sty EAAHNIKH AHMOKPATIA
%97 MANEMIZTHMIO KPHTHZ

2uocTinuata Alaxeipiong
Baoswv AedopéEvwv
Ai1dAegn 9n: Transactions - part 2

Anuntpnc lNAegouodkng
Tunua Emotiung YtmoAoyiotwy

D. Plexousakis CS460 Fall 2011

ransaction Management

® Comparison of Undo and Redo Logging:

m Undo logging: data must be written to disk immediately after a
transaction finishes; potentially increases the number of 1/O
operations required

m Redo logging: modified blocks must be kept in buffers until the
transaction commits and log has been flushed; potentially
Increases the number of buffers required by transactions

m Both may impose contradictory requirements during
checkpointing

® Undo/Redo logging is more flexible than Undo or Redo logging
m ... butis also more costly

Lecture 2 1

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Undo/Redo Logging

® Undo/Redo log records differ only in the update records: <T,x,v,w>

means that transaction T changed the value of DB element X from
viow

® Rule: before modifying any DB element X on disk, the update
record <T,x,v,w> must appear on disk

m <COMMIT T> record may precede or follow any of the changes
to the DB elements on disk

m more liberal than Undo or Redo logging

® For recovery, it permits either restoring the DB state or repeating
the changes made. Policy:

m Redo committed transactions (earliest first)
m Undo incomplete transactions (latest first)
m Both are necessary to avoid incomplete recovery

Lecture 2 2

D. Plexousakis CS460 Fall 2011

Recovery with Undo/Redo Logging

® Example:

<START T>

Read (At); t<« tx2 If failure occurs after <COMMIT T>
Write (A,t); <TA.8,16> has been written on disk, T is
Read (B,t); t < tx2 treated as committed and the value
Write (B, t); <TB.8.,16> 16 is written on disk for A and B
FLUSH LOG,;
Output (A); .

put (A) <COMMIT T> " failure occurs before <COMMIT T>
Output (B);

appears on disk, T is treated as an
Incomplete transaction and the value
8 is written on disk for Aand B

Lecture 2

€) Univ. of Crete D. Plexousakis CS460 Fall 2011

Recovery with Undo/Redo Logging

® An additional rule may be used in order to avoid situations where,
due to delayed commitment, a transaction appears (to the user)
to have committed, but the <COMMIT > record has not been
written on disk

m a crash would cause such a transaction to be undone

mRule: A<COMMIT T> record must be flushed to disk as soon
as it appears in the log

® Order of redo and undo during recovery:
m doesn't really matter

m we still cannot prevent a committed transaction that must be
redone to read a value written by an incomplete transaction
that must be undone (dirty read)

m need to isolate such transactions (concurrency control)

Lecture 2 4

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Checkpointing with Undo/Redo Logging

e Nonquiescent checkpointing:

1. Write <START CKPT(T1,T2,...,Tk)> to log for active
transactions T1,T2,...,Tk and flush the log

2. Write to disk all dirty buffers (those that contain changed DB
elements)

3. Write <END CKPT> and flush the log

® Step 2 enforces the writing on disk of elements changed by
Incomplete transactions

® The following constraint must be observed though:

m Atransaction may not write any values until it is certain not to
abort

Lecture 2 5

€ "\ Univ. of Crete

D. Plexousakis CS460 Fall 2011

Checkpointing with Undo/Redo Logging

® Example: During the checkpoint, A and B will be flushed to
<START T1> disk.

<T1l,A 4,5>

<START T2> If failure occurs at the end, T2 and T3 are considered
<COMMIT T1> ™~ complete and are redone; T1 is considered to be
<T2.B. 9, 10> ! complete and to have had its changes written on disk
<START CKPT(T2)p

<T2, C, 14, 15> , if failure occurs before <COMMIT T3>, then T2 is
<START T3> | considered complete whereas T3 is incomplete; redo
<T3, D, 19, 20> i /,"'I'Z by writing 15 for C on disk; no need to write 10 for
<END CKPT> A B;undo T3 by writing 19 for D; if T3 were active at the
<COMMIT T2>//' | start of the checkpoint, we would need to check if other
<COMMIT T3>__, changes by T3 need to be undone

Lecture 2

€ "\ Univ. of Crete

Concurrency Control

D. Plexousakis CS460 Fall 2011

@ |l.e., how to maintain the DB in a consistent state in the presence of
constraints when multiple transactions execute concurrently

® Example:
T1: Read(A) T2: Read(A)
A« A+100 A < Ax2
Write(A) Write(A)
Read(B) Read(B)
B « B+100 B «Bx2
Write(B) Write(B)

