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QUERY PROCESSING:
How to Optimize Relational 

Queries?
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 We’ve covered the implementation of single relational operations

Choices depend on indexes, memory, statistics,…

Joins

Blocked nested loops:

 simple, exploits extra memory

 Indexed nested loops:

 best if one relation small and one indexed

Sort/Merge Join:

 good with small amount of memory, bad with duplicates

Hash Join:

 fast (enough memory), bad with skewed data

Introduction
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 Query optimization is an important task in a relational DBMS

 Must understand optimization in order to understand the performance 

impact of

a given database design (relations, indexes) 

on a workload (set of queries)

 Two parts to optimize a query:

Consider a set of alternative execution plans

Must prune search space; typically, left-deep plans only

 This reduces optimization complexity and generates plans 

amenable to pipelined evaluation

Must estimate cost of each execution plan that is considered

Must estimate size of result and cost for each plan node (operator)

Key issues: Statistics, indexes, operator implementations

Introduction
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Basic Terminology

 Query Processing: the activities involved in retrieved data from the 

database

How to take a query in high level language (typically SQL) into a 

correct and efficient execution strategy, and then execute this strategy

 Query Plan: queries are compiled into logical query plans (often like 

relation algebra) and then converted into physical query plan (by 

selecting an implementation for each operator)

 Query Optimisation: the activity of choosing an efficient execution 

strategy for processing a query

Many transformations of the same high-level query

Choose one that minimises some system resource
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Query Processing Steps/Architecture

 Input: User-defined query

Parsing

Query validation

View resolution

Query optimization

Execution plan creation

Code creation

Execution

Output: Query result

 Main difference to language compilers: translation is data dependent!
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Query Evaluation

 Problem: An SQL query is declarative (select from where filter) i.e., 

does not specify a query execution plan

A relational algebra expression is procedural

 there is an associated query execution plan

 Solution: Convert SQL query to an equivalent relational algebra

expression and evaluate it using the associated query execution plan 

(i.e., choice of an implementation algorithm)

But which equivalent expression is best?

Operators can be applied in different order!

SELECT S.sname
FROM   Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

(sname)(bid=100  rating > 5) (Reserves Sailors)
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 Convert relational algebra expression to an operation tree 
where each node is annotated to indicate:

which access method to use for each relation

which implementation method to use for each operation

 Each operation tree is typically implemented using pipeline: 

 when an operator is `pulled’ for the next output tuples, 
it `pulls’ on its inputs and computes them

 Two main issues:

For a given query, what plans are considered?

Algorithm to search plan space for cheapest 
(estimated) plan

How is the cost of a plan estimated?

 Ideally: Want to find best plan 

 Reality: Avoid worst plans!

Query Execution Plan (QEP)

Plan

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

File Scan File Scan

Nested loop

On the fly

On the fly
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Query Optimizer

 The evaluation of relational algebra expressions involves:

estimating the cost of a relational algebra expression

transforming one relational algebra expression to an equivalent one

choosing access methods for evaluating the subexpressions

 Too expensive to consider all algebraically equivalent plans: might take 

longer to find an optimal plan than to compute query brute-force !!!

Consider only a subset of plans using heuristic algorithms

 Query optimizers do not “optimize”

just try to find “reasonably good” evaluation strategies
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Schema and Base for Examples

 Sailors:

Each tuple is 50 bytes long,  80 tuples per page, 500 pages

 Assume there are 10 different ratings 

 Reserves:

Each tuple is 40 bytes long,  100 tuples per page, 1000 pages

Assume there are 100 boats

Sailors (sid:integer, sname:string, rating:integer, age:real)
Reserves (sid:integer, bid:integer, day:dates, rname:string)
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Motivating Example

 Cost:  500+500*1000 = 500500 I/Os

 By no means the worst plan! 

 Misses several opportunities: 

selections could have been `pushed’

earlier

no use is made of any available 

indexes, etc.

 Goal of optimization: 

To find more efficient plans that 

compute the same answer 

 With “Reserves” as outer 501000 IOs

Plan

SELECT S.sname
FROM   Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

ReservesSailors

sid=sid

bid=100 rating > 5

sname

File Scan File Scan

Page-oriented
Nested loop

On the fly

On the fly

500500 IOs
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Alternative Plans: Push Selects (No Indexes)

Sailors

Reserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 

250500 IOs

On the fly

On the fly

File Scan

File Scan

Sailors Reserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 
On the flyOn the fly

File Scan File Scan

250500 IOs

500 pages

1000 pages

500 pages 1000 pages

250 *1000 + 500 250 *1000 + 500



12

CSD Univ. of Crete Fall 2014

Alternative Plans: Push Selects (No Indexes)

Sailors

Reserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 

6000 IOs

On the fly

On the fly

File Scan

File Scan

Sailors

Reserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 

250500 IOs

On the fly

On the fly

File Scan

File Scan

500 pages 1000 pages

1000 pages 500 pages

10 * 500 + 1000
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Alternative Plans: Push Selects (No Indexes)

Sailors

Reserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 

6000 IOs

On the fly

On the fly

File Scan

File Scan

4250 IOs

SailorsReserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 

Scan and
Materialize to T2On the fly

File Scan File Scan

1000 pages 500 pages

10 * 250 + 250 + 500 + 1000 
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Alternative Plans: Push Selects (No Indexes)

4250 IOs

SailorsReserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 

Scan and
Materialize to T2On the fly

File Scan File Scan

4010 IOs

Scan and
Materialize to T2

Sailors Reserves

sid=sid

rating > 5

sname

Page-oriented
Nested loop

On the fly

bid = 100 

On the fly

File Scan

1000 pages500 pages

250 * 10 +10 + 1000 +500
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More Alternative Plans: Join Algos (No Indexes)

 Cost of σ bid=100 (R) = Cost to scan R +         

Cost to write T1 = 1000 + size(T1) IOs

Estimate size(T1): Assume uniform 
distribution of reservations over 100 boats

 size(T1) = 1000/100 = 10 IOs

 Cost of σ rating>5 (S) =Cost to scan S +        

Cost to write T2 = 500 + size(T2) IOs

 Estimate size(T2): Assume uniform 
distribution of ratings over range of 1 to 10

 size(T2) = 500/2 = 250 IOs

 With 5 buffers, cost of sort-merge join of T1 & T2

Cost Sort T1 (2 pass)= 2*2*10 = 40 IOs

Cost Sort T2 (4 pass)= 2*4*250 = 2000 IOs

Cost Merge T1 and T2= 10+250 = 260 IOs

SailorsReserves

sid=sid

rating > 5

sname

Sort-Merge Join

On the fly

bid = 100 

Scan and
Materialize to T1

File Scan File Scan

Scan and
Materialize to T2

Total cost = cost of selection + cost of join = 1760 + 2300 = 4060 IOs

500 pages1000 pages
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More Alternative Plans: Join Algos (No Indexes)

 Cost of block nested loops join: T1 as outer rel

Every 3 page block of T1, scan T2: Cost = 
Scan T1 + Scan T2 (4 times) = 10 + 4*250
= 1010 IOs

 Total cost = cost of selection + cost of join = 
1760 + 1010 = 2770 IOs

 Push projection ahead of join

Only sid of T1 and sid,sname
of T2 needed

Remove unwanted attributes as T1
and T2 are scanned during selection

 Reduce size of T1 and T2 substantially

 T1 fit into 3 buffer page

 Perform block nested loops join with a 
single scan of T2

 Cost of join ~ 250 IOs

 Total cost of plan ~ 2000 (1750 + 250) IOs

SailorsReserves

sid=sid

rating > 5

sname

Block Nested loop

On the fly

bid = 100 

Scan and
Materialize to T1

File Scan File Scan

Scan and
Materialize to T2

1000 pages
500 pages
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More Alternative Plans: Join Algos (Hash Indexes)

 Cost of σ bid=100 (R): use clustered hash 
index on R.bid to retrieve matching R tuples

Uniform distribution of reservations over 
100 boats the estimated # of selected 
tuples = 100000/100 = 1000

Clustered index, 1000 tuples in same 
bucket stored sequentially, Cost of 
selection = 10 IOs

 For each selected R tuple use hash index
on S.sid to retrieve matching S tuples

 Join attribute sid is a key for       
Sailors; At most one S tuple match

 Average 1.2 page IO to retrieve a tuple, 
Cost of join = 1200 IOs

 For each tuple in join result

 Perform selection rating>5 on-the-fly

 Perform projection on sname on-the-fly

 Total cost = 1210 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

Index Nested loop
With pipelining

On the fly

bid = 100 

On the fly

Clustered hash
index, do not
Write to temp

File Scan

 Projection not push ahead 

Selected R tuples not materialized 

Join pipelined

 Selection rating>5 not push ahead

Index on sid available

1000 pages

500 pages
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What is Needed for Query Optimization?

