sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv
Ai1dAegn 8n: Transactions - part 1

Anuntpnc lNAegouodkng
Tunua Emotiung YtmoAoyiotwy



D. Plexousakis CS460 Fall 2011

ransaction Management

® Transactions are units of work that must be executed atomically
and (seemingly) in isolation from other transactions

® Their effects should be durable: no completed work should be lost
® ACID properties of transactions
m atomicity, consistency, isolation, durability

® The transaction processor accepts transaction commands from
applications and performs the tasks of:

m logging for resilience / recovery
m concurrency control
m deadlock resolution

® This lecture: coping with failures

Lecture 1 1




D. Plexousakis CS460 Fall 2011

Database Consistency

® \Would like data to be “accurate” or “correct” at all times
® Integrity constraints: predicates that data must satisfy
m Types of constraints:
e Keys
® Functional dependencies / multi-valued dependencies
e Domain constraints

e Arbitrary predicates, e.g., no employee should earn more than
twice the average salary

m Constraints can be static or dynamic

® Consistency: a database is in a consistent state when all integrity
constraints are satisfied

® A transaction is a collection of actions that preserve consistency,
l.e. map a consistent DB state to another consistent DB state

Lecture 1 2




D. Plexousakis CS460 Fall 2011

Constraint Violation

® Constraint violations may occur due to:
m transaction bugs
m DBMS bugs

m hardware failure
® e.9., disk failure alters an attribute value

m data sharing

®e.g., transaction T1 gives a 10% raise to all employees of
category A ; T2 promotes employees of category A to
category B

® In many cases, constraint violations can be prevented

® In other cases, constraint violations need to be fixed Iin order to
restore consistency

Lecture 1 3




® Many issues involved:

Recovery

m how to write correct transactions

m how to check constraints

m how to correct constraints
® We will deal with the problem of recovery from failures only
® Must first establish a failure model
® Failures are caused by undesired (expected or unexpected)

events

D. Plexousakis CS460 Fall 2011

m Expected undesired events: memory loss, CPU halt, reset, ...
m Unexpected undesired events: everything else (e.g., disk

damage)

Lecture 1




Univ. of Crete D. Plexousakis CS460 Fall 2011

Operations

® Input (x): block with x - memory
® Output (x): block with x — disk
® Read (x,t): do input(x) iIf necessary; t « value of x in block
® Write (x,t): do input(x) if necessary; value of x in block «t
® Unfinished transactions create consistency problems. E.g.,
Constraint: A=B; Initially: A=B=1
Transaction T1: A <« Ax2;B « Bx2

T1 is implemented as the sequence: Read (At); t <« tx2; Write (A1),
Read (B,t); t « tx2; Write (B,t); Output (A); Output (B);

Suppose failure occurs after Output (A);
In memory: A=B=2
On disk: A=2, B=1

Lecture 1 S




€ ) Univ. of Crete D. Plexousakis CS460 Fall 2011

® Previous example demonstrates the need for atomicity: either a
transaction executes in its entirety or not at all

® One solution to the previous problem can be provided by logging

® A log is a sequence of log records, each recording something
about the operations performed by a transaction

® The log is used to reconstruct what transactions were doing when
a failure occurred

m some transactions will be redone

m others will be undone and the database will be restored (as if
they never executed)

® Undo logging refers to the second type of repair

Lecture 1 6




€ ) Univ. of Crete D. Plexousakis CS460 Fall 2011

Undo Logging

® Logs are organized as append-only files

® Log blocks are Initially created in main memory and are allocated
by the buffer management like any other blocks

® Log blocks are written in 2-ary storage when feasible
® Forms of log records:
m <START T> : transaction T has begun

m <COMMIT T>: T has completed successfully; changes made
by T should appear on disk

m <ABORT T>: T could not complete successfully; changes
made by T should not appear on disk

m update records: <T, X, v>: T has changed X whose former
value was v (such a record is written in response to a Write
action, not an Output action)

Lecture 1 7




€ "\ Univ. of Crete

Undo Logging

® Example: constraint A=B, initially A=B=8

T1:

Lecture 1

Read (A)t); t <« tx2
Write (A,t);
Read (B,t); t <« tx2
Write (B,1);
Output (A);
Output (B);

A:g 16
B:8" 16

A8 16

memory

D. Plexousakis CS460 Fall 2011

R
S

<T1, start>
<T1, A, 8>
<T1, B, 8>

B:8" 16

disk

<T1, commit>

~_
log




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Undo-Logging Rules

® Transactions must obey the following rules in order for undo
logging to enable recovery from failure

1. If T modifies element X, then the log record <T,X,v> must be
written to the log before the new value of X is written to disk

2. If T commits, then <COMMIT T> is written to disk only after all
elements altered by T have been written to disk, but as soon
after that as possible