Constraint;: A=B

Lecture 2

D. Plexousakis CS460 Fall 2011

Schedules
Schedule A A B
o E 25 | 25
Read(A); A <« A+100 '
Write(A);
Read(B); B « B+100; 125
Write(B);
125
Read(A);A « Ax2;
Write(A); 250
Read(B);B «— Bx2;
Write(B);
250
250 | 250

Lecture 2 ;

D. Plexousakis CS460 Fall 2011

Schedules
Schedule B A 5

T1 T2 25 | 25

Read(A);A « Ax2;

Write(A); 50

Read(B);B <« Bx2;

Write(B);

rite(B); 50
Read(A); A« A+100
Write(A); 150
Read(B); B « B+100;
Write(B); 150
150 | 150

Lecture 2

D. Plexousakis CS460 Fall 2011

Schedules

Schedule C A B
= 12 25 | 25
Read(A); A < A+100 T
Write(A); e

Read(A);A « Ax2;
Write(A);
250
Read(B); B «— B+100;
Write(B); 125
Read(B);B < Bx2;
Write(B); 250
250 | 250

Lecture 2 o

D. Plexousakis CS460 Fall 2011

Schedules
Schedule D A B
= L 25 | 25
Read(A); A < A+100 T
Write(A); e
Read(A);A « Ax2;
Write(A);
250
Read(B);B < Bx2;
Write(B); 50
Read(B);B <~ B+100;
Write(B); {50
250 | 150

11

Lecture 2

D. Plexousakis CS460 Fall 2011

Schedules
Schedule E A B
= 1 25 | 25
Read(A); A < A+100 T
Write(A); e
Read(A);A <« Ax1;
Write(A);
125
Read(B);B < Bx1,;
Write(B); 25
Read(B);B <~ B+100;
Write(B); 195
125 | 125

12

Lecture 2

D. Plexousakis CS460 Fall 2011

ransaction Scheduling

® Only want to allow the execution of “good” schedules regardless of
m initial states
m transaction semantics

® Only the order of reads and writes matters

® Example: given a schedule of the form

Sc=ri(A)wi(A)r2(A)w2(A)ri(B)wi(B)r2(B)w2(B)

determine whether it should be allowed to proceed without causing
Inconsistency problems

Lecture 2 13

D. Plexousakis CS460 Fall 2011

ransaction Scheduling

® Scheduler must chose a “correct” interleaving of transaction
operations among all possible interleavings

® Recall that transactions should appear to execute in isolation

® Hence, a “correct” interleaving should behave as if the transactions
Involved in the schedule were executed in isolation

® Example:
Sc=rL(AWL(A)r2(A)W2(A)r1(B)W1(B)r2(B)w2(B)

Y
Sc'=r1(A)w1(A) r1 (B)wﬁé)’r2(A)w£(:63r2(B)w2(B)
N AN Y

N N

T1 T2 Are the two equivalent?

Lecture 2 14

D. Plexousakis CS460 Fall 2011

ransaction Scheduling

® Example: Which is the equivalent serial schedule of:
Sd=r1(A)wW1(A)r2(A)w2(A) r2(B)w2(B)r1(B)wl(B)

T1 must precede T2 in any equivalent schedule
T2 must precede T1 in any equivalent schedule

Sd cannot be rearranged into a serial schedule, hence Sd is not
equivalent to any serial schedule, hence Sd is “bad”

But, Sc=ri(A)wi(A)r2(A)w2(A)ri(B)wi(B)rz(B)w2(B) is good

A 4 \4 \4
T1—> T2 T1—> T2

Lecture 2 15

D. Plexousakis CS460 Fall 2011

ransaction Concepts

® Transaction: sequence of ri(x), wi(x) actions
® Conflicting actions: r1(A) w2(A) wl(A)
w2(A) r1(A) w2(A)
® Schedule: represents chronological order in which actions are
executed

® Serial schedule: no interleaving of transactions
® \What about concurrent schedules?

m if they don’t involve conflicting actions, then any low-level
synchronization mechanism is sufficient for scheduling

Lecture 2 16

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Definitions

® Schedules S1, S2 are conflict equivalent if S1 can be transformed
Into S2 by a series of swaps on non-conflicting actions.

® A schedule is conflict serializable if it is conflict equivalent to some
serial schedule.