 A closed set of operators

 Relational operators (table in, table out)

 Encapsulation based on iterators

 Plan space based on

 Relational algebra equivalences

 Cost estimation based on

 Cost formulas

 Size estimation, based on 

 Catalog information on base tables

 Selectivity (Reduction Factor) estimation

 A search algorithm

 Enumeration of plans

 Single/Multiple-Relation queries

 To sift through the plan space based on cost!

 Optimize a relational 

algebra expression:

Enumerate alternative 

execution plans

Estimate cost of each 

enumerated plan

Choose plan with 

least cost
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Rewriter

Planner

Applies transformation 

(static)

Rewriting Stage 

(declarative)

Planning Stage 

(procedural)

Examines alternative exe-

cution plans for each query 

produced in the previous 

stage (by the algebraic and 

method-structure space) 

through a search strategy in 

order to find the cheapest 

one as determined by the 

cost model and the size 

distribution estimator

Algebraic Space

Method-structure 
space

Execution orders to be 

considered by the planner 

select-project-join (SPJ) 

represented as a tree

Implementation choices for 

the execution of each ordered 

series of actions

Overview of a Typical Query Optimizer

Cost 
Model

Size-Distribution 
Estimator

Specifies the arithmetic 

formulas used to estimate the 

cost of execution plans

Given a query, it estimated 

the sizes of the results of 

(sub) queries and the 

frequency distributions of 

values in attributes of 

these results
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Translating SQL to Relational Algebra

SELECT  S.sid, MIN (R.day)
FROM  Sailors S, Reserves R, Boats B
WHERE  S.sid = R.sid AND R.bid = B.bid AND  

B.color = “red” AND 
S.rating = ( SELECT MAX (S2.rating)

FROM Sailors S2 )
GROUP BY S.sid
HAVING COUNT (*) >= 2

For each sailor with the highest rating (over all sailors), and at 

least two reservations for red boats, find the sailor id and the 

earliest date on which the sailor has a reservation for a red boat
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Translating SQL to Relational Algebra

SELECT  S.sid, MIN (R.day)
FROM  Sailors S, Reserves R, Boats B
WHERE  S.sid = R.sid AND R.bid = B.bid AND  

B.color = “red” AND 
S.rating = ( SELECT MAX (S2.rating)

FROM Sailors S2 )
GROUP BY S.sid
HAVING COUNT (*) >= 2

Inner Block
S.sid, MIN(R.day)

(HAVING COUNT(*)>2 (

GROUP BY S.Sid (

B.color = “red” S.rating = val(

Sailors   Reserves   Boats))))
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Units of Optimization: Query Blocks 

 An SQL query is parsed into a 

collection of query blocks, and 

these are optimized one block at     

a time

Nested blocks are usually 

treated as calls to a subroutine, 

made once per outer tuple

Exactly one SELECT and one 

FROM clause

At most one WHERE, one 

GROUP BY and one HAVING 

clause

SELECT  S.sname
FROM  Sailors S
WHERE  S.age IN 

(SELECT  MAX (S2.age)
FROM  Sailors S2
GROUP BY  S2.rating)

SELECT  S.sname
FROM  Sailors S
WHERE  S.age IN 
Reference to nested block

nested block
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Units of Optimization: Query Blocks

 Query blocks expressed in relational algebra as

Cross-product of all relations in the FROM clause

Selections in the WHERE clause

Projections in the SELECT clause

 For each block, the execution plans considered are:

All available access methods, for each relation in 

FROM clause

All left-deep join trees (multi-relation) i.e., 

 right branch always a base table, 

 consider all join orders and join methods

 Intricacies of SQL complicate query optimization

E.g. nested subqueries

BA

C

D
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The Issue of Nested Queries (Uncorrelated)

 Find names of sailors who reserve boat # 103

Nested subquery evaluated once

Result is a collection of sids C

For each S tuple, check if sid is in C

Nested loops join of S and C

SELECT S.sname

FROM Sailors S 

WHERE S.sid IN (SELECT R.sid

FROM Reserves R 

WHERE R.bid=103)
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The Issue of Nested Queries (Uncorrelated)

 Find names of sailors with highest rating

Nested subquery evaluated once

Result is a single value

Incorporated into top-level query

SELECT S.sname

FROM Sailors S

WHERE S.rating = (SELECT MAX (S2.rating) 

FROM Sailors S2)
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The Issue of Nested Queries (Correlated)

 Conceptually, a nested subquery is a function

Variables from outer level query are the parameters

 Correlated evaluation: the subquery is separated evaluated for each 
tuple in the outer level query

Tuple variable S from top-level query appears in nested query

Evaluate subquery for each S tuple 

 Correlated evaluation may be quite inefficient since 

a large number of calls may be made to the nested query 

there may be unnecessary random I/O as a result

SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT * 

FROM Reserves R

WHERE R.bid=103 AND S.sid=R.sid)
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Query Rewriting: Nested Queries (Correlated)

SELECT  *
FROM  Reserves R
WHERE R.bid=103 AND  

R.sid= outer 
value

SELECT S.sname
FROM Sailors S, Reserves R
WHERE  S.sid=R.sid AND 

R.bid=103

Nested block to optimize:

Equivalent non-nested query:

 Nested block is optimized independently, 
with the outer tuple considered as   
providing a selection condition

 Outer block is optimized with the cost         
of `calling’ nested block computation   
taken into account

Implicit ordering of these blocks     
means that some good strategies        
are not considered

 SQL optimizers attempt to rewrite nested 
subqueries into joins where possible, 
enabling use of efficient join techniques

Nested query has equivalent          
query without nesting 

Correlated query has equivalent     
query without correlation

The non-nested decorrelated version of 
the query is typically optimized better
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Query Rewriting 

 Syntactic and semantic query analysis detects & rejects incorrect queries:

Type errors

Semantically incorrect (disconnected query graph)

 Normalize query predicates expressions into 

conjunctive or disjunctive normal form

 Simplify statements:

Eliminate ANY / ALL operators

... val > ANY (:x, :y) => val > :x OR value > :y

... x> ALL(SELECT y FROM R WHERE z=10)
=>... NOT ( x <= ANY (SELECT...)
=>...NOT EXISTS (SELECT y FROM R 

WHERE z= 10 AND x <= y)
Eliminate more baroque constructs (BETWEEN)

Evaluates expressions as far as possible

... x > 0.5* z/100 * 4 => x > z/50
 Rewrite calculus query into relational algebra expressions
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Logical vs. Physical of Optimization

 Logical level optimization

data dictionary (system 

catalog) independent 

(algebraic) transformation of 

the query according to the 

algebraic laws of relational 

algebra

 Physical level optimization

physical level using indexes 

("internal")

 schema based

cost based selection of optimal 

plan using database statistics

 value based

Lexical/Syntax/Semantics
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Logical Optimization

 Transforms query according to algebraic laws of relational algebra

Focus is application of "algebraic transformation rules“

 Two relational algebra expressions over the same set of input relations 

are equivalent if they produce the same result on all instances of the 

input relations

To transform a relational expression into another equivalent 

expression we need transformation rules that preserve equivalence

 Each transformation rule

Is provably correct (i.e, does preserve equivalence)

Has a heuristic associated with it
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Relational Algebra Equivalences: 

Selections & Projections
 Selection Cascading

Combine several selections into one 
Replace a selection involving several conjuncts with several smaller 

selection operations 
 Commutative Selections

Test conditions c1 and c2 in either order
 Projection Cascading

Successively eliminating columns from R is simply eliminating all but 
the columns retained by the final projection 
 If each ai is a set of attributes of R, ai  ai+1

 Commute projection and selection:

A projection commutes with a selection that only uses attributes 
retained by the projection
 if attr all attributes in Cond

( ) ( )( )  
c cn c cnR R1 1  

... . . .

