
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης

Βάσεων Δεδομένων
Διάλεξη 10η: Transactions - part 3

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

1

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Locking on Hierarchies of DB Elements

 Assume there is a tree structure to the data

 Hierarchy of lockable elements (relations, tuples, attributes)

 Data organized in a tree (e.g., a B+-tree)

 Locking schemes seen so far perform poorly in such cases

 3 levels of DB elements:

 Relations are the largest lockable elements

 Each relation comprises one or more blocks

 Each block contains one or more tuples

 Need a new type of lock, called a warning lock

2

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Warning Locks

 Ordinary locks: S (shared), X (exclusive)

 Warning locks denote the intention to obtain a lock

 IS: intention to obtain a shared lock

 IX: intention to obtain an exclusive lock

 Rules:

 To place a S or X lock, start at the root of the hierarchy

 If at the element that we want to lock, request S or X lock

 If the element is further down the hierarchy, place a

warning of the appropriate kind at the current node

 Proceed to the appropriate child node and repeat until the

desired node is reached

3

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Warning Locks

 Compatibilities:

 An IS on a node N is only incompatible with an X lock on N

 An IX on a node N is incompatible with S and X on N

 Potential conflicts that may arise with IS/IS, IS/IX, IX/IS and

IX/IX will be resolved at a lower level

 An S on N is compatible with IS and S

 An X on N is incompatible with every other type of lock

 Can only lock existing items, but not items that might later be

inserted.

 To handle insertions / deletions:

 Get exclusive lock on A before deleting A

 At insert A operation by Ti,Ti is given exclusive lock on A

4

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Phantoms

 Phantoms are tuples that should have been locked but they

weren’t because they didn’t exist at the time the locks were

granted

 Example:

 relation R (E#,name,…)

 constraint: E# is key

 use tuple locking

R E# Name ….

o1 55 Smith

o2 75 Jones

5

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Example

T1: Insert <99,Gore,…> into R

T2: Insert <99,Bush,…> into R

...

...
T1 T2

S1(o1) S2(o1)

S1(o2) S2(o2)

Check Constraint Check Constraint

Insert o3[99,Gore,..]

Insert o4[99,Bush,..]

6

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Example

Solution relies on using multiple granularities: before insertion at node

N, lock parent of N in exclusive mode

T1 T2

X1(R)

X2(R) wait

Check Constraint

Insert o3[99,Gore,..]

U(R)

X2(R)

Check Constraint

tuple with e# 99 already exists

7

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

 Data elements may be organized in a tree-shaped structure (due
to their inter-link pattern)

 e.g., data organized in a B-tree

 Despite the fact that DB elements are disjoint, independent pieces
of data, the only way to access a particular node in a tree-shaped
structure is through the parent node

 Different opportunities for applying locking policies along paths to
data elements arise

 2PL is too rigid in such cases

 assuming that the granularity of locking is that of tree nodes,
concurrent access to the B-tree is close to impossible

 each transaction starts at the root and locks all nodes in a
path; root cannot be unlocked until all locks are obtained

Tree Protocols

8

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Tree Protocols

 More problems with 2PL

 inserts or deletes may cause changes to the root node;

exclusive or update locks must be used for the root node

 read-only transactions will be able to execute concurrently

 more opportunities would arise if the lock to the root could be

released early

… but this could violate 2PL and serializability

 Need specialized protocols for tree-structured data

 These protocols may violate 2PL

 Must exploit the order of access to nodes for ensuring

serializability

9

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Rules of Access to Tree-Structured Data

 The Tree Protocol

 assumptions: single lock mode; consistent transactions; legal

schedules

 Rules:

1. The first lock of any transaction may be at any tree node

2. Subsequent locks are granted to a transaction only if the

transaction already holds a lock on the parent node

3. Nodes can be unlocked at any time

4. Nodes that are locked by a transaction may not be relocked

(even if there still exists a lock on the node’s parent)

10

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Does it Work?

 It enforces a serial order in the execution of transactions:

 if in schedule S, Ti and Tj lock a common node and Ti locks it
first, then Ti precedes Tj

 A precedence graph can be constructed to represent these
precedence relations among transactions in a schedule

 If it is acyclic, any topological order of the transactions is an
equivalent serial schedule

 Claim: schedules following the tree protocol always produce
acyclic precedence graphs

 if two transactions lock several common elements, then they
are all locked in the same order

 if Ti locks the root before Tj, then Ti locks every node that is
common to Ti and Tj before Tj does.

11

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Ensuring Serializability

 We can prove that, for every schedule S following the tree protocol,

there is some serial order equivalent to S

 Proof sketch: (by induction on the number of tree nodes)

 Base case: 1 node (root); follows by the previous observations

 Induction hypothesis: there is a serial order for all the transactions

that lock nodes in any subtree containing more than one node

 Induction: Must merge the serial orders of the subtrees. Consider for

each subtree the set of transactions that lock one or more nodes in

the subtree. These sets have as common elements the transactions

that lock the root. These transactions lock every common node in

the same order they lock the root. Build a serial order for the entire

set by starting with the transactions that lock the root in the

appropriate order. The rest only need to be placed consistently with

the serial order of their subtrees.