® For a schedule S, its precedence graph P(S) is defined as follows:
mNodes: transactions in S
mArcs: Ti— Tj whenever
*pi(A), gj(A) are actions in S
*pi(A) <s qJ(A)
eat least one of pi, qgj Is a write

Lecture 2 17

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Results

® Lemma S1, S2 conflict equivalent = P(S1)=P(S2)
® Proof: Assume P(S1) = P(S2)
Then, 3 Ti: Tt > Tjin S1 and not in S2
S1=...pi(A)... gj(A)... pi, Q]
S2 = ...qj(A)...pi(A)... conflict
Hence, S1 and S2 cannot be conflict equivalent
® Note: P(S1)=P(S2) does not imply S1, S2 conflict equivalent
® Counterexample:
Si=wi(A) r2(A) wz2(B) ri(B)
So=r2(A) wi(A) ri(B) wz(B)

Lecture 2 18

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Results

® Theorem: P(S1) acyclic iff S1 conflict serializable
® Proof:
m (if) Assume S1 is conflict serializable
— 3 Ss: Ss, S1 conflict equivalent
= P(Ss) = P(S1)
= P(S1) acyclic since P(Ss) is acyclic
m (only if) Assume P(S1) is acyclic
Transform S1 as follows:
1. Take T1 to be transaction with no incoming arcs

Move all T1 actions to the front

3. We now have S1 =< T1 actions ><... rest ...>: remove T1 and
incident arcs

4. Repeat above steps to serialize rest!
Lecture 2 19

N

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Enforcing Serializability

® Option 1: allow any schedule; check for cycles in precedence graph
(reactive)

Option 2: prevent cycles in precedence graphs of schedules (proactive)
Locking protocols are used to implement Option 2

m New actions: lock (exclusive), unlock

m Scheduler maintains information about locks in a lock table

® Rule 1: well-formed transactions

m Atransaction is well-formed when every operation on a database
item X is preceded by a lock request on X and followed by an
unlock request on X

® Rule 2: legal schedule

m A schedule is legal if no lock request is granted to a transaction Tj
for a database item X when a transaction Ti has already been
granted the lock to X

Lecture 2 20

€ "\ Univ. of Crete

m ldea:

locks
held by
Ti

Lecture 2

Concurrency Control

TN Ui(A)

no unlock

D. Plexousakis CS460 Fall 2011

® 2-Phase Locking: all lock requests precede all unlock requests

no locks

time

Growing

Shrinking

Phase

Phase

21

@\ Univ. of Crete

2-Phase Locking

® Intuitively, each 2PL transaction may be thought to execute in its
entirety at the moment it releases the first item

® The conflict-equivalent serial schedule for a schedule S of 2PL
transactions is the one in which transactions are ordered in the
same order as their first unlocks

® Conversion: by induction on the number n of transactions in a
legal schedule S

m Note: conversion requires swapping the order of read and write
operations of different transactions; while that is done, locks
and unlocks can be ignored; once the actions are arranged
serially, lock / unlock operations can be added

Lecture 2

D. Plexousakis CS460 Fall 2011

22

€ "\ Univ. of Crete D. Plexousakis CS460 Fall 2011

2-Phase Locking

® Conversion by Induction
mBase case: n=1; S is already a serial schedule
minduction:

Let S involve transactions T1, T2, ..., Tn: let Ti be the first
transaction to unlock an item by op. Ui(X). Then, it is possible
to move all read/write actions of Ti to the beginning of S
without passing any conflicting action.

Let Ti include an action WI(Y). If there existed an action Wj(Y)
In S that precedes Wi(Y), then Uj(Y) and Li(Y) must also
appear between Wj(Y) and Wi(Y).

We assumed that Ui(X) is the first unlock, hence it precedes
Uj(Y). This means that Ui(X) must also appear before Li(Y).
But then, Ti is not a 2PL transaction.

Lecture 2 23

D. Plexousakis CS460 Fall 2011

2PL and Deadlocks

® 2PL cannot prevent deadlocks
® Example: consider the following schedule :
L1(A), R1(A), L2(B), R2(B), W1(A), W2(B), L1(B), L2(A)
N7

denied

Each transaction waits for the other to release a lock

Lecture 2 24

D. Plexousakis CS460 Fall 2011

Beyond Simple 2PL

® Improvements to 2PL’s performance for allowing more concurrency:
m shared locks
m multiple granularities
m Inserts, deletes and phantoms
m other types of concurrency control mechanisms
® Shared Locks
m so far, locks have been of a single type: exclusive
m read operations do not conflict
m No need to lock exclusively for read
m SLi(X): “Ti requests a shared lock on X"
m XLi(X): “Ti requests an exclusive lock on X"
m Ui(X): “Ti releases lock on X"