( )( ) ( )( )   
c c c cR R1 2 2 1



( ) ( )( )( )  
a a anR R1 1

 . . .

( )
Att R (

Cond
) 

Cond
(

Att
)R( )
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Relational Algebra Equivalences: 

Joins & Cartesian Product

 Commutative
(R   S)   (S R) 

used to reduce cost of nested loop evaluation strategies (smaller 
relation should be in outer loop)

 Associative

R (S  T)   (R S) T

used to reduce the size of intermediate relations in computation of 
multi-relational join – first compute the join that yields smaller 
intermediate result

 This implies order-independence of joins 

R (S  T)   (T      R)      S

 N-way join has T(N)  N! different evaluation plans (more latter)

T(N) is the number of parenthesized expressions

N! is the number of permutations
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Pushing Selections and Projections

 Cond (R  S)  R Cond S
A selection between attributes of the two arguments of a cross-product 

converts cross-product to a join

Cond relates attributes of both R and S

Reduces size of intermediate relation since rows can be discarded 
sooner

 Cond (R  S)  Cond (R )  S
A selection on just attributes of R commutes with cross-product 

Cond involves only the attributes of R

Reduces size of intermediate relation since rows of R are discarded 
sooner

 attr (R  S) attr (attr’ (R)  S)
A projection following a join can be `pushed’ by retaining only 

attributes of R (and S) that are needed for the join or are kept by the 
projection

 if attributes(R) attr’ attr
Reduces the size of an operand of product
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Equivalence Example

C1 C2 C3 (R  S)  

C1 ( C2 ( C3 (R  S) ) )  

C1 ( C2 (R)  C3 (S) )  

C2 (R)           C1 C3 (S)

 assuming C2 involves only attributes of R,

 C3 involves only attributes of S,

 and C1 relates attributes of R and S
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Choice of Execution Plans

 Must consider the interaction of evaluation techniques when choosing 
execution plans: 

choosing the cheapest algorithm for each operation independently may 
not yield best overall algorithm:

merge-join may be costlier than hash-join, but may provide a sorted 
output which reduces the cost for an outer level aggregation

 nested-loop join may provide opportunity for pipelining

 Systems may use heuristics to reduce the number of choices that must be 
made in a cost-based fashion

Heuristic optimization transforms the query-tree by using a set of rules 
that typically (but not in all cases) improve execution performance

Heuristics do not always reduce the cost, but work in many cases

 Practical query optimizers incorporate elements of the following two broad 
approaches:

Uses heuristics to choose a plan

Search all the plans and choose the best plan in a cost-based fashion
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Physical Optimization

 Rule-based (“internal”)

Chooses access method to result data according to heuristic rules e.g.

 to push selections and projections down the query tree (System R)

 to repeatedly pick “best” relation to join next (Oracle)

 Starting from each of n starting points and pick best among these

Precedence among access operators (record level interface, Oracle):

Single row access by rowid ....
Single row by primary key ....
Single column index ....
Full table scan

Optimizer always chooses lowest rank operator independent from data

 Cost-based optimization

Utilizes statistical properties of the DB state

Among the top secrets of DB vendors

DB2 (IBM) seems to have the most sophisticated optimizer (!)

Basic principle: make the typical (simple) case fast
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Typical Rules in Heuristic Optimization

Split conjunctive selections to enable sift of partial selection predicates

Shift selections towards the leaves of the execution tree

Rearrange leaves such that most restrictive selections are far left in the 
tree

Replace Cartesian product operations that are followed by a selection 
condition by join operations

Split projections (and create new ones) and move towards leaves (but 
beware of mutating joins to cross products)

 Identify those subtrees whose operations can be pipelined, and execute 
them using pipelining
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Example: Limitation of Heuristics

 Consider two logical plans:

σage ≥ 18 ((Sailors)     Sailors.sid = Reserves.sid Reserves)

(σage ≥ 18(Sailors))     Sailors.sid = Reserves.sid Reserves)

 Plan  is created by the heuristic rule pushing selections as close to 

relation as possible (do selections early) 

 If all sailors have age>18, and no sailor appears in reserve, Plan  is 

better than Plan 
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Heuristic vs. Cost based Optimization

 Heuristic query optimization

Sequence of single query plans

Each plan is (presumably) more efficient than the previous

Search is linear

 Cost-based query optimization

Many query plans generated

The cost of each is estimated, with the most efficient chosen

Search is multi-dimensional (various performance metrics!)

 Both logical and physical plan optimization can be based on cost estimation

For logical plan optimization, estimated sizes of intermediate results can 
be used to choose better logical plans

For physical plan optimization, estimated disk I/O can be used to 
generate (or enumerate) and to choose better physical plans

For scans using secondary indices, some optimizers take into account 
the probability that the page containing the tuple is in the buffer
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Cost-based Query Sub-System

Performance Metrics
Data volume to transfer in terms                     

of page I/Os
CPU cost (path length of query:                    

i.e., number of instructions)
Resource allocation, e.g. buffer pools   

required, cache misses, etc.
Communication, power consumption  

(depends upon domain)
Cost Estimation

Statistics maintained by system catalogs
Estimates are approximations to actual     

sizes and costs
Plan Enumeration algorithm

search strategy through the plan space
has to be efficient (low optimization overhead)

 Usually there is a heuristics-based rewriting step 
before the cost-based QO
Identify alternative plans for equivalent 

relational algebra expressions

Query Optimizer

Plan 
Generator

Plan Cost 
Estimator

Catalog Manager

Schema Statistics

Goal: Given an initial Logical Plan
generate a physical plan that is 
“Optimal” with respect to one or 
more performance metrics
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Cost Estimation of Execution Plans

 Must estimate cost of each operation in execution plan tree

We’ve already discussed how to estimate the cost of operations 
(sequential scan, index scan, joins, etc.)

Number of pages of input relations

 Indexes available

Pipelining or temporary relations created (materialize)

 Must estimate size of result and sort order for each operation in tree!

Needed for the input of the operation corresponding to the parent node

Use information about the input relations

For selections and joins, assume independence of predicates

 In System R, cost is boiled down to a single number consisting of            

#I/O + factor * #CPU instructions
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System Catalogs

 Maintain statistics about relations
 Cardinality: Number of tuples NTuples(R) for each relation R
 Size: Number of pages Npages(R) for each relation R

 Maintain statistics about indexes

Index cardinality and size

Number of distinct key values Nkeys(I) for each index I 

Number of pages INPages(I) for each index I

Index height

Number of non leaf levels Iheight(I) for tree index I

Index range

Minimum current key value ILow(I) and 

maximum current key value IHigh(I) for each index I
 Statistics updated periodically

Expensive to update whenever data change
Approximations anyway

 May store more detailed statistical information
 Histograms of the values in some attribute (more latter)
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 Consider a query block:

Maximum # tuples in result is the product of the cardinalities of 
relations in the FROM clause

Every term in the WHERE clause eliminates some of the potential 
result tuples

 Reduction factor (RF) associated with each term reflects the impact of 
the term in reducing result size

Assume conditions tested by each term in the WHERE clause are 
statistically independent and values are uniformly distributed

Model effect of WHERE clause on result size by associating a RF
with each term

Size of result = Max # tuples* product of RF for all the terms

RF usually called “selectivity”

SELECT  attribute list
FROM  relation list
WHERE term1 AND ... AND termk

Size Estimation and Reduction Factors
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 Term column = value

RF = 1 / NKeys(I)
 I is an index on column

 Term column1 = column2

RF  = 1 / max( NKeys(I1), NKeys(I2) )

 I1 and I2 are indexes on column1 and column2 respectively 

 Term column > value

RF = ( High(I) - value) / ( High(I) - Low(I) )
 I is an index on column

 Note, if missing indexes, assume 1/10 (default) !!!

