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Introduction

® \We've covered the implementation of single relational operations
+Choices depend on indexes, memory, statistics,...
+Joins
¢ Blocked nested loops:
. simple, exploits extra memory
¢ Indexed nested loops:
. best if one relation small and one indexed
e Sort/Merge Join:
. good with small amount of memory, bad with duplicates
e Hash Join:
. fast (enough memory), bad with skewed data
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Introduction

® Query optimization is an important task in a relational DBMS

® Must understand optimization in order to understand the performance
Impact of

¢a given database design (relations, indexes)
+0n a workload (set of queries)
® Two parts to optimize a guery:
¢Consider a set of alternative execution plans
e Must prune search space; typically, left-deep plans only

. This reduces optimization complexity and generates plans
amenable to pipelined evaluation

¢ Must estimate cost of each execution plan that is considered
e Must estimate size of result and cost for each plan node (operator)
e Key issues: Statistics, indexes, operator implementations
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Basic Terminology

® Query Processing: the activities involved in retrieved data from the
database

+How to take a query in high level language (typically SQL) into a
correct and efficient execution strategy, and then execute this strategy

® Query Plan: queries are compiled into logical query plans (often like
relation algebra) and then converted into physical query plan (by
selecting an implementation for each operator)

® Query Optimisation: the activity of choosing an efficient execution
strategy for processing a query

+Many transformations of the same high-level query
+Choose one that minimises some system resource
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Query Processing Steps/Architecture

O Input: User-defined query

® Parsing e
® Query validation e SQL Parser v
® View resolution
A : Relational Algebra Expression ""‘-\
® Query optimization R N
® Execution plan creation = f<--ooeoeeoeeoeos Guery Plan] | Cost | =e=mw=e> coiatan
i ! Generator | | Estimator |
@ Code creation d
@ ExeCUtion Query Execution Plan //'

©® Output: Query result

Query Plan ;_"
Interpreter

Query Result

® Main difference to language compilers: translation is data dependent!
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Query Evaluation

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.s1d=S.si1d AND
R.b1d=100 AND S.rating>5

® Problem: An SQL query is declarative (select from where filter) i.e.,
does not specify a query execution plan

oA relational algebra expression is procedural
e there Is an associated query execution plan

® Solution: Convert SQL query to an equivalent relational algebra
expression and evaluate it using the associated query execution plan
(i.e., choice of an implementation algorithm)

+But which equivalent expression is best?
e Operators can be applied in different order!

Tc(sname)G(bi d=100 A rating > 5) (Rese rves N Sailo I"S) 5
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Query Execution Plan (QEP)

® Convert relational algebra expression to an operation tree
where each node is annotated to indicate:

eWwWhich access method to use for each relation
+Which implementation method to use for each operation

e Each operation tree is typically implemented using pipeline:

« When an operator is "pulled’ for the next output tuples, P|
it “pulls’ on its inputs and computes them an

TT On the fly
shame

® Two main ISsues:
¢For a given gquery, what plans are considered? %

e Algorithm to search plan space for cheapest
(estimated) plan

On the fly
1d=100A rating>5

_ _ Nested loo
+How is the cost of a plan estimated? silifsid g
® |deally: Want to find best plan / \
® Reality: Avoid worst plans! File Scan F1'Ie Scan
Reserves saillors 7
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Query Optimizer

® The evaluation of relational algebra expressions involves:
eestimating the cost of a relational algebra expression
eotransforming one relational algebra expression to an equivalent one
#choosing access methods for evaluating the subexpressions

® Too expensive to consider all algebraically equivalent plans: might take
longer to find an optimal plan than to compute query brute-force !!!
+Consider only a subset of plans using heuristic algorithms

® Query optimizers do not “optimize”
ejust try to find “reasonably good” evaluation strategies

‘/ Any of these will do

—HOR—4———0-0———0—C00—{0-

1 second 1 minute | hour
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Schema and Base for Examples

Sailors (s7d:integer, sname:string, rating:integer, age:real)
Reserves (s7d:1nteger, bi7d:integer, day:dates, rname:string)

® Sailors:

oEach tuple is 50 bytes long, 80 tuples per page, 500 pages
¢ Assume there are 10 different ratings

® Reserves:

oEach tuple is 40 bytes long, 100 tuples per page, 1000 pages
¢Assume there are 100 boats
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Motivating Example

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.s1d=S.sid AND
R.b1d=100 AND S.rating>5

® Cost: 500+500*1000 = 500500 1/Os

Plan
® By no means the worst plan! T On the fly
® Misses several opportunities: srame
eselections could have been “pushed’ o' On the fly

bid=100A rating>5

earlier
N0 use is made of any available ‘ Page-oriented
indexes, etc. =< Nested loop
L sid=sid
® Goal of optimization: / \
+To find more efficient plans that File Scan File Scan
ors Reserves

compute the same answer
e \With “Reserves” as outer 501000 10s 500500 I10s 10
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Alternative Plans: Push Selects (No Indexes)

On the fly
sname

On the fly
%id = 100

Page -oriented

<ides I\(Ijested loop

mfly \ File Scan

rat1ng > 5 Reserves
1000 pages

‘ File Scan
sailors

500 pages
250500 IOs
250 *1000 + 500

On the fly
sname

Page -oriented

cides Ndested loop

e fly \G On the fly
rating > 5 bid = 100

‘File Scan

Reserves
1000 pages

File Scan

Sailors
500 pages

250500 IOs
250 *1000 + 500

11
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Alternative Plans: Push Selects (No Indexes)

On the fly T On the fly
sname shame

g Onthe fly g On the fly

bid = 100 rating > 5

Page -oriented Page -oriented

S des I\(Ijested loop <ides I\(Ijested loop
mﬂy \F”e Scan the ﬂy\Flle SCan
Orati Nng > 5 Reserves b1d 100 Sailors
1000 pages 500 pages
‘ File Scan File Scan
Sailors Reserves
500 pages 1000 pages
250500 IOs 6000 IOs

10 * 500 + 1000

12
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On the fly
sname

g On the fly
rating > 5

Page-oriented

side S‘Ndested loop

the fly \ File Scan

b1d 100 Sailors

File Scan
Reserves

6000 IOs

Fall 2014

Alternative Plans: Push Selects (No Indexes)

On the fly
sname

Page -oriented

cides Ndested loop

Scan and
<5Dﬂ/fhe/ﬂy \M%terialize to T2

bid = 100 rating > 5
File Scan _FiIe Scan
Reserves Sailors
1000 pages 500 pages
4250 IOs

10 * 250 + 250 + 500 + 1000
13
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Alternative Plans: Push Selects (No Indexes)

On the fly
sname

Page -oriented

cides I\(Ijested loop
Scan and
<5Oﬂ/fhe/ﬂy \M%terialize to T2
bid = 100 rating > 5
File Scan _FiIe Scan
Reserves sailors
4250 IOs

On the fly
sname

Page -oriented

cides Ndested loop

Scan and
e fly erialize to T2

rating > 5 ‘bid = 100

File Scan
sailors
500 pages

Reserves
1000 pages

4010 IOs
250 * 10 +10 + 1000 +500

14
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"~ More Alternative Plans: Join Algos (No Indexes)

® Costof 0 ;4100 (R) = Costto scan R + On the fly
Cost to write T1 = 1000 + size(T1) IOs ﬂsname

oEstimate size(T1): Assume uniform
distribution of reservations over 100 boats

Sort-Merge Join

e size(T1) = 1000/100 = 10 10s cidesid
® Costof 0 ,ing5 (S) =Costto scan S + Scan and Scan and
Cost to write T2 = 500 + size(T2) 10s Mat{;‘m@’ T rialize to T2

. | _ bid = 100  Orating > 5
¢ Estimate size(T2): Assume uniform

distribution of ratings over range of 1 to 10 | File Scan File Scan
e size(T2) = 500/2 = 250 10s Reserves - satlors
® With 5 buffers, cost of sort-merge join of T1 & T2
+Cost Sort T1 (2 pass)= 2*2*10 = 40 10s
¢Cost Sort T2 (4 pass)= 2*4*250 = 2000 I0s
¢Cost Merge T1 and T2= 10+250 = 260 10s

@ Total cost = cost of selection + cost of join = 1760 + 2300 = 4060 I0Os
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More Alternative Plans: Join Algos (No Indexes)

® Cost of block nested loops join: T1 as outer rel
oEvery 3 page block of T1, scan T2: Cost =

Scan T1 + Scan T2 (4 times) = 10 + 4*250 T Onthe fly
= 1010 I0s shame
® Total cost = cost of selection + cost of join =
1760 + 1010 = 2770 I0s oy DlOCK Nested loop
® Push projection ahead of join . ; 51'0|=S1'0|S ;
oOnly s7dof T1 and s7d, sname can an can an
of T2 needed ’ Matggmfﬁto T1 rialize to T2

. G -
: bid = 100 t 5
+Remove unwanted attributes as T1 ! rating >

and T2 are scanned during selection

File Scan File Scan
® Reduce size of T1 and T2 substantially Reserves sailors
¢ [1 fitinto 3 buffer page 1000 pages 500 pages

e Perform block nested loops join with a
single scan of T2

¢ Cost of join ~ 250 I0s
® Total cost of plan ~ 2000 (1750 + 250) 10s 16
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“More Alternative Plans: Join Algos (Hash Indexes)

® Cost of 0 ;4_100 (R): Use clustered hash T On the fly
iIndex on }S.g/c?to retrieve matching R tuples shame
+Uniform distribution of reservations over
100 boats the estimated # of selected g On the fly
tuples = 100000/100 = 1000 rating > 5
¢ Clustered index, 1000 tuples in same
bucket stored sequentially, Cost of index Nested loop

i With pipelinin
selection = 10 |10s _Clustered hash>< PIP g
index, do NOL; 4=cid

® For each selected R tuple use hash indexyrite to tem
on S. s7dto retrieve matching S tuples /p/ \F.I 5

e >SCan

bid = 100 Sailors

¢ Join attribute s74d is a key for 0
Sailors; At most one S tuple match BN

¢ Average 1.2 page IO to retrieve a tuple, 1000 pages
Cost of join = 1200 I0s rReserve
¢ For each tuple in join result ’ Piosjtceefetlcotre]c:](lzit Ejupsizsazgfr?]aterialized
¢ Perform selection rating>5 on-the-fly ;1 i clined
¢ Perform projection on srame on-the-fly e selection rating>5 not push ahead

® Total cost=1210 IOs eIndex on s7d available 17
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What is Needed for Query Optimization?

