
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 

Συστήματα Διαχείρισης 

Βάσεων Δεδομένων 
Διάλεξη 9η: Transactions -  part 2 

 
Δημήτρης Πλεξουσάκης 

Τμήμα Επιστήμης Υπολογιστών 



1

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

 Comparison of Undo and Redo Logging:

 Undo logging: data must be written to disk immediately after a 

transaction finishes; potentially increases the number of I/O 

operations required

 Redo logging: modified blocks must be kept in buffers until the 

transaction commits and log has been flushed; potentially 

increases the number of buffers required by transactions

 Both may impose contradictory requirements during 

checkpointing

 Undo/Redo logging is more flexible than Undo or Redo logging

 … but is also more costly

Transaction Management



2

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

 Undo/Redo log records differ only in the update records: <T,x,v,w>
means that transaction T changed the value of DB element X from 
v to w

 Rule: before modifying any DB element X on disk, the update 
record <T,x,v,w> must appear on disk

 <COMMIT T> record may precede or follow any of the changes 
to the DB elements on disk

 more liberal than Undo or Redo logging

 For recovery, it permits either restoring the DB state or repeating 
the changes made. Policy:

 Redo committed transactions (earliest first)

 Undo incomplete transactions (latest first)

 Both are necessary to avoid incomplete recovery

Undo/Redo Logging



3

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Recovery with Undo/Redo Logging

 Example:

Read (A,t);  t  t2

Write (A,t);

Read (B,t);  t  t2

Write (B,t);

FLUSH LOG;

Output (A);

Output (B);

<START T>

<T,A,8,16>

<T,B,8,16>

<COMMIT T>

If failure occurs after <COMMIT T>

has been written on disk, T is  

treated as committed and the value

16 is written on disk for A and B

If failure occurs before <COMMIT T>

appears on disk, T is  treated as an

incomplete transaction and the value

8 is written on disk for A and B



4

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Recovery with Undo/Redo Logging

 An additional rule may be used in order to avoid situations where, 

due to delayed commitment, a transaction appears (to the user) 

to have committed, but the <COMMIT > record has not been 

written on disk

 a crash would cause such a transaction to be undone

Rule: A <COMMIT T> record must be flushed to disk as soon 

as it appears in the log

 Order of redo and undo during recovery:

 doesn’t really matter

 we still cannot prevent a committed transaction that must be  

redone to read a value written by an incomplete transaction 

that must be undone (dirty read)

 need to isolate such transactions (concurrency control)



5

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

 Nonquiescent checkpointing:

1. Write <START CKPT(T1,T2,…,Tk)> to log for active 

transactions T1,T2,…,Tk and flush the log

2. Write to disk all dirty buffers (those that contain changed DB 

elements)

3. Write <END CKPT> and flush the log

 Step 2 enforces the writing on disk of elements changed by 

incomplete transactions

 The following constraint must be observed though:

 A transaction may not write any values until it is certain not to 

abort

Checkpointing with Undo/Redo Logging



6

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

 Example:

<START T1>

<T1, A, 4, 5>

<START T2> 

<COMMIT T1>

<T2, B, 9, 10> 

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Checkpointing with Undo/Redo Logging

During the checkpoint, A and B will be flushed to 

disk.

if failure occurs at the end, T2 and T3 are considered

complete and are redone; T1 is considered to be 

complete and to have had its changes written on disk

if failure occurs before <COMMIT T3>, then T2 is 

considered complete whereas T3 is incomplete; redo

T2 by writing 15 for C on disk; no need to write 10 for

B; undo T3 by writing 19 for D;  if T3 were active at the

start of the checkpoint, we would need to check if other

changes by T3 need to be undone



7

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Concurrency Control

 I.e., how to maintain the DB in a consistent state in the presence of 
constraints when multiple transactions execute concurrently

 Example:

T1: Read(A) T2: Read(A)

A  A+100 A  A2

Write(A) Write(A)

Read(B) Read(B)

B  B+100 B B2

Write(B) Write(B)

Constraint:  A=B



8

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Schedules

T1 T2

Read(A); A  A+100

Write(A);

Read(B); B  B+100;

Write(B);

Read(A);A  A2;

Write(A);

Read(B);B  B2;