 Reduction factor due to complex condition

 RF(Cond1 AND Cond2) =  RF(Cond1)  RF(Cond2)

 RF(Cond1 OR Cond2) = min(1, RF(Cond1) + RF(Cond2))

Result Size Estimation for Selections
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Result Size Estimation for Joins

 Given a join of R and S, what is the range of possible result sizes (in # of 
tuples)?

Assume relations R and S, with NTuples(R) and NTuples(S)
 Natural join:

R  S = , then cost of R     S = NTuples(R) * NTuples(S)
R  S = key for R  (R  S = key for S is symmetric) 

 a tuple of S will join with at most one tuple from R

 cost of R     S   NTuples(S)
Also, if R  S = foreign key of S referencing R

 cost of R     S   NTuples(S)
R  S = {A} neither key for R nor S

 estimate each tuple r of R generates NTuples(S)/ NKeys(A,S)
result tuples

 cost of R     S = NTuples(R) * NTuples(S)/ NKeys(A,S)
 but can also consider it starting with S

 cost of R     S = NTuples(S) * NTuples(R)/ NKeys(A,R)
 If these two estimates differ, take the lower one!
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Result Size Estimation for Set Operations

 Unions/intersections of selections on the same relation: rewrite and use 

size estimate for selections

σθ1 (R) ∩ σθ2 (R) can be rewritten as σθ1 σθ2 (R)

 Operations on different relations:

Estimated size of R  S = NTuples(R) + NTuples(S)

Estimated size of R  S = min(NTuples(R), NTuples(S))

Estimated size of R – S = NTuples(R)

 Inaccurate, upper bounds on the sizes



47

CSD Univ. of Crete Fall 2014

Better Estimation Using Histograms

 Motivation

NTuples(R), High(R,A), Low(R,A)
Too little information

Actual distribution of R.A: (v1,f1),
(v2,f2), …, (vn,fn)
fi is the frequency of vi i.e.,         

the number of times vi appears       
in R.A

Too much information (perfect 
histogram); Anything in between?

 Idea

Partition the domain of R.A into 
intervals = buckets (compression)

Store a small summary of the 
distribution within each bucket

Number of buckets are the “knob” that 
controls the resolution

More compact representation, as 

compared to original list of values
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Equi-width Histogram

 Divide the domain into B buckets of equal width

Store the bucket boundaries and the sum of frequencies of the 
values with each bucket

7+4=11



49

CSD Univ. of Crete Fall 2014

Construction and Maintenance

 Construction:

Scan in one pass R to construct an accurate equi-width histogram

Keep a running count for each bucket

If scanning is not acceptable, use sampling

Construct a histogram on Rsample, and scale the frequencies by 

NTuples(R) / NTuples(Rsample)

 Maintenance:

Incremental maintenance: for each update on R, increment/ 

decrement the corresponding bucket frequencies

Periodical re-computation: because distribution changes slowly
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Using an Equi-width Histogram

 Q: A=5(R)

5 is in bucket [5,8] (with 19 tuples)

Assume uniform distribution within the bucket

Thus |Q|  19/4  5

Note that the actual value of A is 1

 Q: A>=7 & A <= 16(R)

[7,16] covers [9,12] (27 tuples) and [13,16] (13 tuples)

[7,16] partially covers [5,8] (19 tuples)

Thus |Q|  19/2 + 27 + 13  50 

Note that the actual value range of A is 52
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Equi-height Histogram

 Divide the domain into B buckets with roughly the same number of tuples
in each bucket

Store the sum of frequencies and the bucket boundaries

 Intuition: high frequencies are more important than low frequencies
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Construction and Maintenance

 Construction:

Sort all R.A values, and then take equally spaced slights

Example: 1 2 2 3 4 7 8 9 10 10 10 10 11 11 12 12 14 16 …

Sampling also works

 Maintenance:

Incremental maintenance

Merge adjacent buckets with small counts

Split any bucket with a large count

 Select the median value to split

 Need a sample of the values within this bucket to work well

Periodic re-computation also works
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Using an Equi-height Histogram

 Q: A=5(R)

5 is in bucket [1,7] (with 16 tuples)

Assume uniform distribution within the bucket

Thus |Q|  16/7  2 (actual value = 1)

 Q: A>=7 & A <= 16(R)

[7,16] covers [8,9], [10,11],[12,16] (all with tuples)

[7,16] partially covers [1,7] (16 tuples)

Thus |Q|  16/7 + 16 + 16 + 16  50 (actual value range = 52)
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Value-Independence Assumption

 Assumption so far

p(A1=v1, A2=v2) = p(A1=v1)*p(A2=v2)

 Given this assumption, we can predict frequencies of combinations of 

attribute values based on frequencies of individual values

i.e., one would only need histograms for the individual attributes

 Popular approach, but quality of predictions is low

Multi-dimensional histograms become necessary

Problems mentioned before (which histogram variant, which 

granularity) now more urgent and more difficult at same time
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Enumeration of Alternative Plans: Search Space

 Given the search space of equivalent operator trees for a given query

Query optimization process tries to identify the least expensive plan
(according to a cost model) in a search space

Constrained to the time it takes to evaluate the search space versus 
a potential execution time

 There are two main cases:

Single-relation plans

Multiple-relation plans

 For queries over a single relation, queries consist of a combination of 
selects, projects, and aggregate operations:

Each available access method (file scan / index) is considered, and 
the one with the least estimated cost is chosen

The different operations are essentially carried out together (e.g., if 
an index is used for a selection, projection is done for each retrieved 
tuple, and the resulting tuples are pipelined into the aggregate 
computation)
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Schema and Base for Examples

 Sailors:

Each tuple is 50 bytes long,  80 tuples per page, 500 pages

 Assume there are 10 ratings, 40000 sids

 Reserves:

Each tuple is 40 bytes long,  100 tuples per page, 1000 pages

Assume there are 100 distinct bids

Sailors (sid:integer, sname:string, rating:integer, age:real)
Reserves (sid:integer, bid:integer, day:dates, rname:string)
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Single-Relation Queries

 No joins

Only one selection or projection or aggregate operation

 Combination of selection, projection and aggregate operations

Plans without indexes

Plans with index

 Plans without indexes

Scan relation and apply selection and projection operations to each 
retrieved tuple

Cost:

File scan

Write out tuples after select and project

Sort tuples for GROUP BY

No additional IO for HAVING

Aggregation done on the fly
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Single-Relation Queries: Example

 File scan = Npages(Sailors) = 500 IOs

 Write out tuples after select and project

Result tuple size ratio = size of <S.rating,S.sname>/size of
Sailor tuple = 0.8

RF for rating selection = 0.5

RF for age selection = 0.1 (default)

Cost = Npages(Sailors) * 0.8 * 0.5 * 0.1 = 20 IOs

 Sort tuples for GROUP BY S.rating
Assume enough buffer pages to sort the Temp relation in two passes

Cost = 2 * Npages(Temp) * #passes = 80 IOs

 Total Cost = 500+20+80 = 600 IOs 

SELECT S.rating, COUNT(*)
FROM Sailors S
WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating
HAVING COUNT DISTINCT (S.sname) > 2

(rating, sname)

(rating > 5  age=20)

(Sailors)
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Single-Relation Queries

 Plans with indexes

Single-index access method

Several indexes match selection conditions

Each matching index offers an alternative access method

Choose access method that retrieves fewest pages

Apply project, non primary selection terms

Compute grouping and aggregation

Multiple-index access method

Several indexes match selection conditions

Use each index to retrieve a set of rids

 Intersect these sets of rids

Sort result by page id and retrieve tuples

Apply project, non primary selection terms

Compute grouping and aggregation



61

CSD Univ. of Crete Fall 2014

Single-Relation Queries

Sorted index access method

 List of grouping attributes is a prefix of a tree index

Use tree index to retrieve tuples in the order required by the 

GROUP BY clause

Apply selection conditions on each retrieve tuple

Remove unwanted fields

Compute aggregate operations for each group

Strategy works well for clustered index
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Single-Relation Queries