® A closed set of operators ® Optimize a relational

¢ Relational operators (table 1n, table out) algebra expression:

¢ Encapsulation based on iterators mEnumerate alternative
® Plan space based on execution plans

¢ Relational algebra equivalences m Estimate cost of each
® Cost estimation based on enumerated plan

¢ Cost formulas mChoose plan with

# Size estimation, based on least cost

e Catalog information on base tables
e Selectivity (Reduction Factor) estimation
® A search algorithm
¢ Enumeration of plans
e Single/Multiple-Relation queries

+ To sift through the plan space based on cost!
18
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Overview of a Typical Query Optimizer
Rewriting Stage

_ Applies transformation
(declarative) (static)

Specifies the arithmetic
formulas used to estimate the
cost of execution plans

Planning Stage
(procedural)

/

Examines alternative exe-
cution plans for each query
produced in the previous
stage (by the algebraic and
method-structure space)
through a search strategy in

Execution orders to be
considered by the planner
select-project-join (SPJ)
represented as a tre

order to find the cheapest ~ Given a query, it estimated
one as determined by the the sizes of the results of
Implementation choices for cost model and the size (sub) queries apd t.he
P : distribution estimator frequency distributions of
the execution of each ordered values in attributes of

series of actions these results 19
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ranslating SQL to Relational Algebra

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.s1d = R.si1d AND R.bid = B.bid AND
B.color = “red” AND
S.rating = ( SELECT MAX (S2.rating)
FROM Sailors S2 )
GROUP BY S.sid
HAVING COUNT (*) >= 2

®For each sailor with the highest rating (over all sailors), and at
least two reservations for red boats, find the sailor id and the
earliest date on which the sailor has a reservation for a red boat

20
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ranslating SQL to Relational Algebra

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.s1d = R.si1d AND R.bid = B.bid AND
B.color = “red” AND
S.rating =| ( SELECT MAX (S2.rating)
FROM Sailors S2 )

GROUP BY S.sid
HAVING COUNT (*) >= 2

S.sid, MIN(R.day) Inner Block
(HAVING COUNT(*)>2 (
GROUPBY . ;4 (

B.color = “red”AS.rating = va1(

Sailors P Reserves <] Boats)))) 7

7T

O
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® An SQL query is parsed into a
collection of query blocks, and
these are optimized one block at
a time

+Nested blocks are usually
treated as calls to a subroutine,
made once per outer tuple

+Exactly one SELECT and one
FROM clause

¢ At most one WHERE, one
GROUP BY and one HAVING
clause

Fall 2014

Units of Optimization: Query Blocks

SELECT S.sname
FROM Sailors S
WHERE S.age IN
(SELECT MAX (SZ2.age)
FROM Sailors S2
GROUP BY SZ2.rating)

nested block

SELECT S.sShame
FROM Sailors S
WHERE S.age IN
Reference to nested block

22
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Units of Optimization: Query Blocks

® Query blocks expressed in relational algebra as
+Cross-product of all relations in the FROM clause
¢ Selections in the WHERE clause

+Projections in the SELECT clause P4
® For each block, the execution plans considered are: /\
#All available access methods, for each relation in ><] D
FROM clause / \
#All left-deep join trees (multi-relation) i.e., >4 C

e right branch always a base table, /\
e consider all join orders and join methods
® Intricacies of SQL complicate query optimization A .
¢E.g. nested subgueries

23
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he Issue of Nested Queries (Uncorrelated)

® Find names of sailors who reserve boat # 103

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.b1d=103)

¢Nested subquery evaluated once

eResult is a collection of s1ds C

eFor each S tuple, check if s1d isin C
e Nested loops join of Sand C

Fall 2014

24
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he Issue of Nested Queries (Uncorrelated)

® Find names of sailors with highest rating

SELECT S.sname

FROM Sailors S

WHERE S.rating = (SELECT MAX (S2.rating)
FROM Sailors S2)

¢Nested subquery evaluated once
¢Result is a single value
+¢Incorporated into top-level query

Fall 2014

25
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he Issue of Nested Queries (Correlated)

® Conceptually, a nested subquery is a function
+Variables from outer level query are the parameters

SELECT S.Sname
FROM Sailors S
WHERE EXISTS (SELECT *
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

® Correlated evaluation: the subquery is separated evaluated for each
tuple in the outer level query

¢ Tuple variable S from top-level query appears in nested query
¢Evaluate subquery for each S tuple

® Correlated evaluation may be quite inefficient since
¢a large number of calls may be made to the nested query
+there may be unnecessary random 1/O as a result

26
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Query Rewriting: Nested Queries (Correlated)

® Nested block is optimized independently, o
with the outer tuple considered as Nested block to optimize:
providing a selection condition

e Outer block is optimized with the cost SELECT
of "calling’ nested block computation FROM Reserves R

taken into account WHERE R.bid=103 AND

+Implicit ordering of these blocks R.sid= outer
means that some good strategies | 57,e
are not considered

® SQL optimizers attempt to rewrite nested _
subqueries into joins where possible, Equivalent non-nested query:
enabling use of efficient join technigues

oNested query has equivalent SELECT S.sname

query without nesting FROM Sailors S, Reserves R
sCorrelated query has equivalent WHERE S.sid=R.sid AND
guery without correlation R.b1d=103

o The non-nested decorrelated version of
the query is typically optimized better

27
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Query Rewriting

® Syntactic and semantic query analysis detects & rejects incorrect queries:
¢ Type errors
+Semantically incorrect (disconnected query graph)
® Normalize query predicates expressions into
econjunctive or disjunctive normal form
® Simplify statements:
oEliminate ANY / ALL operators
val > ANY (:x, :y) => val > :x OR value > :y
X> ALL(SELECT y FROM R WHERE z=10)
=>... NOT ( X <= ANY (SELECT...)
=>...NOT EXISTS (SELECT y FROM R
WHERE z= 10 AND X <= Y)
¢Eliminate more baroque constructs (BETWEEN)
oEvaluates expressions as far as possible
x > 0.5* z/100 * 4 = x > z/50
® Rewrite calculus query into relational algebra expressions 2
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® Logical level optimization

edata dictionary (system
catalog) independent
(algebraic) transformation of
the query according to the
algebraic laws of relational
algebra

® Physical level optimization

eophysical level using indexes
("internal”)

e schema based

+#cost based selection of optimal
plan using database statistics

e Value based

Fall 2014

Logical vs. Physical of Optimization

Iyser
Lexical/Syntax/Semantic

"'\-\_\_\_\_\_\__'_._'_'_,_.-F"

alid internal
Le

A
FPprPQF‘-HT‘:—IT[ﬂ_ﬂ_..-;

' " Initial que;';'_'“"‘\l Heuristic
“~__plan P transformations
Initial
logical
query plan

Physical query
— | execution plan

o 15

r/} Executor
"‘a.%__

——_

-
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Logical Optimization

® Transforms query according to algebraic laws of relational algebra
oFocus is application of "algebraic transformation rules”

® Two relational algebra expressions over the same set of input relations
are equivalent if they produce the same result on all instances of the
Input relations

¢ To transform a relational expression into another equivalent
expression we need transformation rules that preserve equivalence

® Each transformation rule
ols provably correct (i.e, does preserve equivalence)
eHas a heuristic associated with it

30
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Relational Algebra Equivalences:

Selections & Projections

@ Selection Cascading o (R) = o o (R))
c1A...ACN _ CL\ * - cn

¢ Combine several selections into one

+Replace a selection involving several conjuncts with several smaller
selection operations

e Commutative Selections o, (g , (R)) = o, (01 (R))

C
¢ Test conditions c1 and c2 in either order

® Projection Cascading T, (R) = 721(, . (7T (R)))

#Successively eliminating columns from R is simply eliminating all but
the columns retained by the final projection

o If each a; Is a set of attributes of R, a; < a
® Commute projection and selectign:

Tt (Fona(R)) = Fong (7511 (R))

A projection commutes with a selection that only uses attributes
retained by the projection
o if attroall attributes in Cond 31

i+1
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Relational Algebra Equivalences:
Joins & Cartesian Product

® Commutative

(RPS) = (SP<IR)
e used to reduce cost of nested loop evaluation strategies (smaller
relation should be in outer loop)

® Associative
R>XSP]T) = (RPIS)PT

sused to reduce the size of intermediate relations in computation of
multi-relational join — first compute the join that yields smaller
iIntermediate result

® This implies order-independence of joins
RX(SP]T) = (TP<IR)X]S
® N-way join has T(N) x N! different evaluation plans (more latter)
+T(N) is the number of parenthesized expressions
#N! is the number of permutations

Fall 2014

32
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Pushing Selections and Projections