B These rules impose the following order for writing on disk:
1. Log records indicating the changed DB elements
2. Changed DB elements themselves
3. COMMIT log record

B To force log records to disk, the log manager needs a flush log
command instructing the buffer manager to copy on disk log
blocks that have not been copied or were recently changed

Lecture 1 9




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Undo-Logging Complications

® Logging actions do not occur in isolation; since many transactions
execute simultaneously, log records for one transaction may be
Interleaved with similar operations for other transactions

® Flushing the log may imply that log records for a transaction appear
on disk earlier than intended

® No harm as long as the <COMMIT T> record is written only after
the output actions of T are completed

® If elements A and B share a block, writing one of them, implies
writing the other as well (rule 1 may be violated)

® Need to impose additional constraints or impose a concurrency
protocol

m more on concurrency control later

Lecture 1 10




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery using Undo-Logging

® Recovery manager must use the log to restore the database state
Into a consistent one in the event of a failure

® A simple recovery manager:
m examine the entire log
m make the necessary changes to the database

® The recovery manager needs to divide the transactions into
committed and uncommitted ones

® If a record <COMMIT T> is found, then because of rule 2, all
changes made by T must have already been written on disk.
Hence, T has left the DB in a consistent state

® If a <START T> record is found but no <COMMIT T>, T is
considered incomplete and must be undone

Lecture 1 11




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery using Undo-Logging

® Undoing a transaction means reverting to the old values of the
elements that were changed by the transaction

® Rule 1 ensures that if X was changed by T prior to the failure, there
will be a record <T,X,v> in the log and this record must have been
copied on disk before the failure

mlf T modifies element X, then the log record <T,X,v> must be
written to the log before the new value of X is written to disk

® For recovery, the value v must be written for X

® Several transactions affecting the same element may have been
left uncommitted. Systematic restoration of the values must take
place (order must be respected)

® The log needs to be scanned backwards: from the most recent
record to the earliest one.

® Must keep a list of transactions for which a <COMMIT > or an
LABORT > record is found. 12




€ ) Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery using Undo-Logging

® If a record <T,X,v> Is found:

m if <COMMIT T> has been found, do nothing. No changes need
to be undone

m if T Is incomplete, the value of X must be changed to v

® After making the necessary changes, a record <ABORT T> must
be written for every incomplete transaction T and the log must be
flushed

® This approach is simple but not very efficient:

m in principle, the entire execution history must be examined
every time a failure occurs

® An improvement of this relies on checkpointing the log in order to
limit the extent to which the log must be examined

Lecture 1 13




@\ Univ. of Crete

Checkpointing

D. Plexousakis CS460 Fall 2011

® In order to reduce the size of the log to be examined every
time a failure occurs, one could truncate the log after a
transaction commits

m however, if recovery becomes necessary , log records of

other transactions could be lost as well

® Periodic checkpointing:

1.
2.

3.
4.
5.

Lecture 1

Stop accepting new transactions

Wait till all active transactions commit or abort and have
written a <COMMIT > or <ABORT > record on the log

Flush the log to disk
Write a log record <CKPT> and flush the log
Resume accepting transactions

14




Checkpointing

® No need to undo changes of transactions that executed prior to
the checkpoint

® (rule 2: If T commits, then <COMMIT T> is written to disk only after all
elements altered by T have been written to disk, but as soon after that
as possible)

® During recovery, scan the log backwards to identify incomplete
transactions.

m When a <CKPT> record is found, all incomplete
transactions have been found

® No need to scan prior to the <CKPT> since no transaction may
begin until checkpointing ends

® The log before the <CKPT> may actually be deleted or
overwritten

Lecture 1

\ Univ. of Crete D. Plexousakis CS460 Fall 2011




Checkpointing

D. Plexousakis CS460 Fall 2011

® Example: assume the log contains the following records

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>

If we decide to place a checkpoint here, we must wait until T1 and
T2 complete, before writing the <CKPT> record on the log file.

<COMMIT T1>
<COMMIT T2>
<CKPT>
<START T3>

Lecture 1

16




Nonquiescent Checkpointing

® Permits new transactions entering the system during
checkpointing

1. Write log record <START CKPT(T1,T2, ...Tk)> for the active
transactions T1, T2, ..., Tk and flush log

2. Wait until all of T1, T2, ..., Tk commit or abort but do not prevent
other transactions from starting

3. When all have finished, write log record <END CKPT> and flush
log

Lecture 1

D. Plexousakis CS460 Fall 2011

17




€ ) Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery with Nonquiescent Checkpointing

® Scan log file backwards:

1. If <END CKPT> is encountered first, then all incomplete
transactions must have started after the previous record
<START CKPT (T1, ..., Tk)>; scan backwards till the START
CKPT record; previous log may be discarded

2. If <START CKPT (T1, ..., TK)> is encountered first, crash has
occurred during the checkpoint; incomplete transactions are
those that we find while scanning backwards before we find
the <START CKPT (T1, ..., Tk)> record and those among T1,
T2, .. Tk that did not complete.