Index-only access method

All attributes in query are included in search key of a dense index 
on the relation in FROM clause

 Data entries in index contain all the attributes of a tuple needed 
for the query

 One index entry per tuple

Use an index-only scan to compute answers

 No need to retrieve actual tuple from relation

 Apply selection conditions to data entries in index

 Remove unwanted attributes

 Sort result for grouping

 Compute aggregate functions within each group

Applicable even if index does not match selection conditions

 If index match selection, then examine a subset of index entries

 Otherwise, scan all index entries

 Independent of whether index is clustered
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Single-Relation Queries: Example

 Single-index access method

Use hash index on age to retrieve Sailors tuples such that 

S.age=20

Apply condition S.rating>5 to retrieved tuples

Project out unwanted attributes

Sort Temp relation on rating to identify groups

Apply HAVING condition to eliminate some groups

SELECT S.rating, COUNT(*)
FROM Sailors S
WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating
HAVING COUNT DISTINCT (S.sname) > 2

Indexes

B+-tree index on 
S.rating
Hash index on S.age
B+-tree index on

<rating,sname,age>
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Single-Relation Queries: Example

 Multiple-index access method

Use B+-tree index on rating to 
get rids of tuples with rating>5

Use index on age to get rids of 
tuples with age=20

Get the intersection of the two sets 
of rids

Sort rids by page number

Retrieve corresponding Sailors
tuples …

 Sorted index access method

Use B+-tree index on grouping 
attribute rating to retrieve tuples 
with rating>5

Retrieved tuples ordered by 
rating

Compute aggregate functions 
in the HAVING and SELECT 
clauses on-the-fly

 Index-only access method

Use B+ tree index on 
<rating,sname,age> to 
retrieve data entries with 
rating>5

Retrieved entries sorted by 
rating

Choose entries with age=20

Compute aggregate functions 
in the HAVING and SELECT 
clauses on-the-fly

No Sailors tuples are 
accessed 
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 Index I on primary key matches selection:

Cost is Height(I) + 1 for a B+-tree, about 1.2 for hash index

 Clustered index I matching one or more selects:

(NPages(I) + NPages(R)) * product of RF’s of 
matching selects 

 Non-clustered index I matching one or more selects:

(NPages(I) + NTuples(R)) * product of RF’s of 
matching selects

 Sequential scan of file:

NPages(R)

Recall: Must also charge for duplicate elimination if required by 
distinct clause

Cost Estimates for Single-Relation Plans



66

CSD Univ. of Crete Fall 2014

Cost Estimates for Single-Relation Plans: Example

 If we have an index on rating :

Cardinality = (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples 

Cost clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R))      
= (1/10) * (50+500) = 55 pages are retrieved

Cost unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) 
= (1/10) * (50+40000) = 401 pages are retrieved

 If we have an index on sid :

Would have to retrieve all tuples/pages!!!

With a clustered index, the cost is 50+500

With an unclustered index, the cost is 50+40000

 Doing a file scan is better:

We retrieve all file pages, the cost is 500

SELECT S.sid
FROM Sailors S
WHERE S.rating=8
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Multiple-Relation Queries

 Query blocks with two or more 

relations in FROM clause

Require joins

Cost of plan affected by the order 

in which relations are joined

 Fundamental heuristic in System R: 

only left-deep join trees are 

considered

As the number of joins increases, 

the number of alternative plans 

grows rapidly

 we need to prune the search 

space of alternative plans

BA

C

D

BA

C

D

C DBA

Linear 

Non-
Linear 
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Associativity of Joins and Left-deep Plans

 Left-deep join: once a row of X has been 
output by P1, it need not be output again, 
but C may have to be processed several
times in P2 for successive portions of X

Advantage: none of the intermediate 
relations (X, Y) have to be completely 
materialized and saved on disk

 Important if one such relation is 
very large, but the final result is
small

 Non-linear join: Each row of X must be 
processed against all of Y

Hence all of Y (can be very large) must 
be stored in P3, or P2 has to
recomputed it several times

A B

X

Y D

C

P1

P2

P3

X Y

A B

C D

X Y

X

Y

P1

P2

P3
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Left-deep Plans

 Left-deep trees allow us to generate all fully pipelined plans

Intermediate join results not written to temporary files

Always materialize inner (base) relations

Examine entire inner relation for each tuple in outer relation

Not all left-deep trees are fully pipelined (e.g., Sort-Merge join)

 Enumeration of left-deep plans

Left-deep plans differ only in

Order of relations

 access method for each relation

 Join implementation method for each join

Multiple-pass algorithm

Using dynamic programming, the least-cost join order for any subset 
of {R1, R2, . . . Rn} is computed only once and stored for future use

N passes for join of N relations

In spite of pruning plan space, this approach is still costly (N! permutations)
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Enumeration of Left-Deep Plans

 Pass 1

Enumerate all single-relation plans: can involve , 

All possible access methods (file scan, single index, multiple 
indexes, sorted index, index-only)

Keep best 1-relation plan for each relation

 Pass 2

 Enumerate plans with one join

 Join result of each 1-relation plan (outer) obtain in Pass 1 to every 
other relation (inner)

Tuples generated by outer plan pipelined into join

 Keep best 2-relation plans

 Pass N

Enumerate N-relation plans (N-1 joins)

Contain all relations in query

 Join result of each (N-1)-relation plan generated in Pass N-1 to 
every other relation
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Dynamic Programming Plan Enumeration Algorithm

r1 r2

join

r3 r1

join

r1 r4

join

r3 r2

join
2

r3 r2

join

join

r1

r3 r1

join

join

r4

r3 r2

r4

r1

join

join

join

3

4

……….

……….

 Dynamic 

Programming 

Algorithm 
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 An N-1 way plan is not combined with an additional relation unless there 
is a join condition between them, unless all predicates in WHERE have 
been used up

i.e., avoid Cartesian products if possible

 For each subset of relations, retain only:

Cheapest overall plan (best) for query

Cheapest plan for producing answers in some interesting order 
(nearly best) of the tuples i.e., if it is sorted by any of:

ORDER BY attributes

GROUP BY attributes

 Join attributes of yet-to-be-planned joins

 ORDER BY, GROUP BY, aggregates etc. handled as a final step, using 
either an interestingly ordered plan or an additional sort/hash operator

Choosing Best or nearly Best Plans
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 An interesting sort order is a particular sort order of tuples that could be 
useful for a later operation: e.g., ( R1 R2 R3)       R4 R5

 Generating the result of R1 R2 R3 sorted on the attributes 
common with R4 R5 may be useful, but generating it sorted on the 
attributes common to only R1 and R2 is not useful

 Using merge-join to compute R1 R2 R3 may be costlier, but may 
provide an output sorted in an interesting order

 When picking the optimal plan

 Comparing their costs is not enough

 Plans are not totally ordered by cost anymore

 Comparing interesting orders is also needed

 Plans are now partially ordered

 Plan X is better than plan Y if Cost of X is lower than Y and 
Interesting orders produced by X subsume those produced by Y

 Need to keep a set of optimal plans for joining every combination of k rels

 Typically one for each interesting order
 Find a “nearby” plan by making one change to one operator
 Choose the best nearby plan according to estimated cost

Dealing with “Interesting Orders”
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Enumeration of Left-Deep Plans: Example

 Indexes

B+-tree index on S.rating
Hash index on S.sid
B+-tree index on R.bid

 Pass 1

“Sailors” relation 3 access methods:              
B+-tree, hash index, file scan

Selection rating>5 matches B+-tree 

 Lower cost compared to hash index 
and file scan

 However, if this selection is expected  
to  retrieve a lot of tuples, and index is  
unclustered, file scan may be cheaper

“Reserves” relation 2 access methods:         
B+-tree, file scan

Selection bid=100 matches B+-tree 

 Lower cost compared to file scan

SailorsReserves

sid=sid

rating > 5

sname

bid = 100 
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Enumeration of Left-Deep Plans: Example