.GCOna’(RX S) = R|><]C0na’ S

+ A selection between attributes of the two arguments of a cross-product
converts cross-product to a join

e Cond relates attributes of both R and S

¢Reduces size of intermediate relation since rows can be discarded
sooner

¢ O cond (R X S) = O cond (R) X S
¢ A selection on just attributes of R commutes with cross-product
e Cond involves only the attributes of R

¢oReduces size of intermediate relation since rows of R are discarded
sooner

® Torer RXS) =7 00, (Tarerr (R) X S)

#A projection following a join can be "pushed’ by retaining only
attributes of R (and S) that are needed for the join or are kept by the
projection

oif attributes(R) oattr’ oattr
+Reduces the size of an operand of product 33




~ 91 CSD Univ. of Crete

Equivalence Example

Ociaczacs (RXS) =

Oc1 (02 (03 (R%xS))) =
6c1 (02 (R) X 6¢5(S)) =
6c (R) < ¢y 06¢5(5)

® assuming CZinvolves only attributes of R,
® CJinvolves only attributes of S,
® and CIrelates attributes of R and S

Fall 2014

34
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Choice of Execution Plans

® Must consider the interaction of evaluation techniques when choosing
execution plans:

ochoosing the cheapest algorithm for each operation independently may
not yield best overall algorithm:

e merge-join may be costlier than hash-join, but may provide a sorted
output which reduces the cost for an outer level aggregation
e nested-loop join may provide opportunity for pipelining
® Systems may use heuristics to reduce the number of choices that must be
made in a cost-based fashion

+Heuristic optimization transforms the query-tree by using a set of rules
that typically (but not in all cases) improve execution performance

eHeuristics do not always reduce the cost, but work in many cases

® Practical query optimizers incorporate elements of the following two broad
approaches:
@®Uses heuristics to choose a plan
® Search all the plans and choose the best plan in a cost-based fashion
35
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Physical Optimization

® Rule-based (“internal”)
+Chooses access method to result data according to heuristic rules e.qg.
e t0 push selections and projections down the query tree (System R)
e to repeatedly pick “best” relation to join next (Oracle)
. Starting from each of n starting points and pick best among these
¢Precedence among access operators (record level interface, Oracle):
®Single row access by rowid
®Single row by primary key ....
®Single column index
OFull table scan
Optimizer always chooses lowest rank operator independent from data
® Cost-based optimization
¢ Utllizes statistical properties of the DB state
+Among the top secrets of DB vendors
+DB2 (IBM) seems to have the most sophisticated optimizer (!)
¢ Basic principle: make the typical (simple) case fast 36
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ypical Rules in Heuristic Optimization

O Split conjunctive selections to enable sift of partial selection predicates
M Shift selections towards the leaves of the execution tree

® Rearrange leaves such that most restrictive selections are far left in the
tree

® Replace Cartesian product operations that are followed by a selection
condition by join operations

® Split projections (and create new ones) and move towards leaves (but
beware of mutating joins to cross products)

@ Identify those subtrees whose operations can be pipelined, and execute

them using pipelining 37




CSD Univ. of Crete Fall 2014

Example: Limitation of Heuristics

® Consider two logical plans:

oo-age > 18 ((Saﬂors) N Sailors.sid = Reserves.sid Reserves)
12 (Gage > 18(58.110I"S)) N Sailors.sid = Reserves.sid Reserves)

® Plan 0 is created by the heuristic rule pushing selections as close to
relation as possible (do selections early)

e If all sailors have age>18, and no sailor appears in reserve, Plan @ is
better than Plan @

38
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Heuristic vs. Cost based Optimization

® Heuristic query optimization
#Seqguence of single query plans
¢Each plan is (presumably) more efficient than the previous
#Search is linear
® Cost-based query optimization
+Many guery plans generated
¢ The cost of each is estimated, with the most efficient chosen
¢ Search is multi-dimensional (various performance metrics!)
® Both logical and physical plan optimization can be based on cost estimatior

o For logical plan optimization, estimated sizes of intermediate results can
be used to choose better logical plans

¢ For physical plan optimization, estimated disk I/O can be used to
generate (or enumerate) and to choose better physical plans

¢ For scans using secondary indices, some optimizers take into account
the probability that the page containing the tuple is in the buffer

39
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Fall 2014

Cost-based Query Sub-System

# Statistics maintained by system catalogs
#Estimates are approximations to actual

Generator| |Estimator

o Peorg)artrga:/ré)clﬁrrl\]/leettg%?ansfer terms | ©0al: Given an initial Logical Plan
of page 1/Os generate a physical plan that is
¢ CPU cost (path length of query: “Optimal” with respect to one or
l.e., number of instructions) more performance metrics
¢ Resource allocation, e.g. buffer pools
required, cache misses, etc. _ Query Optimizer
¢ Communication, power consumption
(depends upon domain) —= W
® Cost Estimation - Plan Plan Cost

sizes and costs
® Plan Enumeration algorithm

@._F

#search strategy through the plan space
¢ has to be efficient (low optimization overhead)

® Usually there is a heuristics-based rewriting step
before the cost-based QO

¢ldentify alternative plans for equivalent
relational algebra expressions

A 4

Catalog Manager

.
Schema m
S—
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Cost Estimation of Execution Plans

e Must estimate cost of each operation in execution plan tree

o\We've already discussed how to estimate the cost of operations
(sequential scan, index scan, joins, etc.)

e Number of pages of input relations
e Indexes available
e Pipelining or temporary relations created (materialize)

e Must estimate size of result and sort order for each operation in tree!
+Needed for the input of the operation corresponding to the parent node
e Use information about the input relations
e For selections and joins, assume independence of predicates

® |In System R, cost is boiled down to a single number consisting of
#1/0 + factor * #CPU instructions

41
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System Catalogs

® Maintain statistics about relations
o Cardinality: Number of tuples NTup les (R) for each relation R
¢ Size: Number of pages Npages (R) for each relation R

® Maintain statistics about indexes

¢Index cardinality and size
e Number of distinct key values Nkeys (T) for each index |
e Number of pages INPages (I) for each index |
¢Index height
e Number of non leaf levels Theight (T) for tree index |
¢Index range
e Minimum current key value ILow(I) and
e maximum current key value TH1gh (I) for each index |
® Statistics updated periodically
¢EXxpensive to update whenever data change
+Approximations anyway
® May store more detailed statistical information
+ Histograms of the values in some attribute (more latter) 4
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Size Estimation and Reduction Factors

SELECT attribute list
FROM relation list

e Consider a query block: WHERE terml AND ... AND termk

+Maximum # tuples in result is the product of the cardinalities of
relations in the FROM clause

oEvery term in the WHERE clause eliminates some of the potential
result tuples

® Reduction factor (RF) associated with each term reflects the impact of
the term in reducing result size

+Assume conditions tested by each term in the WHERE clause are
statistically independent and values are uniformly distributed

+Model effect of WHERE clause on result size by associating a RF
with each term

#Size of result = Max # tuples* product of RF for all the terms
oRF usually called “selectivity” 43
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Result Size Estimation for Selections

Term column = value

RF = 1 / NKeys(I)
¢ T isanindex on column

Term columnl = column?
RF =1 / max( NKeys(Il), NKeys(I2) )
¢ I1 and 12 are indexes on columnl and column?2 respectively
Term column > value

RF = ( High(I) - value) / ( High(I) - Low(I) )
¢ T isanindex on column

Note, if missing indexes, assume 1/10 (default) !

Reduction factor due to complex condition
¢ RF(Condl AND Cond2) = RF(Condl) x RF(Cond?2)
¢ RF(Condl OR Cond2) =min(1, RF(Condl) + RF(Cond?2))

44
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Result Size Estimation for Joins

® Given a join of R and S, what is the range of possible result sizes (in # of

tuples)?
eAssume relations R and S, with NTuples(R) and NTuples(S)

® Natural join:

OR N S =, then cost of RX]S = NTupTles(R) *NTupTles(S)
®R NS =keyforR (RS =keyforSis symmetric)
e atuple of S will join with at most one tuple from R
= cost of RS < NTuples(s)
®Also, if R n S = foreign key of S referencing R
— cost of RS < NTuples(s)
OR N S = {A} neither key for R nor S

e estimate each tuple r of R generates NTuples(S)/ NKeys(A,S)
result tuples

— cost of R NS =NTuples(R) * NTuples(S)/ NKeys(A,S)
e but can also consider it starting with S

— cost of R NS =NTuples(S) * NTuples(R)/ NKeys(A,R)
e If these two estimates differ, take the lower one! »




Result Size Estimation for Set Operations

® Unions/intersections of selections on the same relation: rewrite and use
size estimate for selections

¢0y, (R) N gy, (R) can be rewritten as gy, 04, (R)

® Operations on different relations:
eoEstimated size of R U S=NTuples(R) + NTuples(S)
eoEstimated size of R N S=min(NTuples(R), NTuples(S))
eoEstimated size of R — S=NTuples(R)

® |naccurate, upper bounds on the sizes

ﬁ@ 4 CSD Univ. of Crete Fall 2014
o~ S
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Better Estimation Using Histograms

® Motivation
oNTuples(R), High(R,A), Low(R,A)
e TooO little iInformation

"?Ctue_lfl c;istribut(ion O; F§'A: (vy, T, attribute value |1 7 |12 |15 |19
VoyTso), ..., (V,,Th

; i frequency 6 |4 |1 (2 |3 |5
o £, is the frequency of v; i.e.,
the number of times V; appears 1 Each value corresponds to a bucket.