Write(B);

Schedule A A B

25 25

125

125

250

250

250 250



9

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Schedules

T1 T2

Read(A);A  A2;

Write(A);

Read(B);B  B2;

Write(B);

Read(A); A  A+100

Write(A);

Read(B); B  B+100;

Write(B);

Schedule B A B

25 25

50

50

150

150

150 150



10

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Schedules

T1 T2

Read(A); A  A+100

Write(A);

Read(A);A  A2;

Write(A);

Read(B); B  B+100;

Write(B);

Read(B);B  B2;

Write(B);

Schedule C A B

25 25

125

250 

125

250

250 250



11

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Schedules

T1 T2

Read(A); A  A+100

Write(A);

Read(A);A  A2;

Write(A);

Read(B);B  B2;

Write(B);

Read(B);B  B+100;

Write(B);

Schedule D A B

25 25

125

250 

50

150

250 150



12

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Schedules

T1 T2’

Read(A); A  A+100

Write(A);

Read(A);A  A1;

Write(A);

Read(B);B  B1;

Write(B);

Read(B);B  B+100;

Write(B);

Schedule E A B

25 25

125

125 

25

125

125 125



13

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Transaction Scheduling

 Only want to allow the execution of “good” schedules regardless of

 initial states

 transaction semantics

 Only the order of reads and writes matters   

 Example: given a schedule of the form

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

determine whether it should be allowed to proceed without causing 

inconsistency problems



14

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Transaction Scheduling

 Scheduler must chose a “correct” interleaving of transaction 
operations among all possible interleavings

 Recall that transactions should appear to execute in isolation

 Hence, a “correct” interleaving should behave as if the transactions 
involved in the schedule were executed in isolation

 Example:

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T2 Are the two equivalent?



15

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Transaction Scheduling

 Example: Which is the equivalent serial schedule of:

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

T1 must precede T2 in any equivalent schedule

T2 must precede T1 in any equivalent schedule

Sd cannot be rearranged into a serial schedule, hence Sd is not 
equivalent to any serial schedule, hence Sd is “bad”

But,  Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)  is good

T1  T2 T1  T2



16

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Transaction Concepts

 Transaction: sequence of ri(x), wi(x) actions

 Conflicting actions: r1(A)    w2(A)    w1(A)

w2(A)   r1(A)     w2(A)

 Schedule: represents chronological order in which actions are 

executed

 Serial schedule: no interleaving of transactions

 What about concurrent schedules?

 if they don’t involve conflicting actions, then any low-level 

synchronization mechanism is sufficient for scheduling



17

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Definitions

 Schedules S1, S2 are conflict equivalent if S1 can be transformed 

into S2 by a series of swaps on non-conflicting actions.

 A schedule is conflict serializable if it is conflict equivalent to some 

serial schedule.

 For a schedule S, its precedence graph P(S) is defined as follows:

Nodes: transactions in S

Arcs:  Ti  Tj whenever

pi(A), qj(A) are actions in S

pi(A) <S qj(A)

at least one of pi, qj is a write



18

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Results 

 Lemma  S1, S2 conflict equivalent  P(S1)=P(S2)

 Proof:  Assume P(S1)  P(S2)

Then,  Ti: Ti  Tj in S1 and not in S2

S1 = …pi(A)... qj(A)… pi, qj

S2 = …qj(A)…pi(A)... conflict

Hence, S1 and S2 cannot be conflict equivalent

 Note: P(S1)=P(S2) does not imply S1, S2 conflict equivalent

 Counterexample: 

S1=w1(A) r2(A)     w2(B) r1(B)

S2=r2(A) w1(A)     r1(B) w2(B)



19

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Results

 Theorem: P(S1) acyclic iff S1 conflict serializable

 Proof:

 (if) Assume S1 is conflict serializable

  Ss: Ss, S1 conflict equivalent

 P(Ss) = P(S1) 

 P(S1) acyclic since P(Ss) is acyclic

 (only if) Assume P(S1) is acyclic

Transform S1 as follows:
1. Take T1 to be transaction with no incoming arcs

2. Move all T1 actions to the front

3. We now have S1 = < T1 actions ><... rest ...>; remove T1 and 
incident arcs

4. Repeat above steps to serialize rest!



20

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Enforcing Serializability

 Option 1: allow any schedule; check for cycles in precedence graph 
(reactive)

