer

Furthermore, each page access is likely to refer to a new page, there-
fore, the buffer pool fills quickly and we obtain a high level of I/O activity

If an operation has a repeated pattern of page accesses, a clever 
replacement policy and/or sufficient number of buffers can speed up the 
operation significantly
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Buffering and Repeated Access Patterns 

 Repeated access patterns interact with buffer replacement policy e.g., 

 Simple nested loop join: for each outer tuple, scan all pages of the 
inner relation

 With enough buffer pages to hold inner, replacement policy does 
not matter

 Otherwise, LRU is worst (sequential flooding)

 MRU gives best buffer utilization, the first B − 2 pages of the 
inner will always stay in the buffer (pinning a few pages is best)

 Block nested loop join: for each block of the outer, scan all pages of 
the inner relation

 Since only one unpinned page is available for the scan of the inner, 
the replacement policy makes no difference

 Index nested loop join: for each tuple in the outer, use the index to find 
matching tuples in the inner relation

 For duplicate values in the join attributes of the outer relation, we 
obtain repeated access patterns for the inner tuples and the index

 The effect can be maximized by sorting the outer tuples on the 
join attributes
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I/O Cost and Buffer Requirements for Join Algos

 Cost to generate the output relation are not considered, i.e., the minimum 
required buffer size is 2 pages (one page for each of the two relations)

 The two relations to be joined are R and S, and M and N denote the 
number of pages of S and R, respectively

 Moreover, we assume N <= M and that R has a hashed index on the join 
attribute

(3–2B/N)*(M+N) >> sqrt(N)Hybrid Hash Join

3*(M+N)> sqrt(N)Grace Hash Join

3*(M+N)> sqrt(M+N)Improved Sort Merge Join

5*(M+N)> sqrt(N)Simple Sort Merge Join

(M/(B-2))*N + M>= 2Block Nested Loop Join

M+N= N + 1Page-oriented Nested Loop Join

Approx. Cost I/OsBuffer size B Join Algorithm
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Performance Notes on Join Algorithms
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General Join Conditions

 Equalities over several attributes: e.g.,  R.sid = S.sid AND
R.rname = S.sname

For Index Nested Loop Join, build index on <sid, sname> (if S is 

inner); or use existing indexes on sid or sname

For Sort-Merge and Hash Join, sort/partition on combination of the 

two join attributes <sid, rname> and <sid, sname>

 Range conditions over attributes: e.g.,  R.rname < S.sname

For Index Nested Loop Join, need (clustered!) B+ tree index

 Range probes on inner; # matches likely to be much higher than 

for equality joins

Hash Join, Sort Merge Join not applicable!

Block Nested Loop Join quite likely to be the best join method here
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Set Operations

 Intersection and cross-product are special cases of join

 Union (Distinct) and Except similar; we’ll do union

 Sorting based approach to union:

Sort both relations R and S (on combination of all attributes)

Scan sorted relations R and S in parallel and merge them, 
eliminating duplicates

Alternative:  Merge runs from Pass 0 for both relations

 Hash based approach to union:

Partition R and S using hash function h1

For each S-partition, build in-memory hash table (using h2), scan 
corresponding R-partition and add tuples to table while discarding 
duplicates
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Aggregate Operations (AVG, MIN, etc.)

 Basic algorithm

Scan entire relation

Given B+-tree index whose search key includes all attributes in 
the SELECT or WHERE clauses, can do index-only scan

Maintain running information

SUM: Total of values retrieved

AVG: (Total, Count) of values retrieved

COUNT: Count of tuples retrieved

MIN: Smallest value retrieved

MAX: Largest value retrieved

SELECT AVG(S.age)

FROM Sailors S

GROUP BY S.rating
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 Sort based approach to grouping:

Sort on group-by attributes, then scan relation and compute aggregate 
for each group

Can improve upon this by combining sorting and aggregate 
computation

Given B+-tree index whose search key includes all attributes in 
SELECT, WHERE and GROUP BY clauses, can do index-only scan

 if group-by attributes form prefix of search key, can retrieve data 
entries/tuples in group-by order

 Hash based approach to grouping:

Build a hash table on grouping attribute

Entries of the form <grouping-value, running information>

For each tuple scanned

Probe hash table to find entry for the group to which tuple belongs to

Update running information

Aggregate Operations (AVG, MIN, etc.)
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Evaluation of Relational Expressions

 So far: we have seen algorithms for individual operations

 Alternatives for evaluating an entire expression tree:

Materialization: Evaluate expression one operation at a time

Generate results of an expression whose inputs are relations or 
are already computed, materialize (store) it on disk and  repeat

 use temporary relations to hold intermediate results

Pipelining: Evaluate several operations simultaneously in a pipeline

 pass on tuples to parent operations even as an operation is being 
executed

 results are passed from one operation to next, no need for temp 
relations
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Materialization

 Materialized evaluation:  