 Pass 2

Take relation computed by plan for R in Pass 1 and join it (as the outer) 
with S
Alternative access methods

 Retrieve S tuples with rating>5 and sid=value where value 
is some value from an outer R tuple

 Selection sid=value matches hash index on sid
 Selection rating>5 matches B+ tree index on rating
 Hash index cheaper since equality selection has lower RF 

Alternative join methods e.g,. sort-merge join

Take relation computed by plan for S in Pass 1 and join it (as the outer) 
with R
 Alternative access methods

 Retrieve R tuples with bid=100 and sid=value where value 
is some value from an outer S tuple

 Use B+ tree index on bid
 Alternative join methods e.g,. block-nested loop join

 Retain cheapest overall plan



76

CSD Univ. of Crete Fall 2014

Join Order Selection: First Example

 Sailors: 

B+-tree on sid

Hash index on sid

 Reserves:

B+-tree on sid

Clustered B+-tree on bid

 Boats: 

B+-tree on color

Hash index on color

Select S.sid, COUNT(*) AS number

FROM  Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid

AND B.color = “red” 

GROUP BY S.sid

Reserves

Sailors

sid=sid

Boats 

Sid, COUNT(*) AS number

GROUPBY sid

bid=bid

Color=red
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Pass1: First Example

 Find best plan for each relation

Reserves, Sailors

No selection match index

File scan

Boats

Hash index on color match selection: Cheaper

Also retain B+-tree on color

 Returns tuples in sorted order by color
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Pass2: First Example

 For each of the plans in pass 1, generate plans joining another relation as 

the inner, using all join methods (and matching inner access methods)

File Scan Reserves (outer) with Boats (inner)

File Scan Reserves (outer) with Sailors (inner)

File Scan Sailors (outer) with Boats (inner)

File Scan Sailors (outer) with Reserves (inner)

Boats accessed via hash on color with Sailors (inner)

Boats accessed via B+-tree on color with Sailors (inner)

Boats accessed via hash on color with Reserves (inner) (sort-merge)

Boats accessed via B+-tree on color with Reserves (inner) (BNL)

 Retain cheapest plan for each pair of relations
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Pass2: First Example

 Join of Boats accessed via hash index on color and Reserves (inner)

Plan A: Index nested loops accessing Reserves via B+-tree index on 

bid

Plan B: Access Reserves via B+-tree index on bid and use sort-

merge join

 Generate tuples in sorted order by bid

 Retained (interesting order) although Plan A is cheaper

 Good heuristic: Avoid cross-products

 Will not consider following joins

Outer Inner

Scan of Sailors Boats

Boats accessed via B+ tree on color Sailors

Boats accessed via hash index on color Sailors
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Pass3: First Example

 Take each plan retained in Pass 2 as outer, and join remaining relation as 

inner

 Example: 

Access Boats via hash index on color

Access Reserves via B+ tree on bid

Join using sort-merge join 

Take result as outer and join with Sailors (accessed via B+-tree on sid) 

using sort-merge join 

Result of first join sorted by bid

Second join requires input to be sorted by sid

Result of second join sorted by sid
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Beyond Pass3 : First Example

 Next, consider GROUP BY clause

Require sorting on sid

For each plan retained in Pass 3, if result is not sorted on sid, 

add cost of sorting

Example plan in Pass 3 produce tuples in sid order

May be the cheapest even if there is a cheaper plan joining all 
three relations but does not produce tuples in sid order

 Aggregation on the fly

 Finally, choose the cheapest plan
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Join Order Selection: Second Example

 Consider the Join: R          S            T             U

 Statistics: each relation has 1000 tuples

 Cost estimation: take the size (in tuple) of intermediate results as the cost

 the simplest estimation of cost

 Plans: sequence of relations in the left-deep join tree

Example: R,S,T,U means R           S           T            U

R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a)=100 V(U,a)=50

V(R,b)=200 V(S,b)=100  

V(S,c)=500 V(T,c)=20

V(T,d)=50 V(U,d)=1000

R

S

T

U

# distinct values in R for attribute a
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Join Order Selection: Second Example

 Cost taken to be size of intermediate results

Actually should take I/O cost or some other cost metric

 Best sub-plans involving one relation

 Best sub-plans involving 2 relations

{R} {S} {T} {U}

size 1000 1000 1000 1000

cost 0 0 0 0

best plan R S T U

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

size 5000 1M 10000 2000 1M 1000

cost 0 0 0 0 0 0

best plan R       S R       T R       U S       T S       U T       U

NTuples(R) * NTuples(S)/ max{V(R1,a), V(S,a)}
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Join Order Selection: Second Example

 Best sub-plans involving 3 relations

 Best plans involving 4 relations

 Only left-deep trees considered

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

size 10000 50000 10000 2000

cost 2000 5000 1000 1000

best plan (S    T)    R (R    S)    U (T    U)    R (T    U)    S

Plan Cost

((S    T)    R)    U 12k

((R    S)    U)    T 55k

((T    U)    R)    S 11k

((T    U)    S)    R 3k
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Join Order Selection: Second Example

 Based on the previous cost estimation

 The best single join is T           S, with cost 1000

 There are two possible longer plans

(T          U)          R or (T          U)           S

 Choose the second plan of which the cost is 2000

 The final best order is then (( T         U)          S)           R with cost 3000
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Derivation of the Number of Possible Join Orderings

 Let J(n) denote the number of different join orderings for a join of n
argument relations

Obviously, J(n) = T(n) * n! . . . with T(n) the number of 

different binary tree shapes and n! the number of leaf permutations

 We can now derive T(n) inductively:

T(1) = 1,

T(n) = 1
n−1 T(i) * T(n − i)

. . .namely, T(n)= allpossibilitiesT(leftsubtree)*T(rightsubtree)

 It turns out that T(n) = C(n − 1), for C(n) the n-th Catalan number,

 Substituting T(n) = C(n − 1), we obtain 

T(n) * n! = (2(n – 1))!/(n – 1)!
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 Consider finding the best join-order for R1 R2        . . . Rn.

 There are (2(n – 1))!/(n – 1)! different join orders for above expression

 With n = 7, the number is 665280, with n = 10, the number is 

greater than 176 billion!

 Cost-based optimization is expensive, even with dynamic programming 

(bushy trees) 

 time complexity is O(3n)

 With n = 10, this number is 59000 instead of 176 billion!

 space complexity is O(2n)

 If only left-deep trees are considered

 time complexity of finding best join order is O(n 2n) while 

 space complexity remains at O(2n)

 Cost-based optimization is expensive, but worthwhile for queries on large 

datasets (typical queries have small n, generally < 10)

Dynamic Programming Algorithm: Complexity
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Points to Remember

 Consider single-relation queries:

All access methods considered, cheapest is chosen

Selections that match index, whether index key has all needed fields 
and/or provides tuples in a desired order

 Compute multiple-relation queries in a left-deep manner:

All single-relation plans are first enumerated

Selections/projections considered as early as possible

Next, for each 1-relation plan, all ways of joining another relation (as 
inner) are considered

Next, for each 2-relation plan that is `retained’, all ways of joining 
another relation (as inner) are considered, etc.

At each level, for each subset of relations, only best and nearly best
plans are `retained’

 a plan is considered nearly best if its output has some interesting 
order, e.g., is sorted
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Structure of Query Optimizers

 Some query optimizers integrate 

heuristic selection and the generation 

of alternative access plans

System R and Starburst use a 

hierarchical procedure based on 

the nested-block concept of SQL: 

heuristic rewriting followed by 

cost-based join-order optimization

 Even with the use of heuristics, cost-

based query optimization imposes a 

substantial overhead

This expense is usually more than 

offset by savings at query-

execution time, particularly by 

reducing the number of slow disk 

accesses
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Join Enumeration (Plan Search) Algorithms

 Exhaustive: enumerate each 
possible plan, and pick the best

 Bottom-up dynamic 
programming with pruning

System-R approach

 Top-down memoization

 Greedy Techniques

 Randomized/Transformation
Techniques
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Branch-and-Bound Pruning

 Use heuristics to find a reasonably good physical plan, compute its cost 
C and set it as initial bound 

build other physical plans piece by piece, each unfinished plan is 
called a sub-plan

 When expanding a sub-plan, if the cost of the expanded sub-plan is 
higher than the bound, abandon the sub-plan

If a new complete plan has a cost C’ that is lower than the bound, set 
C’ as the new bound and continue

May stop when the bound is low enough

 Observation: Pruning performance very dependent upon order that plans 
are derived

Important to find a good plan early!
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Bottom-up Plan Generation

 Bottom-up generation of optimal plans:

Compute the optimal plan for joining k relations

Suboptimal plans are pruned

From these plans, derive the optimal plans for joining k+1 relations

 The dynamic programming algorithm proceeds by considering increasingly 

larger subsets of the set of all relations

 Assumption 1: Once we have joined k relations, the method of joining this 

result further with another relation is independent of the previous join 

methods (true?)