 Option 2: prevent cycles in precedence graphs of schedules (proactive)

 Locking protocols are used to implement Option 2

 New actions:  lock (exclusive), unlock

 Scheduler maintains information about locks in a lock table

 Rule 1: well-formed transactions

 A transaction is well-formed when every operation on a database 
item X is preceded by a lock request on X and followed by an 
unlock request on X

 Rule 2: legal schedule

 A schedule is legal if no lock request is granted to a transaction Tj 
for a database item X when a transaction Ti has already been 
granted the lock to X



21

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

 2-Phase Locking: all lock requests precede all unlock requests

 Idea:                  Ti = ……. li(A) ………... ui(A) ……...

Concurrency Control

no unlock   no locks
# locks

held by

Ti

time

Growing Shrinking 

Phase              Phase



22

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

 Intuitively, each 2PL transaction may be thought to execute in its 

entirety at the moment it releases the first item

 The conflict-equivalent serial schedule for a schedule S of 2PL 

transactions is the one in which transactions are ordered in the 

same order as their first unlocks

 Conversion: by induction on the number n of transactions in a 

legal schedule S

 Note: conversion requires swapping the order of read and write 

operations of different transactions; while that is done, locks 

and unlocks can be ignored; once the actions are arranged 

serially, lock / unlock operations can be added

2-Phase Locking



23

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

2-Phase Locking

 Conversion by Induction

Base case: n=1; S is already a serial schedule

Induction: 

Let S involve transactions T1, T2, …, Tn; let Ti be the first 

transaction to unlock an item by op. Ui(X). Then, it is possible 

to move all read/write actions of Ti to the beginning of S 

without passing any conflicting action.

Let Ti include an action Wi(Y). If there existed an action Wj(Y) 

in S that precedes Wi(Y), then Uj(Y) and Li(Y) must also 

appear between Wj(Y)  and Wi(Y).

We assumed that Ui(X) is the first unlock, hence it precedes 

Uj(Y). This means that Ui(X) must also appear before Li(Y). 

But then, Ti is not a 2PL transaction.



24

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

 2PL cannot prevent deadlocks

 Example: consider the following schedule :

L1(A), R1(A), L2(B), R2(B), W1(A), W2(B), L1(B), L2(A)

denied

Each transaction waits for the other to release a lock

2PL and Deadlocks



25

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Beyond Simple 2PL

 Improvements to 2PL’s performance for allowing more concurrency:

 shared locks

 multiple granularities

 inserts, deletes and phantoms

 other types of concurrency control mechanisms

 Shared Locks

 so far, locks have been of a single type: exclusive

 read operations do not conflict

 no need to lock exclusively for read

 SLi(X): “Ti requests a shared lock on X”

 XLi(X): “Ti requests an exclusive lock on X”

 Ui(X): “Ti releases lock on X”



26

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Requirements

 Consistency

An action Ri(X) must be preceded by SLi(X) or XLi(X) with no 

intervening Ui(X)

An action Wi(X) must be preceded by XLi(X) with no intervening Ui(X)

All locks must be followed by an unlock of the same element

 2PL

For any 2PL transaction Ti, no SLi(X) or XLi(X) can be preceded by 

Ui(X)

 Legality

If XLi(X) appears in a schedule, then there cannot be a following 

XLj(X) or SLj(X) for j<>i without an intervening Ui(X)

If SLi(X) appears in a schedule, then there cannot be a following 

XLj(X) for j<>i without an intervening Ui(X)



27

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Example

 Consider the following 2PL transactions

T1: SL1(A), R1(A), XL1(B), R1(B), W1(B), U1(A), U1(B)

T2: SL2(A), R2(A), SL2(B), R2(B), U2(A), U2(B)

 A legal interleaved execution of T1, T2 is as follows:

T1 T2

SL1(A), R1(A)

XL1(B)   wait

XL1(B), R1(B), W1(B)

U1(A), U1(B)

SL2(A), R2(A), SL2(B), R2(B)

U2(A), U2(B)