[o3]

iNR.A g 5. |°
e Too much information (perfect % ] . }
histogram); Anything in betweer? -
® |dea 0- |11 - -
¢ Partition the domain of R. A into ° ° aﬁrillgrte values ' 20
Intervals = buckets (compression)
¢ Store a small summary of the More compact representation, as
distribution within each bucket compared to original list of values

oNumber of buckets are the “knob” that
controls the resolution a7
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Equi-width Histogram

a-.. B
% 5‘_‘ ®
—
o °
0- :
0 5 10 15 20
attribute values
attribute values ‘[1, 6] ‘[?, 12] ‘[1 4, 19]
frequency I 744=11 ‘ 1+2=3 ‘3 +5=8

® Divide the domain into B buckets of equal width

o Store the bucket boundaries and the sum of frequencies of the
values with each bucket .
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Construction and Maintenance

® Construction:
¢Scan in one pass R to construct an accurate equi-width histogram
e Keep a running count for each bucket
+|f scanning is not acceptable, use sampling

e Construct a histogram on R, and scale the frequencies by
NTuples(R) / NTuples (Rsa,ﬂme)

® Maintenance:

¢Incremental maintenance: for each update on R, increment/
decrement the corresponding bucket frequencies

+Periodical re-computation: because distribution changes slowly

49
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Using an Equi-width Histogram

Qo (R 23 4567 8 910111213141516

5 is in bucket [5,8] (with 19 tuples)
#Assume uniform distribution within the bucket
¢Thus |Q|~19/4 ~5
+Note that the actual value of Ais 1
® Q: 6po78a<=16(R)
¢[7,16] covers [9,12] (27 tuples) and [13,16] (13 tuples)
+[7,16] partially covers [5,8] (19 tuples)
¢Thus |Q| = 19/2 + 27 + 13 2 50
+Note that the actual value range of Ais 52 >0
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Equi-height Histogram

+ Bucket 1
a‘ - @
c 5-
ﬂé i Bucket 2 4.BUEI.‘.:?t. ?
g _ p o -
= _
D: [ : m u —
0 5 10 15 20

attribute values

attribute values |1 |[5, 12] |[15, 19]
frequencies |E |3xE:E |Ex3:5

® Divide the domain into B buckets with roughly the same number of tuples
In each bucket

¢ Store the sum of frequencies and the bucket boundaries
® |ntuition: high frequencies are more important than low frequencies >t
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Construction and Maintenance

® Construction:
¢ Sort all R.A values, and then take equally spaced slights
e Example: 8910101010
¢ Sampling also works

® Maintenance:
¢Incremental maintenance
e Merge adjacent buckets with small counts
e Split any bucket with a large count
. Select the median value to split
. Need a sample of the values within this bucket to work well
¢ Periodic re-computation also works

52
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Using an Equi-height Histogram

8 91011121314 1516

® Q: oa=5(R)
+5 is in bucket [1,7] (with 16 tuples)
¢Assume uniform distribution within the bucket
¢Thus |Q| = 16/7 = 2 (actual value = 1)
® Q: Ops=78<=16(R)
[7,16] covers [8,9], [10,11],[12,16] (all with tuples)
+[7,16] partially covers [1,7] (16 tuples)
¢Thus |Q| =~ 16/7 + 16 + 16 + 16 ~ 50 (actual value range = 52) 53
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Value-Independence Assumption

® Assumption so far
P(A=vi, A=v,) = p(A=v,) *p(A=V,)

® Given this assumption, we can predict frequencies of combinations of
attribute values based on frequencies of individual values

ei.e., one would only need histograms for the individual attributes

® Popular approach, but quality of predictions is low
¢ Multi-dimensional histograms become necessary

+Problems mentioned before (which histogram variant, which
granularity) now more urgent and more difficult at same time
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" Enumeration of Alternative Plans: Search Space

® Given the search space of equivalent operator trees for a given query

+Query optimization process tries to identify the least expensive plan
(according to a cost model) in a search space

¢ Constrained to the time it takes to evaluate the search space versus
a potential execution time

® There are two main cases:
¢ Single-relation plans
¢ Multiple-relation plans

® For queries over a single relation, queries consist of a combination of
selects, projects, and aggregate operations:

¢Each available access method (file scan / index) is considered, and
the one with the least estimated cost is chosen

¢ The different operations are essentially carried out together (e.g., if
an index is used for a selection, projection is done for each retrieved
tuple, and the resulting tuples are pipelined into the aggregate
computation) 56
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Schema and Base for Examples

Sailors (s7d:integer, sname:string, rating:integer, age:real)
Reserves (s7d:1nteger, bi7d:integer, day:dates, rname:string)

® Sailors:

oEach tuple is 50 bytes long, 80 tuples per page, 500 pages
¢ Assume there are 10 ratings, 40000 sids

® Reserves:

oEach tuple is 40 bytes long, 100 tuples per page, 1000 pages
¢Assume there are 100 distinct bids

57
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Single-Relation Queries

® No joins
+0nly one selection or projection or aggregate operation

® Combination of selection, projection and aggregate operations
+Plans without indexes
¢ Plans with index

® Plans without indexes

¢ Scan relation and apply selection and projection operations to each
retrieved tuple

¢ Cost:
e File scan
e \Write out tuples after select and project
e Sort tuples for GROUP BY
e No additional IO for HAVING
e Aggregation done on the fly

58
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Single-Relation Queries: Example

. SELECT S.rating, COUNT(¥)
(rating, sname) FROM Sailors S
cT(I"ating>5_A_If=19<‘-:20) WHERE S.rating > 5 AND S.age = 20
(Sailors) GROUP BY S.rating
HAVING COUNT DISTINCT (S.sname) > 2

® File scan = Npages(Sailors) =500 IOs

® \Write out tuples after select and project

+Result tuple size ratio = size of <S.rating,S.sname>/s1ze of
Saillor tuple =0.8

oRF for rating selection = 0.5
#RF for age selection = 0.1 (default)
oCost = Npages(Sailors) *0.8*0.5*0.1=2010s
® Sort tuples for GROUP BY S. rating
+Assume enough buffer pages to sort the Temp relation in two passes
oCost = 2 * Npages (Temp) * #passes = 80 10s
® Total Cost = 500+20+80 = 600 IOs

59
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Single-Relation Queries

® Plans with indexes
+#Single-index access method
e Several indexes match selection conditions
e Each matching index offers an alternative access method
e Choose access method that retrieves fewest pages
e Apply project, non primary selection terms
e Compute grouping and aggregation
+Multiple-index access method
e Several indexes match selection conditions
e Use each index to retrieve a set of rids
e Intersect these sets of rids
e Sort result by page id and retrieve tuples
e Apply project, non primary selection terms
e Compute grouping and aggregation

Fall 2014
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Single-Relation Queries

¢ Sorted index access method
e List of grouping attributes is a prefix of a tree index

e Use tree index to retrieve tuples in the order required by the
GROUP BY clause

e Apply selection conditions on each retrieve tuple
e Remove unwanted fields

e Compute aggregate operations for each group

e Strategy works well for clustered index

Fall 2014
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Single-Relation Queries

¢ Index-only access method

o All attributes in query are included in search key of a dense index
on the relation in FROM clause

. Data entries in index contain all the attributes of a tuple needed
for the query

. One index entry per tuple
e Use an index-only scan to compute answers
. No need to retrieve actual tuple from relation
. Apply selection conditions to data entries in index
. Remove unwanted attributes
. Sort result for grouping
. Compute aggregate functions within each group
e Applicable even if index does not match selection conditions
. If index match selection, then examine a subset of index entries
. Otherwise, scan all index entries

e Independent of whether index Is clustered 62




Single-Relation Queries: Example

elndexes SELECT S.rating, COUNT(*)
m B+-tree index on FROM Sailors S
S.rating WHERE S.rating > 5 AND S.age = 20
mHash index on S.age GROUP BY S.rating
m B+-tree index on HAVING COUNT DISTINCT (S.sname) > 2

<rating, sname,age>

® Single-index access method

eUse hash index on age to retrieve Sai lors tuples such that
S.age=20

¢ Apply condition S. rati7ng>5to retrieved tuples

¢ Project out unwanted attributes

+Sort Temp relation on rating to identify groups
+Apply HAVING condition to eliminate some groups

CSD Univ. of Crete Fall 2014
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Single-Relation Queries: Example

® Multiple-index access method m Compute aggregate functions

eUse B+-tree index on rating to in the HAVING and SELECT
get rids of tuples with rating>5 clauses on-the-fly

eUse index on age to getrids of @ Index-only access method
tuples with age=20 mUse B+ tree index on

+Get the intersection of the two sets <rating,sname,age> (o
of rids retrieve data entries with

rating>5

¢ Sort rids by page number

eRetrieve corresponding Sailors
tuples ...