 Assumption 2: Any subplan of an optimal plan must also be optimal, 

otherwise we could replace the subplan to get a better overall plan (true?)
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Bottom-up Plan Generation

 Elegant iterative process

 Search space is pruned based on    

the principal of optimality for every 

sub-expression with no redundant 

work

 If restricted to left-deep plans, only 

requires keeping sizes 1 and k-1        

to calculate size k

 First plan not completed until       

nearly done

 Do we really need the optimal         

plan for every sub-expression? 

We only need to guarantee the 

overall plan is optimal

{}

{1}                  {2}                {3}               {4}

{1 2}       {1  3}        {1   4}        {2  3}        {2  4}      {3   4}

{1  2  3}         {1   2   4}           {2   3   4}           {1   3  4}

{1   2   3    4}



94

CSD Univ. of Crete Fall 2014

Improvement: “Interesting Order”

 Assumption 2 does not always hold!!

Example: R(A,B)      S(A,C)        T(A,D)

Best plan for R      S: hash join (beats sort-merge join)

Best overall plan: sort-merge join R and S, then sort-merge join with T

Subplan of the optimal plan is not optimal

 Why?

The result of the sort-merge join of R and S is sorted on A

This is an interesting order that can be exploited by later processing 

(e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

 Not sufficient to find the best join order for each subset of the set of k 

given relations (Hill Climbing)

Must find the best join order for each subset, for each interesting sort 

order of the join result for that subset

Simple extension of earlier dynamic programming algorithm
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Bottom-up Dynamic Programming
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Bottom-up Dynamic Programming
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Top-down Memoization

 Any bottom-up DP algorithm can be re-written as top-down memoization

 Main idea:

 Don’t compute plans for sub-expressions until needed

 Save optimal plans in lookup table to avoid redundant work

 Observations:
Natural functional programming
First complete plan created early
Potentially yields the same plans as DP, but generated in different order
Overhead due to “random” table lookups
“Random” access to table forces entire table to be kept until algorithm 

completes (unlike DP for left-deep plans)
If interesting orders not identified ahead of time, avoiding redundant 

work requires all considered plans to be remembered
Generating complete plans early on enables Branch&Bound pruning!

 Initialize upper bound to ∞

Compute plan cost as assembled top-down

Abandon any (sub-)plan as soon as cost exceeds current bound

Use completed plans to refine upper bound
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Top-down Memoization



99

CSD Univ. of Crete Fall 2014

Top-down Memoization

HJ((CO,DC),(L,DC)):

HJ((C,DC),(O,DC)): 

------

MSJ((C,C.ck),(O,C.ck)):

MSJ((CO,O.ok),(L,L.ok)):

NLJ((O,O.ok), (C,DC)):
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Join Enumeration Algorithms Comparison

Bottom-up DP:

 Finds optimal solution in 
O(3n) time and space (bushy)

 First complete plan generated 
late  

 Interesting orders generated 
eagerly, so caution needed in 
defining what is an interesting 
order

Top-down Memoization:

Finds optimal solution in O(3n) 
time and space (bushy)

Time constant larger than DP 
due to table lookup

Space constant larger b/c 
everything must be remembered

 Generates complete plans early

 Only optimizes requested 
interesting orders, so definition can 
be loose without necessarily 
impacting performance

 Allows branch-and-bound pruning
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Motivation for Transformation-based QO

 Provide single framework for QO

Remove rigid separation between logical rewriting and cost-based join 

enumeration

Allow any decision to be either cost-based or heuristic, independent of 

stage at which it occurs

 Use encapsulation to remove pruning semantics from the search algorithm

Simplifies comprehension

Improves extensibility

Provides flexibility in modifying search space
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Structure of a Transformation-based Optimizer

 Query representation: algebraic tree

Logical & physical operators

Operator order always defined (unlike Query Graph Model (QGM))

 Multiple trees stored in MEMO structure composed of two entities:

Multi-expressions

Operator having groups as inputs

 Logical or physical

Groups

Set of logically equivalent multi-expressions

Mixture of logical and physical multi-expressions

 “Winner’s circle” identifying optimal multi-expression for each 
requested physical property

 Optimization = Tasks           +            Memo
(  Programs  =  Algorithms   +  Data Structures )
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Initial Plan MEMO Structure
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Types of Transformations

 Logical Substitution (LogOp  LogOp)

Old multi-expression is replaced by new

For guaranteed-win scenarios, or when you want to make heuristic 

decisions to minimize search space

E.g. predicate pushdown, subquery-to-join rewriting

 Logical Transformation (LogOp  LogOp)

Both old and new multi-expression are kept and optimized further

For cost-based decision between different logical plans

E.g. join ordering, group_by pushdown/pullup

 Physical Transformation (LogOp  PhysOp)

Generate physical multi-expression that implements logical

E.g. access method selection, join algorithm selection
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MEMO Structure Representing Alternative Plans
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How Optimization Proceeds?

 Every transform specifies a pattern

 To optimize multi-expression e:

First optimize each input group, possibly specifying required physical 

properties

Apply every rule whose pattern matches e

Insert resulting multi-expression into MEMO rooted in same group  

 To optimize group g given physical property p

Optimize each multi-expression in g

Store identity of optimal multi-expression for p in winner’s circle
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Comparison to Join Enumeration

 Query tree is traversed top-down; memoization of subexpressions is used; 
Similarities to top-down join enumeration with memoization:

Complete plans generated early

Branch-and-bound pruning can be used

Entire memo structure must be remembered

 Differences:

Cost-based optimization for arbitrary logical transforms

Search space determined by current set of rules

Easily modify search space by adding/removing rules

Search algorithm (application of transform rules) independent from 
semantics of transforms

 Improves extensibility

 Redundantly derives same expression by different paths (leads to 
O(4n) work for join enumeration unless rules disable each other)

Optimizes global query, not local to SPJG blocks

Memory consumption proportional to size of global query, not just 
size of single block (interacts with Similarity #3)
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History of Bottom-up Join Enumeration

 SYSTEM-R (basis of early DB2 optimizers): Selinger et al., “Access method 

selection in a Relational Database Management System”, SIGMOD 1979

Proposed dynamic programming approach

Introduced concept of “interesting orders”

 STARBURST (basis of DB2 UDB): Haas et al., “Extensible Query 

Processing in Starburst”, SIGMOD 1989; Ono and Lohman, “Measuring the 

Complexity of Join Enumeration in Query Optimization”, VLDB 1990

Focus on making QO extensible for new query operators and 

optimization rules

Propose two-phase optimization: logical rewrite followed by grammar-

based join enumeration (evaluated bottom-up)

Parameterize the join enumeration algorithm to tailor search space

Customization limited by predetermined switches

E.g. Bushy vs. left-deep, Cartesian products or not, etc.
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History of Top-down Join Enumeration

 Naïve Translation of System-R algorithm Chaudhuri et al., “Optimizing 
queries with materialized views”, SIGMOD 1995

Re-cast System-R DP as functional algorithm with memoization

Purely conceptual reasons, no attempt to exploit top-down

 Sybase ASA Bowman and Paulley, “Join Enumeration in a Memory-
Constrained Environment”, ICDE 2001