12

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Ensuring Serializability

 Example: Assume there are 10 transactions, T1, T2, …, T10 of

which T1, T3, T4, T6 lock the root in this order. Assume that the

root node has two children nodes: first node is locked by the

transactions with an odd index and T4 and the second is

locked by the transactions with an even index and T3.

 Order in the 1st subtree: T9, T1, T5, T7, T3 ,T4

 Order in the 2nd subtree: T8, T3, T10 , T4, T2, T6

T1

T3

T4

T6

T9

T5

T7

T2

T8 T10

13

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Timestamp-based Concurrency Control

 Basic ideas:

 each transaction is assigned a timestamp

 the timestamps of the transactions that last read and write
each DB element are recorded

 these values are compared for ensuring that the serial
schedule according to the transactions’ timestamps is
equivalent to the actual schedule

 An optimistic approach: it assumes that no non-serializable will
appear; problems are fixed only when some violation occurs

 fixing problems involves only abort and restart

 Locking-based methods are pessimistic (preventive)

 Optimistic scheduling is better than locking when many of the
transactions are read-only

14

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Timestamps

 Each transaction T is assigned a unique timestamp TS(T)

 Timestamps are assigned in ascending order when

transactions begin

 Timestamps are generated by:

 using the system clock

 a counter maintained by the scheduler: counter is

incremented by 1 each time a transaction starts

 Scheduler must maintain a table of active transactions and

their respective timestamps

15

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Timestamps

 In order to use timestamps for concurrency control, each DB

element is associated with two timestamps and an additional

bit:

 RT(X): read time of X = highest timestamp of a transaction

that has read X

 WT(X): write time of X = highest timestamp of a transaction

that has written X

 C(X): commit bit for X = 1 iff the most recent transaction to

write X has already committed

 This bit is used in order to avoid a situation where some

transaction T reads data written by a transaction U that later

aborts (dirty read on uncommited data)

16

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Problems

 Scheduler assumes that the timestamp order of transactions is

also the serial order in which they must appear to execute

 Scheduler must check that whenever a read / write occurs,

what happens could have happened if each transaction

executed instantaneously at the moment of its timestamp; if

not problems may occur:

 Read too late: T tries to read X, but WT(X) indicates that X

was written after T executed, i.e., TS(T) < WT(X). T must

not read X and the scheduler must abort T.

 Write too late: T tries to write X, but RT(X) indicates that

some other transaction should have read the value written

by T but it read some other value (WT(X) < TS(T) < RT(X))

17

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

More Problems

 T reads X and X was last written by U; TS(U) < TS(T); What if

after T reads X (the value written by U), U aborts?

 must delay T’s read until U commits or aborts

 can check C(X) to determine whether U has committed

 TS(T) < TS(U) and U writes X first; when T tries to write, do

nothing

 Thomas write rule: writes can be skipped when a write with

a later write-time is already in place

 Policy: when T writes element X, the write is considered

tentative and may be undone if T aborts; C(X) is set to 0 and

the scheduler makes a copy of the old value of X and its

previous WT(X)

18

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Timestamp-based Scheduling Rules

1. If the scheduler receives a request by transaction T to read X

then:

a. If TS(T) >= WT(X) then

i. If C(X)=1, grant the request. If TS(T) > RT(X), set

RT(X):=TS(T); otherwise do not change RT(X)

ii. If C(X)=0, delay T until C(X) becomes 1 or the transaction

that wrote X aborts

b. If TS(T) < WT(X) then abort T and restart it with a new,

higher timestamp

19

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Timestamp-based Scheduling Rules

2. If the scheduler receives a request by transaction T to write X

then:

a. If TS(T) >= RT(X) and TS(T) >= WT(X) then

i. Write the new value for X

ii. Set WT(X):=TS(T)

iii. Set C(X):=0

b. If TS(T) >= RT(X) but TS(T) < WT(X) then there is already

a later value for X.

i. If C(X)=1, ignore the write by T

ii. If C(X)=0, delay T

20

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Timestamp-based Scheduling Rules

3. If the scheduler receives a request by transaction T to commit

then, all the DB elements written by T must be found and their

commit bit must be set to 1

4. If the scheduler receives a request by transaction T to abort or

T must be rolled back then, any transaction waiting on X that T

wrote must repeat its attempt to read or write

 Variations of timestamp based scheduling that use multiple

versions of the DB can be used when DB elements are disk

blocks or pages

21

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Timestamp-based Scheduling vs Locking

 Timestamping outperforms locking in situations where either
the majority of transactions are read-only or conflicting
operations are scarce

 Locking performs better in high-conflict situations:

 Locking will delay transactions as they wait for locks; even
if deadlock occurs, one of the transactions will be rolled
back