Lecture 2 25

D. Plexousakis CS460 Fall 2011

Requirements

® Consistency
mAn action Ri(X) must be preceded by SLi(X) or XLi(X) with no
iIntervening Ui(X)
mAn action Wi(X) must be preceded by XLi(X) with no intervening Ui(X)
mAll locks must be followed by an unlock of the same element
® 2PL
mFor any 2PL transaction Ti, no SLi(X) or XLi(X) can be preceded by
Ui(X)
® Legality
mIf XLi(X) appears in a schedule, then there cannot be a following
XLj(X) or SLj(X) for j<>i without an intervening Ui(X)
mlf SLi(X) appears in a schedule, then there cannot be a following
XLj(X) for j<>i without an intervening Ui(X)

Lecture 2 26

D. Plexousakis CS460 Fall 2011

Example

® Consider the following 2PL transactions
T1: SL1(A), R1(A), XL1(B), R1(B), W1(B), U1(A), U1(B)
T2: SL2(A), R2(A), SL2(B), R2(B), U2(A), U2(B)

® A legal interleaved execution of T1, T2 is as follows:

T1 T2

SL1(A), R1(A)
SL2(A), R2(A), SL2(B), R2(B)
XL1(B) wait
U2(A), U2(B)
XL1(B), R1(B), W1(B)
UL(A), UL(B)

Lecture 2 27

D. Plexousakis CS460 Fall 2011

Upgrading Locks

® A transaction that wants to read and write an item, may first

obtain a shared lock on the item for reading and then upgrade it
to an exclusive lock for writing

® Example:

T1: SL1(A), R1(A), SL1(B), R1(B), XL1(B), W1(B), U1(A), U1(B)
T2: SL2(A), R2(A), SL2(B), R2(B), U2(A), U2(B)

T1 T2
SL1(A), R1(A)

SL1E). R1®) SL2(A), R2(A), SL2(B), R2(B)

XL1(B) wait

U2(A), U2(B)

Lecture 2 XL1(B), W1(B), UL(A), U1(B)

28

Univ. of Crete D. Plexousakis CS460 Fall 2011

Upgrading Locks

® Lock upgrading may lead to deadlocks
® Example:

T1 T2

SL1(A), R1(A)

SL2(A), R2(A)
XL1(A) wait

XL2(A) wait

Lecture 2 29

€) Univ. of Crete D. Plexousakis CS460 Fall 2011

Update Locks

® We can avoid deadlocks caused by lock upgrade by using
update locks:

m An update lock ULi(X) allows transaction Ti to read X but
not to write X

m Only an update lock can be upgraded to a write lock

m An update lock can be granted on X when there are
already shared locks on X

m Once there is an update lock on X, no additional locks are
allowed on X (otherwise such a lock would never be
upgraded to exclusive)

Lecture 2 30

D. Plexousakis CS460 Fall 2011

Example

T1: ULL(A), R1(A), XL1(A), W1(A), UL(A)
T2: UL2(A), R2(A), XL2(A), W2(A), U2(A)

T1

T2

UL1(A), R1(A)

XL1(A), W1(A), UL(A)

Lecture 2

UL2(A) wait

UL2(A), R2(A),
XL2(A), W2(A), U2(A)

31

€) Univ. of Crete D. Plexousakis CS460 Fall 2011

Increment Locks

Several transactions operate on DB items by simply adding or
subtracting constants

m E.g., money transfer between accounts, seat reservations

Such transactions commute with each other and their relative
order doesn’t matter

However, they don't commute with transactions that read or
write

Assume transactions may include operations of the form
INC(A,c), meaning that constant c is to be added to DB
element A

INC(A,c) stands for: Read(A,t); t:=t+c; Write(A,t);
Increment actions need increment locks: ILi(X)

Lecture 2 32

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Increment Locks

® Increment locks do not enable reads or writes
® Requirements:

m A consistent transaction can perform INCi(X) only if it is
preceded by ILi(X)

m In alegal schedule, any number of transactions can hold
an increment lock on item X at a time. If a transaction has
an increment lock on X, no other transaction can have a
shared or exclusive lock on X at the same time.

m INCIi(X) conflicts with Rj(X) and Wj(X) for j<>i
m INCIi(X) does not conflict with INCj(X)

Lecture 2 33

€ "\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Example

T1: SL1(A), R1(A), IL1(B), INC1(B), U1(A), UL(B)
T2: SL2(A), R2(A), IL2(B), INC2(B), U2(A), U2(B)