- no need to scan further back from the start of the earliest of
these transactions

Lecture 1 18




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery with Nonquiescent Checkpointing

® Example:assume the log contains the following records
<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>

For doing nonquiescent checkpointing, we need to write a log record
<START CKPT(T1,T2)>

T3 begins while waiting for T1 and T2 to complete

<T2, C, 15> <T3, E, 25>
<START T3> <COMMIT T2>
<T1, D, 20> <END CKPT>
<COMMIT T1> <T3, F, 30>

Assume that failure occurs at this point.

Lecture 1 19




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery with Nonquiescent Checkpointing

® Example (cont'd)

Lecture 1

T3 is the only incomplete transaction and F’s value must be
restored to 30

When we encounter the <END CKPT> we know that all
Incomplete transactions started after the previous

<START CKPT> record

Scanning backwards we find that E’s value must be restored
to 25

There are no other transactions that started but did not commit
No scanning needed earlier than the <START CKPT> record

20




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery with Nonquiescent Checkpointing

® Example (cont’'d): failure occurs during checkpoint

<START T1> <T2, C, 15>
<T1, A, 5> <START T3>
<START T2> <T1, D, 20>
<T2, B, 10> <COMMIT T1>
<START CKPT(T1,T2)> <T3, E, 25>

T3 and T2 are now incomplete and their changes must be undone.

When we find <START CKPT(T1,T2)>, the only possibly incomplete one
IS T1, but <COMMIT T1> has been found.

Only need to go back till the <START T2> record restoring B to 10

Lecture 1 21




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Redo Logging

® Undo logging imposes the requirement for immediate backup of
database elements to disk

® This requirement is lifted in redo logging:

m redo logging ignores incomplete transactions and repeats the
changes made by committed transactions

m undo logging cancels the effects of incomplete transactions
and ignores committed ones

m redo logging requires that the <COMMIT > record appears on
disk before any changed values appear on disk

m recall: undo logging requires that the <COMMIT > record
appears on disk only after changed values appear on disk

m redo log records have a different meaning than undo log
records: the new rather than the old values are needed in redo

logging

Lecture 1 22




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Redo-Logging Rules

® <T,X,v>:"“transaction T wrote new value v for element X”

® Every time a transaction modifies a DB element X, a record of the
form <T,X,v> must be written to the log

® The following rule (write-ahead log rule) determines the order in
which data and log records appear on disk:

m Before modifying any DB element X on disk, it is necessary
that all records pertaining to the modification of X (<T,X,v>,
<COMMIT T>) must appear on disk

® The rule implies the following order for writing records on disk:
1. Log records indicating changed elements
2. COMMIT log record
3. Changed elements themselves

Lecture 1 23




€ "\ Univ. of Crete

Redo Logging

® Example: constraint A=B, initially A=B=8

T1:

Lecture 1

Read (A)t); t <« tx2
Write (A,t);
Read (B,t); t <« tx2
Write (B,1);
Output (A);
Output (B);

A:8 16
B:8" 16

A8 16

memory

D. Plexousakis CS460 Fall 2011

R
S

<T1, start>
<T1, A, 16>
<T1, B, 16>

B:8" 16

disk

<T1, commit>

~_
log

24




\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery using Redo-Logging

® Incomplete transactions can be treated as if they never occurred

m no changes to DB elements by transaction T have been written to
disk unless the log contains a <COMMIT T> record

® What about committed transactions?
m we do not know which of their changes have appeared on disk

m but we do not really care: the new values must be written on disk
even if they are already there

® \When failure occurs do:
1. ldentify committed transactions

2. Scan log forward from the beginning and for each <T,X,v>:
a. If T is not committed, do nothing
b. If Tis committed, write v for X

3. For each incomplete transaction T, write <ABORT T> to log and
flush log

Lecture 1 25




Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery using Redo-Logging

® Example: <START T>
Read (A1), t « tx2
Write (A,t); <T,A,16>
Read (B,t); t « tx2
Write (B,t); <T,B,16>
<COMMIT T>

__ FLUSH LOG;

| Output (A):

i Output (B);

|

. If failure occurs after this point, <COMMIT> is on disk, hence T Is
complete. Values for A and B will be written on disk (even if it is not
necessary)

Lecture 1 26




Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery using Redo-Logging

® Example: <START T>
r—-- Read (A); t<« tx2
: Write (A,); <T,A,16>
! Read (B,t); t « tx2
L __Write (B,t); <T,B,16>
] <COMMIT T>
! FLUSH LOG;
- Output (A);
| Output (B):
|
|

If failure occurs between these points, <COMMIT> is not on disk, hence
T is incomplete. No values for A and B will be written on disk and
<ABORT T> will be written to the log

Lecture 1 27




Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery using Redo-Logging

® Example: <START T>

Read (A1), t « tx2
Write (A,t); <T,A,16>
Read (B,t); t « tx2

r - -- Write (B,t); <T,B,16>

! <COMMIT T>

+--- FLUSH LOG;

! Output (A);

. Output (B);

|

|

If failure occurs between these points, <COMMIT> may not be on disk.
If itis, T is complete. Otherwise, T is incomplete.