® Sorted index access method

+Use B+-tree index on grouping
attribute rating to retrieve tuples
with rating>5

¢ Retrieved tuples ordered by
rating

mRetrieved entries sorted by
rating

mChoose entries with age=20

m Compute aggregate functions
In the HAVING and SELECT
clauses on-the-fly

mNo Sailors tuples are
accessed 64
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Cost Estimates for Single-Relation Plans

® Index | on primary key matches selection:
oCostis HeT1ght (1) + 1fora B+-tree, about 7./ for hash index

® Clustered index | matching one or more selects:

Q(NPaIZejs(I) + NPages(R)) * product of RF’s of
matching selects

® Non-clustered index | matching one or more selects:

Q(NPages(I) + NTuples(R)) * product of RF’s of
matching selects

® Sequential scan of file:
e NPages (R)

¥ Recall: Must also charge for duplicate elimination if required by
distinct clause

Fall 2014
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“Cost Estimates for Single-Relation Plans: Example

SELECT S.s1d
FROM Sailors S

| _ WHERE S.rating=8
® |If we have an index on rating

¢Cardinality = (1/NKeys (I)) * NTuples(R) =(1/10) * 40000 tuples

¢ Cost clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R))
= (1/10) * (50+500) = 55 pages are retrieved

¢ Cost unclustered index: (1/NKeys (1)) * (NPages (I)+NTuples(R))
= (1/10) * (50+40000) = 401 pages are retrieved

e If we have anindex on s7d :
+\Would have to retrieve all tuples/pages!!!
¢ With a clustered index, the cost is 50+500
¢ With an unclustered index, the cost is 50+40000
® Doing a file scan is better:
¢ We retrieve all file pages, the cost is 500 66
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Multiple-Relation Queries

® Query blocks with two or more
relations in FROM clause

+Require joins
+Cost of plan affected by the order
In which relations are joined

® Fundamental heuristic in System R:
only left-deep join trees are
considered

¢As the number of joins increases,
the number of alternative plans
grows rapidly

« We need to prune the search
space of alternative plans

Fall 2014
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Associativity of Joins and Left-deep Plans

® Left-deep join: once a row of X has been
output by P1, it need not be output again,
but C may have to be processed several
times in P2 for successive portions of X

+Advantage: none of the intermediate
relations (X, Y) have to be completely
materialized and saved on disk

e Important if one such relation is
very large, but the final result is
small

® Non-linear join: Each row of X must be
processed against all of Y

eHence all of Y (can be very large) must
be stored in P3, or P2 has to
recomputed it several times

P1 P3

A DB Y DD
X~P2 <

x P ¢
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Left-deep Plans

® |eft-deep trees allow us to generate all fully pipelined plans
¢ Intermediate join results not written to temporary files
e Always materialize inner (base) relations
e Examine entire inner relation for each tuple in outer relation
+Not all left-deep trees are fully pipelined (e.g., Sort-Merge join)
® Enumeration of left-deep plans
e Left-deep plans differ only in
e Order of relations
e access method for each relation
e Join implementation method for each join
+Multiple-pass algorithm

e Using dynamic programming, the least-cost join order for any subset
of {R,, R,, ... R} Is computed only once and stored for future use

e N passes for join of N relations
+In spite of pruning plan space, this approach is still costly (N! permutations)
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Enumeration of Left-Deep Plans

® Pass 1
eEnumerate all single-relation plans: can involve o, &

e All possible access methods (file scan, single index, multiple
Indexes, sorted index, index-only)

+Keep best 1-relation plan for each relation
® Pass?
¢ Enumerate plans with one join

e Join result of each 1-relation plan (outer) obtain in Pass 1 to every
other relation (inner)

e Tuples generated by outer plan pipelined into join
¢ Keep best 2-relation plans
® Pass N
oEnumerate N-relation plans (N-1 joins)
e Contain all relations in query

e Join result of each (N-1)-relation plan generated in Pass N-1 to

. 70
every other relation
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® Dynamic
Programming
Algorithm

4 Goin
Goim (D
ST CEY

T3 a2

Fall 2014

‘Dynamic Programming Plan Enumeration Algorithm

3 o Goin
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. Goin
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Goin
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Choosing Best or nearly Best Plans

® An N-1 way plan is not combined with an additional relation unless there
IS a join condition between them, unless all predicates in WHERE have
been used up

¢i.e., avoid Cartesian products if possible

® For each subset of relations, retain only:
+Cheapest overall plan (best) for query

+Cheapest plan for producing answers in some interesting order
(nearly best) of the tuples i.e., if it is sorted by any of:

e ORDER BY attributes
e GROUP BY attributes
e Join attributes of yet-to-be-planned joins

® ORDER BY, GROUP BY, aggregates etc. handled as a final step, using

either an interestingly ordered plan or an additional sort/hash operator
72
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Dealing with “Interesting Orders”

® An interesting sort order Is a particular sort order of tuples that could be
useful for a later operation: e.g., (R;X R, X R3) X R, X R¢

¢ Generating the result of R; i R, X R; sorted on the attrlbutes
common with R, X R, may be useful but generating it sorted on the
attributes common to only R1 and R2 is not useful

+ Using merge-join to compute R, X' R, X' R, may be costlier, but may
provide an output sorted in an mterestmg order

® \When picking the optimal plan
¢ Comparing their costs is not enough
e Plans are not totally ordered by cost anymore
¢ Comparing interesting orders is also needed
e Plans are now partially ordered

e Plan X is better than plan Y if Cost of X is lower than Y and
Interesting orders produced by X subsume those produced by Y

® Need to keep a set of optimal plans for joining every combination of k rels
¢ Typically one for each interesting order

e Find a “nearby” plan by making one change to one operator
e Choose the best nearby plan according to estimated cost
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Enumeration of Left-Deep Plans: Example

® Indexes T
#B+-tree index on S.rating shame
eHash indexon S.s1d
oB+-tree indexon R.b1d <]

® Pass 1 sid=sid
+"Sailors” relation 3 access methods: G/

B+-tree, hash index, file scan bid = 100

e Selection rati7ng>5 matches B+-tree

- Lower cost compared to hash index
and file scan Reserves Sailors

- However, if this selection is expected
to retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper

+'Reserves’ relation 2 access methods:
B+-tree, file scan

e Selection £ 7d=100 matches B+-tree
. Lower cost compared to file scan

Fall 2014
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Enumeration of Left-Deep Plans: Example

® Pass 2

¢ Take relation computed by plan for R in Pass 1 and join it (as the outer)
with S
e Alternative access methods

. Retrieve S tuples with rat7ng>5and s7d=valuewhere value
IS some value from an outer R tuple

. Selection s7d=va/ue matches hash index on sid
. Selection rating>5 matches B+ tree index on rating
. Hash index cheaper since equality selection has lower RF

e Alternative join methods e.g,. sort-merge join

¢ Take relation computed by plan for S in Pass 1 and join it (as the outer)
with R
e Alternative access methods

. Retrieve R tuples with 67d=100and s7d=value where value
IS some value from an outer S tuple

. Use B+ tree index on bid
e Alternative join methods e.g,. block-nested loop join

& Retain cheapest overall plan &
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Join Order Selection: First Example

Select S.sid, COUNT(*) AS number
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

AND B.color = “red”
GROUP BY S.sid
® Sallors:

oB+-treeon s7d

eHash index on s7d
® Reserves:

oB+-treeon s7d

¢ Clustered B+-tree on H7d
® Boats:

eB+-treeon co/or

eHash index on co/or

I
Sid, COUNT(*) AS number

GROUPBY sid

>
sid=sid

[><]/ \ |
Pi d=bid Sailors
0 -éserves
Color=red

Boats 76
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Passl: First Example

® Find best plan for each relation

oReserves, Sailors
e No selection match index
e File scan

eBoats
e Hash index on color match selection: Cheaper
e Also retain B+-tree on color

. Returns tuples in sorted order by color

Fall 2014
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Pass2: First Example

® For each of the plans in pass 1, generate plans joining another relation as
the inner, using all join methods (and matching inner access methods)

oFile Scan Reserves (outer) with Boats (inner)

oFile Scan Reserves (outer) with Sailors (inner)

o File Scan Sailors (outer) with Boats (inner)

oFile Scan Sailors (outer) with Reserves (inner)

#Boats accessed via hash on color with Sailors (inner)

#Boats accessed via B+-tree on co |l or with Sailors (inner)

e#Boats accessed via hash on color with Reserves (inner) (sort-merge)
#Boats accessed via B+-tree on co lor with Reserves (inner) (BNL)

® Retain cheapest plan for each pair of relations
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Pass2: First Example

@ Join of Boats accessed via hash index on color and Reserves (inner)
+Plan A: Index nested loops accessing Reserves via B+-tree index on
bid
ePlan B: Access Reserves via B+-tree index on b1d and use sort-
merge join
e Generate tuples in sorted order by bid
e Retained (interesting order) although Plan A is cheaper
® Good heuristic: Avoid cross-products
+ Will not consider following joins
Outer Inner
Scan of Sailors Boats
Boats accessed via B+ tree on color Sailors

Boats accessed via hash index on color Sailors
79
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Pass3: First Example

® Take each plan retained in Pass 2 as outer, and join remaining relation as
iInner

® Example:
eAccess Boats via hash index on color
eAccess Reserves via B+ tree on bid
+Join using sort-merge join
e Take result as outer and join with Sailors (accessed via B+-tree on s1d)
using sort-merge join
eResult of first join sorted by b1d
¢ Second join requires input to be sorted by s1d
e Result of second join sorted by sid

80




Beyond Pass3 : First Example

® Next, consider GROUP BY clause
#Require sorting on sid

eoFor each plan retained in Pass 3, if result is not sorted on s1id,
add cost of sorting

eExample plan in Pass 3 produce tuples in sid order

e May be the cheapest even if there is a cheaper plan joining all
three relations but does not produce tuples in s1d order

® Aggregation on the fly

® Finally, choose the cheapest plan

CSD Univ. of Crete Fall 2014
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Join Order Selection: Second Example

@ Considerthe Join: R[>]JS D] T ><] U

® Statistics: each relation has 1000 tuples
R(a,b) S(b,c) T(c,d) U(d,a)

V(R,a)=100 V(U,a)=50
V(R,b)=200 V(S5,b)=100
V(S,c)=500  V(T,c)=20
# distinct values in R for attribute a V(T,d)=50 V(U,d)=1000