T1 T2

SL1(A), R1(A)

SL2(A), R2(A),IL2(B), INC2(B)
IL1(B), INC1(B)

U2(A), U2(B)
U1(A), UL(B)

Lecture 2 34

\ Univ. of Crete D. Plexousakis CS460 Fall 2011

Granularity Issues

® Locking works well, but should we lock small or large objects?
® If large objects (e.qg., relations) are locked
m Need few locks
m Low concurrency
® If small objects (e.qg., tuples, attributes) are locked
m Need more locks
m More concurrency
® We can do both.
m The bathroom metaphor:

Stall 1 Stall 2 | Stall 3 Stall 4

restroom

Lecture 2 35

TEAOG EvOTNnTOC

EKHAIAEYZH KAI AlA BIOY MAéHZH =§ EznA
ATt 1= -]

Evpwnaikn Evwon

Evpunaixé Kowuns Tapeio

Me ™ ouyxpnuato8étnon e ENAGSac kai g Eupwnaiki Evwang

XpnuarodoTnon

*To TTaPOV EKTTAIOEUTIKO UAIKO €XEI avaTITUXOEi OTA TTAQICIA TOU EKTTAIOEUTIKOU
EPYou Tou OI0AOKOVTA.

*To £pyo «AvolkTd AKadnuaika MaBiuaTta oto MNMavermioTApio KpATNG» £XEI
XPNMUATOOOTACEI HOVO T AvVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTtroicital aTo TTAQicIO ToUu ETmixelpnolakou Npoypduuartog
«EkTTaideuon kai Aia Biou MaBnon» kai ocuyxpnuatodoTeital atro TNV
EupwTraiki ‘Evwon (EupwTtraikd Koivwvikd Tauegio) kal atrd €Bvikoug TTOpouC.

EMIXEIPHZIAKO MPOTPAMMA
EKMAIAEYZH KAl AIA BIOY MAGHZH :-j EZ"A

e enévdyon TNy Uowvia. Tne yvuwon .
x =] Toimonovawm o
YNOYPTEIO MAIAEIAL KAl BPHIKEYMATAQN NIKO TAMEIO

Evpwnaiké Koivwviké Tapeio

* X %

* *
* *
*

Me tn ouyxpnparodotnon tng EAAadag kat tng Evpwmnaiknig Evwong

2NMEIWMAT

2NUEIWPA adeIodOTNONG

*To TTapdv UAIKO diaTiBeTal Je Toug Opouc TNG Gdelag xpriong Creative Commons
Avagopd, Mn Eutropiki Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] N paTayevaoTapn Aigbvic
EK500I’] Eéalpouvml TQ GUTOTsAr] Epya Tplva .X. PWTOYPOYIEG, 6|aypappam K.A.TT.,
TA OTTOIO EPTTEPIEXOVTAI O€ AUTO KAl T OTToia ava@épovTal padi e TOUG OPOUC XPNong
TOUG OTO «2Nueiwpa Xprions Epywv Tpitwv».

oS0

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()¢ Mn EpTtropiki opiletal n xpron:
—1tou eV mep\apBAvVEL AUECO 1) EUUECO OLKOVOULKO 0dEAOC amtd TNV XPron Tou £pyou, yLa To SLaVOUEN TOU
gpyou kot adelodoxo

—1tou eV mep\apBAVEL OLKOVOULKA cuVaAAayr) wc mpoUntoBeon yla Tt xprion r npocPfaocn oto £pyo

—1tou Sev pooTopilel oTo SLavopea Tou £pyou Kol adelod0x0 EUUECO OLKOVOULKO OdeAOG (m.X. Stadnuioslq)
aro tnVv npofoAr Tou £pyou o€ SLadLKTUAKO TOTO

*O BIKOIOUXOG UTTOPEI va TTAPEXEI OTOV ADEIOOOX0 EEXWPIOTN AdEIa VA XPNOIUOTIOIEI TO
EPYO YIQ ELTTOPIKN XPHoN, EPOCOV auTo Tou {NTNOEI.

2NUEIWHA AVO@POpPAC

Copyright TMavemotiuio Kpntng, AnuAtpng TMAeCoucAKNnG. «ZUCTAMOATA
Alaxeipiong Bacewv Agdopévwy. AlaAeggn 9n: Transactions - part 2».
‘Ekdoon: 1.0. HpakAeio/P€Bupvo 2015. AilaBeoiyo atrd 1n dikTuakn dleuBuvon:
http://www.csd.uoc.gr/~hy460/