 Evaluate one operation at a time, 

starting at the lowest-level  

 Use intermediate results 

materialized into temporary 

relations to evaluate next-level 

operations

 Example: compute and store

then compute the store its join with 

“Reserves”, and finally compute the 

projections on sname

)(5 SAILORSrating
Sailors

Reserves

sid=sid

rating > 5

sname
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Materialization

 Materialized evaluation is always applicable

 Cost of writing results to disk and reading 

them back can be quite high

Our cost formulas for operations ignore 

cost of writing results to disk, so

Overall cost  =  Sum of costs of 

individual operations + cost of writing 

intermediate results to disk

 Double buffering: Use two output buffers for 

each operation, when one is full write it to 

disk while the other is getting filled

Allows overlap of disk writes with 

computation and reduces execution time
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Pipelining

)(5 SAILORSrating

 Pipelined evaluation : Evaluate several 
operations simultaneously, passing the 
results of one operation on to the next

 Much cheaper than materialization: 
no need to store a temporary   
relation to disk

 Example:  in previous expression tree, 
don’t store result of

 Instead, pass tuples directly to the 
join  

 Similarly, don’t store result of join, 
pass tuples directly to projection 

 Pipelining may not always be possible 
(more latter)

 Streaming Input vs. Output
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How to Implement Pipelining?

 Implement pipeline by 
constructing single, complex 
operation that combines 
operations that constitute pipeline

too complex, little code reuse

 Instead, model each operation as 
separate process (or thread), 
adjacent processes are 
connected via buffer

 Pipelines can be executed in two 

ways (control flow): 

Demand driven: “pulling data 

up an operation tree from top”

Producer driven: “pushing data 

up an operation tree from 

below”
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Pipelining Execution

 In demand driven (lazy evaluation)

System repeatedly requests next tuple from top 
level operation

Each operation requests next tuple from children 
operations as required, in order to output its next 
tuple

In between calls, operation has to maintain “state” 
so it knows what to return next

 In produce-driven (eager pipelining)

Operators produce tuples eagerly and pass them 
up to their parents

Buffer maintained between operators, child 
puts tuples in buffer, parent removes tuples 
from buffer

 if buffer is full, child waits till there is space in 
the buffer, and then generates more tuples

System schedules operations that have space in 
output buffer and can process more input tuples

demand driven

produce-driven
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Pipelining vs. Materialization 

 Many operations (or certain implementations of them) allow us to pipeline 

i.e., to accept one or both arguments in a stream without seeing the entire 

relation before starting

If not then the argument must be materialized (stored on disk if it is 

large) before beginning

 Some examples:

Projection, Selection allow pipelining

Intersection does not allow pipelining

Nested loop join allows the outer argument to be pipelined but not the 
inner

 Index join allows pipelining of the non indexed argument

Sort or hash join allows pipelining of either argument but there are 
problems if both are

Sort join requires sharing of memory for sorting runs (subfiles)

Hash join requires buffers for buckets of both relations in memory
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S.bR.a

R S

Pipelining vs. Materialization

 Some algorithms are not able to output 
results even as they get input tuples 
(e.g., sort, merge-join or hash-join)

In such cases intermediate results 
must be written to disk and then read 
back

 Algorithm variants are possible to 
generate (at least some) results on the 
fly, as input tuples are read in

Pipelined (symetric) hash join: Hybrid 
hash join, modified to buffer partition 
0 tuples of both relations in-memory, 
reading them as they become 
available, and output results of any 
matches between partition 0 tuples

When a new R0 tuple is found, 
match it with existing S0 tuples, 
output matches, and save it in R0

Symmetrically for S0 tuples

tuple tuple

tuple

tuple tuple

tuple

Build Build

Probe

Probe
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Summary

 A virtue of relational DBMSs: queries are composed of a few basic 

operators

The implementation of these operators can be carefully tuned to 

improve performances (and it is important to do this!)

Access paths are the alternative ways to retrieve tuples from a relation

Index matches selection condition if it can be used to only retrieve 

tuples that satisfy selection condition

Selectivity of an access path w.r.t a query is the total number of pages

 Many alternative implementation techniques for each operator; no 

universally superior technique for most operators

 Must consider available alternatives for each operation in a query and 

choose best one based on system statistics, etc.

This is part of the broader task of optimizing a query composed of 

several operators



113

CSD Univ. of Crete Fall 2014

References

 Based on slides from:

R. Ramakrishnan and J. Gehrke

H. Garcia Molina

J. Hellerstein

C. Faloutsos

L. Mong Li

M. H. Scholl

A. Silberschatz, H. Korth and S. Sudarshan

P. Lewis, A. Bernstein and M. Kifer

J. Lewis: “How the CBO works” www.jlcomp.demon.co.uk



Τέλος Ενότητας 



Χρηματοδότηση 
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού 
έργου του διδάσκοντα. 

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει 
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. 

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 



Σημειώματα 



Σημείωμα αδειοδότησης 
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons 
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής 
Έκδοση.   Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,  
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης 
τους στο «Σημείωμα Χρήσης Έργων Τρίτων». 

 

 
 
[1] http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

•Ως Μη Εμπορική ορίζεται η χρήση: 

–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του 
έργου και αδειοδόχο 

–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο 

–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) 
από την προβολή του έργου σε διαδικτυακό τόπο 

 

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το 
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 
. 



Σημείωμα Αναφοράς 

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα 
Διαχείρισης Βάσεων Δεδομένων. Διάλεξη 6η: Query Execution». Έκδοση: 
1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη δικτυακή διεύθυνση: 
http://www.csd.uoc.gr/~hy460/ 

 