® Cost estimation: take the size (in tuple) of intermediate results as the cost
¢ the simplest estimation of cost
® Plans: sequence of relations in the left-deep join tree

oExample: R,S,TUmeansR >]JsD>J 1> U .
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Join Order Selection: Second Example

® Cost taken to be size of intermediate results
¢ Actually should take 1/O cost or some other cost metric
® Best sub-plans involving one relation

{R} {S} {T} {U}

size 1000 1000 1000 1000
cost 0 0 0 0
best plan R S T U

NTuples(R) * NTuples(S)/ max{v(Rl,a), Vv(S,a)}

® Best sub-plans involving 2 relations—

{R,S} ; {R,U} {S,T} {S,U} {T,U}
size 5000 1M 10000 2000 1M 1000
cost 0 0 0 0 0 0
bestplan | RD><IS | RDIT | RD>IU | ST | SD<IU | TD<U | 4
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Join Order Selection: Second Example

® Best sub-plans involving 3 relations

{RST}y | {RSU} | {RT,U} | {STU}
Size 10000 50000 10000 2000
cost 2000 5000 1000 1000
best plan [(S><t T)>< R|(RP><t S)>< U|(To<t U R|(T< U)>'S
® Best plans involving 4 relations Plan Cost
((ST)<R)=< U 12k
® Only left-deep trees considered | ((RB<S)DAUT 55k
((T><IU)>R)> S 11k
((T><IU)>IS)< R 3k

Fall 2014
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Join Order Selection: Second Example

® Based on the previous cost estimation
® The best single joinis T [>< S, with cost 1000

® There are two possible longer plans

oTDJUPIRor (MU ] s

® Choose the second plan of which the cost is 2000

e The final best order is then (( TT><]U) ><]s) P><] R with cost 3000
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Derivation of the Number of Possible Join Orderings

® Let J(n) denote the number of different join orderings for a join of n
argument relations

¢Obviously, 3(n) = T(n) * n! . . . with T(n) the number of
different binary tree shapes and n! the number of leaf permutations

® \We can now derive T(n) inductively:

T(L = 1,

T(n) = -1 7)) * T(h - 1)
...namely, T(N)= X 110ssibititiesT (1€Ttsubtree) *T(rightsubtree)
® [tturnsoutthat T(n) = C(n - 1), for C(n) the n-th Catalan number,

1 72 o (2n)!
C(n) — m(nn) — {.fH—f)!-n!

® Substituting T(n) = C(n - 1), we obtain
T(n) * n! = 2Cn - 1))!/(n - 1)!
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Dynamic Programming Algorithm: Complexity

e Consider finding the best join-order for R,><R,><. . . R..
¢ There are (2(n — 1))!/(n — 1)! different join orders for above expression

e Withn =7, the number is 665280, with n = 10, the number is
greater than 176 billion!

® Cost-based optimization is expensive, even with dynamic programming
(bushy trees)

¢ time complexity is O(3")
e With n = 10, this number is 59000 instead of 176 billion!
& space complexity is O(2")
® If only left-deep trees are considered
+ time complexity of finding best join order is O(n 2") while
¢ space complexity remains at O(2")

® Cost-based optimization is expensive, but worthwhile for queries on large
datasets (typical gueries have small n, generally < 10) 87
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Points to Remember

® Consider single-relation queries:
¢All access methods considered, cheapest is chosen

¢ Selections that match index, whether index key has all needed fields
and/or provides tuples in a desired order

® Compute multiple-relation queries in a left-deep manner:
¢All single-relation plans are first enumerated
e Selections/projections considered as early as possible

¢Next, for each 1-relation plan, all ways of joining another relation (as
Inner) are considered

¢Next, for each 2-relation plan that is ‘retained’, all ways of joining
another relation (as inner) are considered, etc.

¢ At each level, for each subset of relations, only best and nearly best
plans are ‘retained’

e a plan is considered nearly best if its output has some interesting

order, e.g., is sorted .
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Structure of Query Optimizers

® Some gquery optimizers integrate
heuristic selection and the generation
of alternative access plans

+System R and Starburst use a

hierarchical procedure based on
the nested-block concept of SQL.:
heuristic rewriting followed by

Fall 2014

Query Optimizers
Purely Heuristic Cost-Based
Optimizers Optimizers

cost-based join-order optimization

® Even with the use of heuristics, cost-
based query optimization imposes a
substantial overhead

+This expense is usually more than
offset by savings at query-
execution time, particularly by
reducing the number of slow disk
accesses

N

Bottom-Up
Optimizers

/

\

Top-Down
Optimizers

[\

Hard-Coded

Rule-Based

Hard-Coded | | Rule-Based
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Join Enumeration (Plan Search) Algorithms

Cost 4

® Exhaustive: enumerate each
possible plan, and pick the best

® Bottom-up dynamic
programming with pruning
¢ System-R approach
® Top-down memoization
® Greedy Techniques

® Randomized/Transformation
Techniques

Local optimum

Global optimum
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Branch-and-Bound Pruning

® Use heuristics to find a reasonably good physical plan, compute its cost
C and set it as initial bound

+build other physical plans piece by piece, each unfinished plan is
called a sub-plan

® \When expanding a sub-plan, if the cost of the expanded sub-plan is
higher than the bound, abandon the sub-plan

+If a new complete plan has a cost C’ that is lower than the bound, set
C’ as the new bound and continue

+May stop when the bound is low enough

® Observation: Pruning performance very dependent upon order that plans
are derived

+Important to find a good plan early!

91




CSD Univ. of Crete Fall 2014

Bottom-up Plan Generation

® Bottom-up generation of optimal plans:
+Compute the optimal plan for joining k relations
+Suboptimal plans are pruned
oFrom these plans, derive the optimal plans for joining k+1 relations

® The dynamic programming algorithm proceeds by considering increasingly
larger subsets of the set of all relations

® Assumption 1: Once we have joined k relations, the method of joining this
result further with another relation is independent of the previous join
methods (true?)

® Assumption 2: Any subplan of an optimal plan must also be optimal,
otherwise we could replace the subplan to get a better overall plan (true?g?2
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Bottom-up Plan Generation

® Elegant iterative process
® Search space is pruned based on

{}
the principal of optimality for every //\\
sub-expression with no redundant

work {1} {2} {3} {4}
® If restricted to left-deep plans, only/J>< .........................
requires keeping sizes 1 and k-1
to calculate size k 2y {13 {14 {23 {24 {84
® First plan not completed until
nearly done
® Do we really need the optimal {1 2 3} 1 2 4 {2 3 4 {1 3 4

plan for every sub-expression?
+We only need to guarantee the \
overall plan is optimal
{1 2 3 4

93
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Improvement: “Interesting Order”

® Assumption 2 does not always hold!!
oExample: R(A,B)><IS(A,C) > T(A,D)
#Best plan for RI><]S: hash join (beats sort-merge join)
+Best overall plan: sort-merge join R and S, then sort-merge join with T
e Subplan of the optimal plan is not optimal
® Why?
#The result of the sort-merge join of R and S is sorted on A

¢ This is an interesting order that can be exploited by later processing
(e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

® Not sufficient to find the best join order for each subset of the set of k
given relations (Hill Climbing)

+Must find the best join order for each subset, for each interesting sort
order of the join result for that subset

+Simple extension of earlier dynamic programming algorithm 4




Bottom-up Dynamic Programming

Procedure OptLDPlan{(}):
for each ; € Q)
initialize Table[R;,#] to dummy plan with cost oc
for each plan p that accesses I
for sach intereating order o that p satisfies
if (Cost(p) < Coet(Table[R;, 0])) then Tablel[R;, o] := p
for k=2 to |Q|
for each S C Q of size |5| =k
initializa Tabla[5,*] to dummy plan with cest o
for each i; € §
let 5; =5\ {&;}
generate all plans for S; M J; from Tabla[S;,+] and Table[i;,+]
for each such plan p
for each interesting order & that p satisfies
if (Cost(p) < Cest(Table[S, ©])) then Table[S, @] := p
if {k »= 3) then delete from Table[] entries for size &£-1
return Table[(),*]

| }?@ A CSD Univ. of Crete Fall 2014
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Bottom-up Dynamic Programming

gg;ﬁﬂ(};,*tﬁ, L COL ﬂﬁc.name,ﬂ.date,L.priceJ
:T,JHDEEI_EDE:}I(_ZE'GI( OL ﬁ—hﬂ.ck—*:D.dEte,L.price]
oroensYCrane | | 1 |focl o —po
CO —'EA'@—P:C.name,D.date]
L o0 e
O —{pck—lo.cH—io.ok
C _"E—'C ck— C.name\
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op-down Memoization

® Any bottom-up DP algorithm can be re-written as top-down memoization
® Main idea:
¢ Don’t compute plans for sub-expressions until needed
¢ Save optimal plans in lookup table to avoid redundant work
® Observations:
+Natural functional programming
o First complete plan created early
¢ Potentially yields the same plans as DP, but generated in different order
¢Overhead due to “random” table lookups

+“Random” access to table forces entire table to be kept until algorithm
completes (unlike DP for left-deep plans)

«If interesting orders not identified ahead of time, avoiding redundant
work requires all considered plans to be remembered

¢ Generating complete plans early on enables Branch&Bound pruning!
e |nitialize upper bound to <
e Compute plan cost as assembled top-down
e Abandon any (sub-)plan as soon as cost exceeds current bound
e Use completed plans to refine upper bound ¥