 But, if rollbacks are frequent, even more delay will be
incurred

 Commercial systems follow a middle-of-the-road approach:

 Transactions are divided in read-only and read/write

 Read/write are executed in 2PL; read-only are executed
using timestamp-based concurrency control

22

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Validation-based Concurrency Control

 Another optimistic concurrency control strategy:

 Transactions are allowed to access data without locks

 Check whether transactions have executed in a serializable

manner

 Just before a transaction starts to write values of DB

elements, it goes through a validation phase where the

sets of elements it has read and will write are compared

with the write sets of other transactions

 Transactions execute in 3 phases

 Read

 Validate

 Write

23

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Validation-based Concurrency Control

 Each transaction that successfully validates may be thought as
executing at the moment that it validates

 A validation-based scheduler can use the serial order implied
by the validation times of transactions in order to determine
whether the transactions’ behaviors are consistent with it

 Scheduler maintains three sets:

 START: set of transactions that have started but not yet
completed validation; START(T):time at which T started

 VAL: set of transactions that have been validated but not
yet finished the writing phase; VAL(T):time at which T
validated

 FIN: set of transactions that have completed phase 3;
FIN(T): time at which T finished

24

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Validation Rules

 RS(T): the set of DB elements that T reads

 WS(T): the set of DB elements that T writes

 When the validation of T is attempted:

1. Compare RS(T) with WS(U) for every U s.t. FIN(U) >

START(T) and check whether RS(T)  WS(U) = 

2. Compare WS(T) with WS(U) for every U s.t. FIN(U) >

VAL(T) check whether WS(T)  WS(U) = 

25

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Comparison of Concurrency Control Mechanisms

 Storage Utilization:

 Locking: space required in the lock table is proportional to
the number of DB elements locked

 Timestamps:

 Naïve approach: store read and write times for all DB
elements

 Timestamps earlier than that of the earliest active transaction
do not matter; only the timestamps for the recently accessed
elements are needed

 Validation: read/write sets and timestamps for each active
transaction

 Timestamping and validation may use a little more space
than locking

26

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Comparison of Concurrency Control Mechanisms

 Delay Effects: depend on the degree of interaction, i.e., the
likelihood that a transaction will access an element that is also
being accessed by another transaction

 Locking delays transactions but avoids rollbacks (except in
deadlock situations) even when interaction is high.
Timestamps and validation do not delay transactions but
may cause them to rollback, which in turn results in more
delays

 If interaction is low, neither timestamps nor validation will
cause many rollbacks and may be preferable to locking

 If rollback becomes necessary, timestamps discover
problems earlier than validation (which permits transactions
to perform all work before deciding whether it needs to be
rolled back)

27

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

 Conflict serializability guarantees serializability independently of

what transactions actually do

 But…. it is a quite strong condition on schedules of concurrent

execution

 A weaker notion that still guarantees serializability is view

serializability

 The main difference between conflict and view serializability

appears in situations where a transaction writes a value that no

other transaction reads (but possibly writes later)

 under view serializability such a write action can be

repositioned in the schedule (might be prohibited under conflict

serializability)

View Serializability

28

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Definitions

 Let S1 and S2 be two schedules involving the same set of

transactions;

 let TI be a hypothetical transaction that writes initial values for

each DB element read by any transaction in the schedule;

 let TF be a hypothetical transaction that reads every element

written by the transactions after the schedule ends

 for every Ri(A), we can find the Wj(A) that most closely

precedes it; transaction Tj is called the source of the read

action

 S1 and S2 are called view equivalent if for every read action in S1

its source is the same in S2, and vice versa.

 A schedule that is view equivalent to a serial schedule is called

view serializable

29

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Example

 Consider the following schedule S:

T1: R1(A) W1(B)

T2: R2(B) W2(A) W2(B)

T3: R3(A) W3(B)

 only the value of B written by T3 is read by TF

 S is not conflict serializable

 sources for read actions:

o source of R2(B) is TI

o source of R1(A) and R3(A) is T2

o source of RF (A) is T2

o source of RF (B) is T3

 S is view serializable;

 equivalent serial schedule: (T2 , T1 , T3)

30

Univ. of Crete D. Plexousakis CS460 Fall 2011

Lecture 3

Testing View Serializability

 Polygraphs: a generalization of precedence graphs

 a node for each transaction and additional nodes for the two

hypothetical transactions

 an arc from Tj to Ti for each action Ri(X) with source Tj

 if Tj is the source of Ri(X) and Tk is another transaction that

writes X, Tk must appear either before Tj or after Ti . This is

denoted by two arcs in the graph (can choose one of the two).

Special cases:

 if Tj is TI, then the arc from Ti to Tk is introduced

 if Ti is TF, then the arc from Tk to Tj is introduced

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:

–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο

–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο

–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Διάλεξη 10η: Transactions - part 3».
Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη δικτυακή διεύθυνση:
http://www.csd.uoc.gr/~hy460/