Back-tracking search without memoization (to minimize memory usage)

Aggressive branch-and-bound pruning

“Optimizer governor” heuristically guides search order

Attempts to locate good plans early to provide good upper bounds

Decides when to terminate search

Not guaranteed to find optimal plan (would take O(n!) time)

 COLUMBIA (actually a transformational optimizer) Shapiro et al.,“Exploiting 
Upper and Lower Bounds in Top-Down Query Optimization”, IDEAS 2001

Focuses on value of branch-and-bound pruning during join enumeration 
(humorously christened “group pruning”)
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History of Transformation-based QO

 EXODUS Graefe and DeWitt, “The EXODUS Optimizer Generator”, 
SIGMOD 1987

lustrated plan generation via transforms

Efficiency problems due to poor memorization

 VOLCANO Graefe and McKenna, “The Volcano Optimizer Generator: 
Extensibility and Efficient Search”, ICDE 1993

MEMO structure to avoid repeated work

Flexible cost models and physical properties ( generalization of 
interesting orders)

Two phases: full logical expansion, then physical generation

Conservative branch-and-bound pruning (no lower-bounding of inputs)

 Microsoft SQL Server Pellenkoft et al., “The Complexity of Transformation-
based Join Enumeration”, VLDB 1997

Proves independent transformations lead to redundant work due to 
multiple derivation paths; must analyze inter-rule dependencies to 
avoid
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History of Transformation-based QO

 CASCADES (basis of SQL Server and Tandem NonStop SQL) Graefe, 

“The Cascades Framework for Query Optimization”, IEEE Data Eng. Bull. 

18(3), 1995

Interleave logical and physical optimization

Generates first physical plan earlier

Makes branch-and-bound pruning more useful

Minor modifications of VOLCANO to improve efficiency and extensibility

 COLUMBIA (see previous slide) Shapiro et al., “Exploiting Upper and 

Lower Bounds in Top-Down Query Optimization”, IDEAS 2001

Added lower-bounding of inputs to branch-and-bound pruning of 

CASCADES

Prove certain set of transforms enumerate all bushy trees and 

guarantee first plan generated for each group will be left-deep
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Summary

 Query optimization is a very complex task

Combinatorial explosion

The task is to find one good query execution plan, not the best one

 No optimizer optimizes all queries adequately

Heuristic optimization is more efficient to generate, but may not yield 
the optimal query execution plan

Cost-based optimization relies on statistics gathered on the relations

 Until query optimization is perfected, query tuning is a fact of life

It has a localized effect and is thus relatively attractive

It is a time-consuming and specialized task

It makes the queries harder to understand

This is not likely to change any time soon

 Optimization is the reason for the lasting power of the relational DBMS

But it is primitive in some ways 

New areas: random statistical approaches (e.g., simulated annealing), 
adaptive runtime re-optimization (e.g., eddies)
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Highlights of System R Optimizer

 Find all plans for accessing each base table

 For each table

 Save cheapest unordered plan

 Save cheapest plan for each interesting order

 Discard all others

 Try all ways of joining pairs of 1-table plans; save cheapest 

unordered + interesting ordered plans

 Try all ways of joining 2-table with 1-table

 Combine k-table with 1-table till you have full plan tree

 At the top, to satisfy GROUP BY and ORDER BY

 Use interesting ordered plan

 Add a sort node to unordered plan
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Source: Selinger et al, “Access Method Selection in a Relational Database Management System”

System R Example: Search Trees 
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System R Example: Search Trees 

Source: Selinger et al, “Access Method Selection in a Relational Database Management System”



117

CSD Univ. of Crete Fall 2014

System R Example: Search Trees 

Source: Selinger et al, “Access Method Selection in a Relational Database Management System”
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System R Example: Search Trees 

Source: Selinger et al, “Access Method Selection in a Relational Database Management System”
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System R Example: Search Trees 

Source: Selinger et al, “Access Method Selection in a Relational Database Management System”
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Highlights of System R Optimizer

 Impact:

Most widely used currently; works well for < 10 joins

 Cost estimation:

Very inexact, but works ok in practice

Statistics, maintained in system catalogs, used to estimate cost of 
operations and result sizes

Considers combination of CPU and I/O costs

More sophisticated techniques known now

 Plan Space:  Too large, must be pruned

Only the space of left-deep plans is considered

Cartesian products avoided
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Highlights of Starburst Optimizer

 SQL is not a pure declarative query language as it has imperative 
features

 Complex queries can contain subqueries and views

 These naturally divide a query into nested blocks and

 can create evaluation path expressions

 Traditional DBMS only perform plan optimization on a single query block 
at a time and perform no cross-block optimization

 The result: Query optimizers are often forced to choose a sub-optimal 
plan

 The problem: Query generators can produce very complex queries 
and databases are getting bigger

 The penalty for poor planning is getting larger
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SELECT

SELECT

QUANTIFIER 

COLUMNS

partno,

descr

partno,

price

inventory quotations

BASE TABLES

distinct=

ENFORCE

distinct=

PERMIT

BODY

distinct=true

distinct=false

partno descr suppno

=q1.partno q1.descr q2.suppno

price

=q3.price

HEAD

QUERY

SUBQUERY

q3(F)

q4(A)q2(F)q1(F)

QUANTIFER

q2.partno = q3.partno

q1.partno = q2.partno

q1.descr =

‘engine’

q2.priceq4.price

LOCAL 

PREDICATE

JOIN PREDICATE

SELECT DISTINCT q1.partno, q1.descr, q2.suppno

FROM inventory q1, quotations q2

WHERE q1.partno = q2.partno AND q1.descr=‘engine’

AND q2.price   ALL

( SELECT q3.price FROM quotations q3

WHERE q2.partno=q3.partno);

Tuple Flow

Starburst: The Query Graph Model (QGM)
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 The goals of query rewriting

Make queries as declarative as possible

Transform “procedural” queries

Perform unnesting/flattening on nested blocks

Retain the semantics of the query (same answer)

 How?

Perform natural heuristics E.g. “predicate pushdown”

Production rules encapsulate a set of Query Rewrite heuristics

 A Single Rewrite Philosophy

“Whenever possible, a query should be converted to a single select 

operator”

 The Result

The Standard optimizer is given the maximum latitude possible

Starburst: Rule Based Query Rewrite (QRW)
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Example of Rule 1: SELECT Merge

ProjectEmp

SELECT empno, lastname

FROM Emp, Project

WHERE salary<20000 AND 

workno=projno AND 

pbudget>500000

View

ProjectEmpDept

SELECT DISTINCT d.deptno,e.lastname

FROM Emp e, Dept d, Project p

WHERE e.empno=d.mgmo AND

e.salary<20000 AND 

e.workno=p.projno AND 

p.pbudget>500000

SELECT DISTINCT d.deptno, v.lastname

FROM View v, Dept d

WHERE v.empno=d.mgmo

Dept

v(F)

head.distinct = true
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Highlights of Starburst Optimizer

 The problem: Complex SQL queries can contain nested blocks that can’t 
be optimized using the standard plan optimizer

 The solution: By rewriting the query to a semantically equivalent query 
with fewer boxes the (near) optimal plan can be found

 The Query Graph Model (QGM) provides an abstract view of queries that 
is suitable for most rule transformations

Mechanisms are provided for dealing with duplicates

 Rewrite Rule Engine: Condition->action rules where LHS and RHS are 
arbitrary C functions on 

QGM representation

Rules and Classes for search control

Conflict Resolution Schemes

 Bottom up enumeration of plans

 Grammar-like set of production rules to generate execution plans
LOLEPOP: terminals (physical operators)
STAR: production rules (alternative implementations of query graph 

blocks)
GLUE: additional rules for achieving a given property (order)
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Highlights of Volcano Optimizer

 Query as an algebraic tree

 Transformation rules

Logical rules, 

Implementation rules

 Optimization goal

Logical expression, 

Physical properties, 

Estimated cost

 Top down algorithm

Logical expressions optimized on demand

Enumerate possible moves

 Implement operator

Enforce property

Apply transformation rules

Select move based on promise

Branch and bound
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