“$1 CSD Univ. of Crete Fall 2014

op-down Memoization

Function DptLDPlan{Query (J, Order o):
if NotEmpty(Table[(},0])
return Table[(},o]
optplan := dummy plan with cost oC
for each H; € Q
let S;:=Q\ {A;}
for each join method Op that will satisfy o
plan p := Op(uptwplm(si:al)i DptLDPla.n(R.,:,ng))
where o071 and oo are the orders required by Op
if (Cost(p) < Cost(optplan))
optplan := p
Table[(},0] := optplan

raturn optplan .
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op-down Memoization

Fall 2014

SELECT *
FROM C. O, L COL

AP[C.n ame, O date, L.priceJ

AND O.ok = L.ok

ORDER BY C.name,
O.date, L.price CL

—C.ck—*

e
WHERE C.ck = O.ck oL 4.@_,5_ck—-r{j_date,L.price]
e

HJ ((C0,DC), (L,DC)): CO [—{DC|—0.o—{cname 0 date
H3((C,DC), (0,DC)): L - pel—lL.ok— L.price\
MS3((C,C.ck), (0,C.ck))f O [—{Dc|—{o.cf—o.ok
MSJ ((CO,0.0k),(L,L.0k))D: C —PE—rCck—-@

NLJI((0,0.0k), (C,DC)): —
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Join Enumeration Algorithms Comparison

Bottom-up DP:

® Finds optimal solution in
O(3") time and space (bushy)

® First complete plan generated
late

® Interesting orders generated
eagerly, so caution needed in
defining what is an interesting
order

Top-down Memoization:

+Finds optimal solution in O(3")
time and space (bushy)

+Time constant larger than DP
due to table lookup

#Space constant larger b/c
everything must be remembered

® Generates complete plans early

® Only optimizes requested
Interesting orders, so definition can
be loose without necessarily
Impacting performance

® Allows branch-and-bound pruning

100
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Motivation for Transformation-based QO

® Provide single framework for QO

+Remove rigid separation between logical rewriting and cost-based join
enumeration

+Allow any decision to be either cost-based or heuristic, independent of
stage at which it occurs

® Use encapsulation to remove pruning semantics from the search algorithm
+Simplifies comprehension
¢Improves extensibility
+Provides flexibility in modifying search space

Query gi
Plan VS. m:'> Plan
Transforms

101
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Structure of a Transformation-based Optimizer

® Query representation: algebraic tree
eLogical & physical operators
+Operator order always defined (unlike Query Graph Model (QGM))
® Multiple trees stored in MEMO structure composed of two entities:
+Multi-expressions
e Operator having groups as inputs
e Logical or physical
+Groups
e Set of logically equivalent multi-expressions
e Mixture of logical and physical multi-expressions

e “Winner’s circle” identifying optimal multi-expression for each
requested physical property

® Optimization = Tasks + Memo
( Programs = Algorithms + Data Structures ) 102
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ypes of Transformations

® Logical Substitution (LogOp — LogOp)
+0Old multi-expression is replaced by new

¢ For guaranteed-win scenarios, or when you want to make heuristic
decisions to minimize search space

e E.g. predicate pushdown, subquery-to-join rewriting
® |Logical Transformation (LogOp — LogOp)
+Both old and new multi-expression are kept and optimized further
o For cost-based decision between different logical plans
e E.g. join ordering, group_by pushdown/pullup
® Physical Transformation (LogOp — PhysOp)
+Generate physical multi-expression that implements logical
e E.g. access method selection, join algorithm selection

CSD Univ. of Crete Fall 2014
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“MEMO Structure Representing Alternative Plans

Group @

Group (@

Group ©

Group @)

Group €)

Group €

Group €

ZJ’nin’/ ( Join 1 [ Join [ HashJoin [ NestedLoop

o

(7.1 /G// 72 Q0] 1z 00 1.7 00 s 0O

( Join 1( Join 1 NestedLoop [ HashJoin [ HashJoin [ Sort

61 Q0|2 00|63 QO 64 Q)65 OO 65 (6

( Join 1{ Join 11 NestedLoop [ HashJoin [ SortMergeJoin |

51 Q052 0053 Q00|54 0055 00

[ S'cay ( TableScan 1 [ SortedIDXScan |

o

(4.1 // | 42 4.3

iJ’oiny ( Join 1 [ HashJoin SortMerge Join

A

3] /9// 2 Q@] 33 00 4 00

:FSI(:EIW (TableScan | [ SortedIDXScan |

ﬁi’ // 22 23 ()Z Logical Operator
—— e 1. Physical Operator

:Scay ( TableScan SortedIDXScan | [ Sort ) Physical Op
o

(1] // 12 13 1.4 (1]
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How Optimization Proceeds?

® Every transform specifies a pattern

® To optimize multi-expression e:
+First optimize each input group, possibly specifying required physical
properties
+Apply every rule whose pattern matches e
¢Insert resulting multi-expression into MEMO rooted in same group

® To optimize group g given physical property p

+Optimize each multi-expression in g
+ Store identity of optimal multi-expression for p in winner’s circle
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Comparison to Join Enumeration

® Query tree Is traversed top-down; memoization of subexpressions Is used,;
Similarities to top-down join enumeration with memoization:

@ Complete plans generated early
®Branch-and-bound pruning can be used
® Entire memo structure must be remembered
® Differences:
O Cost-based optimization for arbitrary logical transforms
® Search space determined by current set of rules
e Easily modify search space by adding/removing rules

e Search algorithm (application of transform rules) independent from
semantics of transforms

. Improves extensibility

. Redundantly derives same expression by different paths (leads to
O(4n) work for join enumeration unless rules disable each other)

® Optimizes global query, not local to SPJG blocks

e Memory consumption proportional to size of global query, not just
size of single block (interacts with Similarity #3) 107
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History of Bottom-up Join Enumeration

® SYSTEM-R (basis of early DB2 optimizers): Selinger et al., “Access method
selection in a Relational Database Management System”, SIGMOD 1979

¢Proposed dynamic programming approach
+Introduced concept of “interesting orders”

® STARBURST (basis of DB2 UDB): Haas et al., “Extensible Query
Processing in Starburst”, SIGMOD 1989; Ono and Lohman, “Measuring the
Complexity of Join Enumeration in Query Optimization”, VLDB 1990

+Focus on making QO extensible for new query operators and
optimization rules

+Propose two-phase optimization: logical rewrite followed by grammar-
based join enumeration (evaluated bottom-up)

+Parameterize the join enumeration algorithm to tailor search space
e Customization limited by predetermined switches
e E.g. Bushy vs. left-deep, Cartesian products or not, etc. 108
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History of Top-down Join Enumeration

® Naive Translation of System-R algorithm Chaudhuri et al., “Optimizing
queries with materialized views”, SIGMOD 1995

#Re-cast System-R DP as functional algorithm with memoization
+Purely conceptual reasons, no attempt to exploit top-down

® Sybase ASA Bowman and Paulley, “Join Enumeration in a Memory-
Constrained Environment”, ICDE 2001

¢Back-tracking search without memoization (to minimize memory usage)
+Aggressive branch-and-bound pruning
¢ "“Optimizer governor” heuristically guides search order
e Attempts to locate good plans early to provide good upper bounds
e Decides when to terminate search
+Not guaranteed to find optimal plan (would take O(n!) time)

® COLUMBIA (actually a transformational optimizer) Shapiro et al.,”"Exploiting
Upper and Lower Bounds in Top-Down Query Optimization”, IDEAS 2001

#Focuses on value of branch-and-bound pruning during join enumeratilcggn
(humorously christened “group pruning”)
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History of Transformation-based QO

® EXODUS Graefe and DeWitt, “The EXODUS Optimizer Generator”,
SIGMOD 1987

elustrated plan generation via transforms
+Efficiency problems due to poor memorization

® VOLCANO Graefe and McKenna, “The Volcano Optimizer Generator:
Extensibility and Efficient Search”, ICDE 1993

+MEMO structure to avoid repeated work

+Flexible cost models and physical properties ( generalization of
Interesting orders)

+Two phases: full logical expansion, then physical generation
¢ Conservative branch-and-bound pruning (no lower-bounding of inputs)

® Microsoft SQL Server Pellenkoft et al., “The Complexity of Transformation-
based Join Enumeration”, VLDB 1997

+Proves independent transformations lead to redundant work due to
multiple derivation paths; must analyze inter-rule dependencies to

avoid HO
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History of Transformation-based QO

® CASCADES (basis of SQL Server and Tandem NonStop SQL) Graefe,

18(3), 1995
eInterleave logical and physical optimization
¢ Generates first physical plan earlier
+Makes branch-and-bound pruning more useful

® COLUMBIA (see previous slide) Shapiro et al., “Exploiting Upper and
Lower Bounds in Top-Down Query Optimization”, IDEAS 2001

+Added lower-bounding of inputs to branch-and-bound pruning of
CASCADES

+Prove certain set of transforms enumerate all bushy trees and
guarantee first plan generated for each group will be left-deep

“The Cascades Framework for Query Optimization”, IEEE Data Eng. Bull.