Lecture 1 28




€ ) Univ. of Crete D. Plexousakis CS460 Fall 2011

Checkpointing with Redo Logging

® With redo logging changes incurred by a completed
transaction may appear on disk much later than the
transaction’s commit point

® |If checkpointing is implemented with redo logging, all
transactions and not just the active ones must be considered

® All database elements that have been modified by committed
transactions but not written on disk, must be written during
checkpointing

® Need to know which buffers are dirty, I1.e., changed but not
copied on disk

® Also need to know the transaction that modified each buffer

Lecture 1 29




€ ) Univ. of Crete D. Plexousakis CS460 Fall 2011

Nonquiescent Checkpointing with Redo Logging

® However, the checkpoint can be completed without waiting for
transactions to complete or abort since they cannot have their
changes written on disk

® Nonquiescent checkpointing proceeds as follows:

1. Write log record <START CKPT(T1,T2,...,Tk)> for the
uncommitted transactions T1, T2, ..., Tk and flush the log

2. Write to disk all elements written to buffers (but not yet to disk)
by transactions already committed when the record

<START CKPT(T1,T2,...,Tk)> was written to the log
3. Write <END CKPT> to the log and flush

Lecture 1 30




Nonquiescent Checkpointing with Redo Logging

® Example:

<START T1>

<T1, A, 5>
<START T2>

<COMMIT T1>
<T2,B,10> __--~ Value of A may be on disk;

<START CKPT(T2)> If not, A must be copied to disk before

<T2, C, 15> the checkpoint can end
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Lecture 1

€ "\ Univ. of Crete D. Plexousakis CS460 Fall 2011

31




€ ) Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery with Checkpointed Redo Log

® When scanning the log file, the search can be limited by the start
and end of the checkpoint

1. If the last CKPT record in the log before failure is <END CKPT>,
then every value written by a transaction committed before the
corresponding <START CKPT(T1,T2,..., Tk)> is on disk;

Any transaction among T1,T2,...,Tk or any that started after the
<START CKPT> may have changes that do not appear on disk
and recovery proceeds as before

No need to look further back than the earliest of the <START Ti>
records

Lecture 1 32




D. Plexousakis CS460 Fall 2011

Recovery with Checkpointed Redo Log

2. If the last CKPT record in the log before failure is <START
CKPT(T1,T2,..., TK)>, then it is not certain that transactions that
committed before the start of the checkpoint have had their
changes written to disk
Must search backwards to the previous <END CKPT>, find its
matching <START CKPT(T1,T2,..., TK)> and redo changes as in
case 1.

Lecture 1 33




€ ) Univ. of Crete

D. Plexousakis CS460 Fall 2011

Recovery with Checkpointed Redo Log

® Example:
<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Lecture 1

If failure occurs at the end, T2 and T3 must be
redone; search log backwards up to <START T2>
and write values 10,15,20 for B,C,D resp.

If failure occurs between <COMMIT T2> and

and <ABORT T3> is added to the log

If failure occurs before <END CKPT> we must search
back to the previous <END CKPT> and its corresponding
<START CKPT> record; no such record exists here and
T1 is the only committed transaction that is redone;
<ABORT T2> and <ABORT T3> are written to the log

<COMMIT T3>, then no change must be made to D

34




D. Plexousakis CS460 Fall 2011

Study

® Garcia-Mollina, Ullman, Widom, “Database System
Implementation”, chapter 8

® Ramakrishnan, Gehrke, “Zuotiuara Alaxeipnong Baoewyv
AedopeEvwv’, ke@. 20

Lecture 1 35




TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= - ]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang



XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong




2NMEIWMAT



2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.



2NUEIWHA AVO@POpPAC

Copyright TMavemotiuio Kpntng, AnuAtpng TMAeCoucAKNnG. «ZUCTAMOATA
Alaxeipiong Bacewv Agdopévwy. AlaAegn 8n: Transactions - part 1».
‘Ekdoon: 1.0. HpakAeio/P€Bupvo 2015. AilaBeoiyo atrd 1n dikTuakn dleuBuvon:
http://www.csd.uoc.gr/~hy460/