28

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Upgrading Locks 

 A transaction that wants to read and write an item, may first 

obtain a shared lock on the item for reading and then upgrade it 

to an exclusive lock for writing

 Example:

T1: SL1(A), R1(A), SL1(B), R1(B), XL1(B), W1(B), U1(A), U1(B)

T2: SL2(A), R2(A), SL2(B), R2(B), U2(A), U2(B)

T1 T2

SL1(A), R1(A)

SL1(B), R1(B), 

XL1(B) wait

XL1(B), W1(B), U1(A), U1(B)

SL2(A), R2(A), SL2(B), R2(B)

U2(A), U2(B)



29

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Upgrading Locks 

 Lock upgrading may lead to deadlocks

 Example:

T1 T2

SL1(A), R1(A)

XL1(A) wait

SL2(A), R2(A)

XL2(A) wait



30

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Update Locks

 We can avoid deadlocks caused by lock upgrade by using 

update locks:

 An update lock ULi(X) allows transaction Ti to read X but 

not to write X

 Only an update lock can be upgraded to a write lock

 An update lock can be granted on X when there are 

already shared locks on X

 Once there is an update lock on X , no additional locks are 

allowed on X (otherwise such a lock would never be 

upgraded to exclusive)



31

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Example

T1: UL1(A), R1(A), XL1(A), W1(A), U1(A)

T2: UL2(A), R2(A), XL2(A), W2(A), U2(A)

T2T1

UL1(A), R1(A)

XL1(A), W1(A), U1(A)

UL2(A) wait

UL2(A), R2(A),

XL2(A), W2(A), U2(A)



32

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Increment Locks

 Several transactions operate on DB items by simply adding or 

subtracting constants

 E.g., money transfer between accounts, seat reservations

 Such transactions commute with each other and their relative 

order doesn’t matter

 However, they don’t commute with transactions that read or 

write

 Assume transactions may include operations of the form 

INC(A,c), meaning that constant c is to be added to DB 

element A

 INC(A,c) stands for: Read(A,t); t:=t+c; Write(A,t);

 Increment actions need increment locks: ILi(X)



33

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Increment Locks

 Increment locks do not enable reads or writes

 Requirements:

 A consistent transaction can perform INCi(X) only if it is 

preceded by ILi(X)

 In a legal schedule, any number of transactions can hold 

an increment lock on item X at a time. If a transaction has 

an increment lock on X, no other transaction can have a 

shared or exclusive lock on X at the same time.

 INCi(X) conflicts with Rj(X) and Wj(X) for j<>i 

 INCi(X) does not conflict with INCj(X)



34

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Example

T1: SL1(A), R1(A), IL1(B), INC1(B), U1(A), U1(B)

T2: SL2(A), R2(A), IL2(B), INC2(B), U2(A), U2(B)

T2T1

SL1(A), R1(A)

IL1(B), INC1(B)

U1(A), U1(B)

SL2(A), R2(A),IL2(B), INC2(B)

U2(A), U2(B)



35

Univ. of Crete D. Plexousakis  CS460 Fall 2011

Lecture 2

Granularity Issues

 Locking works well, but should we lock small or large objects?

 If large objects (e.g., relations) are locked

 Need few locks

 Low concurrency

 If small objects (e.g., tuples, attributes) are locked

 Need more locks

 More concurrency

 We can do both. 

 The bathroom metaphor:

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom



Τέλος Ενότητας 



Χρηματοδότηση 
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού 
έργου του διδάσκοντα. 

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει 
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. 

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 



Σημειώματα 



Σημείωμα αδειοδότησης 
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons 
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής 
Έκδοση.   Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,  
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης 
τους στο «Σημείωμα Χρήσης Έργων Τρίτων». 

 

 
 
[1] http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

•Ως Μη Εμπορική ορίζεται η χρήση: 

–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του 
έργου και αδειοδόχο 

–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο 

–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) 
από την προβολή του έργου σε διαδικτυακό τόπο 

 

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το 
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 
. 



Σημείωμα Αναφοράς 

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα 
Διαχείρισης Βάσεων Δεδομένων. Διάλεξη 9η: Transactions - part 2». 
Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη δικτυακή διεύθυνση: 
http://www.csd.uoc.gr/~hy460/ 

 