+Minor modifications of VOLCANO to improve efficiency and extensibility
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Summary

® Query optimization is a very complex task

+Combinatorial explosion

¢ The task is to find one good query execution plan, not the best one
® No optimizer optimizes all queries adequately

+Heuristic optimization is more efficient to generate, but may not yield
the optimal query execution plan

+Cost-based optimization relies on statistics gathered on the relations
® Until query optimization is perfected, query tuning is a fact of life

+lt has a localized effect and is thus relatively attractive

¢lt Is a time-consuming and specialized task

+It makes the queries harder to understand

¢ This is not likely to change any time soon
® Optimization is the reason for the lasting power of the relational DBMS

+But it Is primitive in some ways

+New areas: random statistical approaches (e.g., simulated annealing),

adaptive runtime re-optimization (e.g., eddies) 12
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Highlights of System R Optimizer

Find all plans for accessing each base table

For each table

¢ Save cheapest unordered plan

¢ Save cheapest plan for each interesting order
¢ Discard all others

Try all ways of joining pairs of 1-table plans; save cheapest
unordered + interesting ordered plans

Try all ways of joining 2-table with 1-table

Combine k-table with 1-table till you have full plan tree
At the top, to satisfy GROUP BY and ORDER BY

¢ Use interesting ordered plan

¢ Add a sort node to unordered plan

114
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Access Paths for Single Relations
EMP [ "'name [ ono | JoB | saL
* Eligible Predicates: Local Predicates Only
SMITH &0 12 8600 * “Interesting” Orderings: DNO JOB
JOMES L] 5 15000
DOE 81 5 9500
EMP:
DEPT index indhex segrment
B0 | MFG DENVER N N :IM
61 | BILLING | BOULDER - 1 L
52 | SHIPPING | DENVER CIEMP.DNO) CIEMP.JOB) :té"? ;"’h";‘"}
DEPT: ; .
JOB Tom | TiTLE : DEPT.DNO ﬂmmm
B | CLERK DEPT
6 T™PIST M N
9 |SALES clberr.ongl  CIDEPT seg. ssan)
12 | MECHANIC > pruned
SELECT NAME, TITLE, SAL, DNAME .
FROM  EMP, DEPT, JOB 108 1 e sagment
WHERE TITLE=‘CLERK" JOB.IOB sCan on
AND LOC="DENVER"’ JOB
AND EMP.ONO=DEPT.DNO N N ’
AND EMP.JOB=J0OB.JOB E{{bDBJDBI L‘-'E!H.'IBﬂu scan)
’ 115
Source: Selinger et al, “Access Method Selection in a Relational Database Management System”
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System R Example: Search

rees

* DEPT JOB

N Index Index I muchex segment
EMPIORB DEPT.DNO JOB.JOB SCan
108

C{EMP.JOR] CIDEPT.ONO) C{JOB.JOB} C{JOB seg. scan}
JOB order DNO order JOB order unardered

Cl{EMP.ODNGOY
DMNO order

Figure 3. cfaaroch tree for gingla ralatians
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System R Example: Search

{EMP, DEPT)

Ny N, 1 Ny Ny ¢ Ny 3

Index index Index Index Index Index Index

DEPT.DNO DEPT.DNOC J0B.JOB JOB.10OB EMP.ONO EMP.JOB EMP.JOB
N, ® N, ® Ng @ HEL N, ® Ng @ Ng @
C(E.DNQ) C(E.JOB] C(E.DNO) C(E.JOB) C(D.DNO) C{J.JoB) C(J seg scan}

+ + + + o * + +
N,Cg{D.DNO} N,Cg(D.DNO}  N,CgJ.JOB) N,Cg(4.J08) N,Cq(E.DNQ)  N4C,(EJOB) N,C,(E.JOB}
DNO order JOB order DNO order JOB order DNQ order JOB order unordered
Figure 4.

Inclex
EMP.JOB

Source: Selinger et al, “Access Method Selection in a Relational Database Management System”

{EMP, JOB)

Index
EMP.JOB

{ndex
EMP.DNO

Index

DEPT.DNO

Index
JOB.JOB

{DEPT, EMP)

rees

(JOB, EMP}

segment
scan

JoB

Extended search tree for second relation (nested loop join)
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System R Example: Search Trees

{EMP,.DEPT) {(EMP, JOB) {DEPT, EMP} {JOB, EMP}
Index Irschex fndex Index Sesgment
E.DNO D.ONO scan
JOB
H‘ N-I y Na
Sort
E.JOB f";‘if:’
o oo s
L, into L,
T '
Merge Merge Merge Merge Merge
E.DNO L E.JOB JI0B
with nzlh with with 3{11
D.DNO D.DNO . JdoB E.JOB E.JOB
N, ® N, & Ng & Ny . Ng l Ng &
DMNO order OMNO order JOB order JOB order DMNO arder DMO arder JOB order JOB order
* €3 * o * 0 3] &+ 0
LI Y I Y O | I
— = ™ = m =
3 T8 g C g e g g 3
e ¥ 5 Bi B® g n 3
- = ! ! [
o S E T 5 Ky m h S &
= - — — [=1 = =3
= = g =
L= =]

Figure 5. Extended search tree for second relation (merxrge join) 118

Source: Selinger et al, “Access Method Selection in a Relational Database.Manaqement System”
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System R Example: Search Trees
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{EMP, DEPT})

(EMP, JORB)

Sortl E'ﬂ'mm
by DND
into Lg

by JOB into Ly

Merge Ly
with
D.DNO

L
[y} -+ %] 3+ * o+
LI R R AR
Fel & B 7 S 7 £ I £z
£ig c g g 5 & g g 2 g
§+ g = 22 - § Eg & .g

Figure 6. Extended search tree for third relation
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Source: Selinger et al, “Access Method Selection in a Relational Database Management System”
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Highlights of System R Optimizer

® Impact:
+Most widely used currently; works well for < 10 joins

® Cost estimation:
¢Very inexact, but works ok in practice

¢ Statistics, maintained in system catalogs, used to estimate cost of
operations and result sizes

¢ Considers combination of CPU and 1I/O costs
¢More sophisticated techniques known now

® Plan Space: Too large, must be pruned
¢0Only the space of left-deep plans is considered
¢ Cartesian products avoided
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Highlights of Starburst Optimizer

® SQL is not a pure declarative query language as it has imperative
features

® Complex queries can contain subgueries and views
¢ These naturally divide a query into nested blocks and
¢ can create evaluation path expressions

® Traditional DBMS only perform plan optimization on a single query block
at a time and perform no cross-block optimization

¢ The result: Query optimizers are often forced to choose a sub-optimal
plan

¢ The problem: Query generators can produce very complex queries
and databases are getting bigger

e The penalty for poor planning is getting larger
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Starburst: The Query Graph Model (QGM)

o = e = e e e = e e e mm e e e e mm Em e e e e e Em mm e e e M e e e e e e e M e e e e m e e e e e e e e e e e e e e

(3) QUANTIFER QUERY
HEAD_} partno I descr I suppno I dlstlnct:true SELECT

=ql.partno Iql.descrlqz.suppncl
2(F)

gl.descr =
‘engine’

distinct=
ENFORCE

BODY—»

SELECT DISTINCT q1.partno, g1.descr, g2.suppno LOCAL ' SUBQUERY
FROM inventory g1, quotations g2 PREDICATE price distinct=false !
WHERE q1.partno = q2.partno AND q1.descr="enginge’ =93.price
AND ¢2.price <ALL Tuple Flow g SELECTE

( SELECT ¢3.price FROM quotations g3 1\ ge.parno = 4= e
WHERE q2.partno=g3.partno); JOIN PREDICATE SERMIT
q3(F) ;

partno,< QUANTIFIER >partno,
descr COLUMNS price

inventory (2} !

— == ——— -

guotations

EAB}GE TAngié

---------------------------------------------- —22
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Starburst: Rule Based Query Rewrite (QRW)

® The goals of query rewriting
+Make queries as declarative as possible
e Transform “procedural” queries
e Perform unnesting/flattening on nested blocks
+Retain the semantics of the query (same answer)
® How?
¢Perform natural heuristics E.g. “predicate pushdown”
+Production rules encapsulate a set of Query Rewrite heuristics
® A Single Rewrite Philosophy

+“Whenever possible, a query should be converted to a single select
operator”

® The Result

+The Standard optimizer is given the maximum latitude possible
123
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Example of Rule 1: SELECT Merge

head.distinct = true
v(F) SELECT DISTINCT d.deptno, v.lastname

FROM View v, Dept d
; | WHERE v.empno=d.mgmo
\ View
Dept SELECT empno, lastname

FROM Emp, Project
WHERE salary<20000 AND
l I workno=projno AND
Emp Project pbudget>500000

SELECT DISTINCT d.deptno,e.lastname
,_M FROM Emp e, Dept d, Project p

WHERE e.empno=d.mgmo AND
e.salary<20000 AND

e.workno=p.projno AND
p.pbudget>500000

Dept Emp Project
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Highlights of Starburst Optimizer

® The problem: Complex SQL queries can contain nested blocks that can’t
be optimized using the standard plan optimizer

® The solution: By rewriting the query to a semantically equivalent query
with fewer boxes the (near) optimal plan can be found

® The Query Graph Model (QGM) provides an abstract view of queries that
IS suitable for most rule transformations

+Mechanisms are provided for dealing with duplicates

® Rewrite Rule Engine: Condition->action rules where LHS and RHS are
arbitrary C functions on

+QGM representation
¢Rules and Classes for search control
+Conflict Resolution Schemes

® Bottom up enumeration of plans

® Grammar-like set of production rules to generate execution plans
¢LOLEPOP: terminals (physical operators)

QSITAE:)production rules (alternative implementations of query graph
ocks

+GLUE: additional rules for achieving a given property (order) 125
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Highlights of Volcano Optimizer

® Query as an algebraic tree
® Transformation rules
e¢Logical rules,
+Implementation rules
® Optimization goal
¢ Logical expression,
¢ Physical properties,
¢ Estimated cost
® Top down algorithm
¢ Logical expressions optimized on demand
e Enumerate possible moves
e Implement operator
e Enforce property
e Apply transformation rules
¢ Select move based on promise
+Branch and bound 126
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