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ypical Memory Hierarchy

CPU Die Bus
L1 Cache Line ___ L1 Cache
L2 Cache Line_> L2 Cache
T Main Memory

Memory page

Hard disk
Swap file
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Memory Hierarchy

L1 Cache L2 Cache Main memory
Block size 16--32 bytes 32--64 bytes |4--16 KB
Size 16--64 KB 256KB--8MB | 4--16 GB
Hit time 1 Clock Cycle 1--4 Clock 10--40 Clock
Cycles Cycles
Backing Store | L2 Cache Main memory | Disk
Block Random Random Replacement
replacement strategies
Miss penalty | 4--20 clock 40--200 clock | ~6M clock
cycles cycles cycles

Fall 2014
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Storage Capacity
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Storage Cost
A
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Latest Disk Performance Measures

® The fastest enterprise disks revolve at 15000 Performance Improvement
revolutions per minute (rpm) (e.g. Seagate
Cheetah 15K) 10000

@® By late 2010 the fastest high-performance
drives were capable of

¢ an average latency of 2ms 1000
+ an average seek time of between 3 and
6ms and 100
¢ maximum data transfer rates in the region
of
* 133 MB/s for Parallel ATA drives (Ultra 10

ATA/133)
* 600 MB/s for Serial ATA drives (SATA 600) 1

* 640 MB/s for SCSI drives (Ultra-640 SCSI)

1980 2000
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Pages and Blocks

® Data files decomposed into pages
+ Fixed size piece of contiguous information in the file
+ Unit of exchange between disk and main memory
® Disk divided into page size blocks of storage

+ Page can be stored in any block

® Disk-block access methods must take care of some information within
each block, as well as information about each block:

¢ allocate records (tuples) within blocks
¢ support record addressing by address and by value

+ support auxiliary (secondary indexing) file structures for more efficient
processing

® Application’ s request to read item satisfied by the following:
+ Read page containing item to buffer in DBMS
¢ Transfer item from buffer to application
® Application’ s request to change item satisfied by the following:
+ Read page containing item to buffer in DBMS (if it is not already there)

+ Update item in DBMS buffer
+ (Eventually) copy buffer page to page on disk 7
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Block Access Time

® Time= Seek Time+ Rotational Delay+ Transfer Time+ Other
® Rule of Thumb
+ Random 1/O: Expensive
+ Sequential I/0: Much less
® Example:1 KB Block Size
+Random I/O: ~ 20 ms
¢ Sequential I/0: ~ 1 ms
® Improving Access Time of Secondary Storage
+ Organization of data on disk
+ Disk scheduling algorithms
* e.g., elevator algorithm
+ Multiple disks
o Mirrored disks
+ Prefetching and large-scale buffering
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Complete Model Specification

® Data resides on some N disk blocks
¢ Implies N “B data elements!

® Computation can be performed only
on data in main memory

¢ Main memory can store M blocks

¢ Data size much larger than main
memory size

¢ N >> M: interesting case
® Model of Computation

¢ Minimum transfer unit: a page = b
bytes or B records

¢ n records -> n/B = N pages
¢ |/O complexity: in number of pages

CPU

Fall 2014

Memory
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Reducing Number of Page Transfers

CPU

® DBMS seek to minimize the number of block transfers between the disk
and memory

+ We can reduce the number of disk accesses by keeping as many
blocks as possible in main memory
® Keep cache of recently accessed pages in main memory
+ Goal: request for page can be satisfied from cache instead of disk
+ Purge pages when cache is full
* For example, use LRU algorithm

* Record clean/dirty state of page (clean pages don’t have to be

written) N
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Accessing Data Through Cache

DBMS
Page transfer
:. N~
Application cache

)
[

:
Item
transfer

@® Buffer - portion of main memory used to store copies of disk blocks

® Buffer manager - subsystem responsible for allocating buffer space in
main memory and handling block transfer between buffer and disk 1

block

Page frames
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Buffering Strategies

® Double Buffering: Two buffers can be used to allow processing and 1/O to
overlap

+ Suppose that a program is only writing to a disk
+ CPU wants to fill a buffer at the same time that I/O is being performed

« If two buffers are used and I/O-CPU overlapping is permitted, CPU can
be filling one buffer while the other buffer is being transmitted to disk

+ When both tasks are finished, the roles of the buffers can be exchanged
+ The actual management is done by the OS

® Multiple Buffering: instead of two buffers any number of buffers can be
used to allow processing and I/O to overlap

@ Buffer pooling:
o There is a pool of buffers

+ When a request for a block is received, OS first looks to see that the
block is in some buffer

«+ If not there, it brings the block to some free buffer. If no free buffer 1
exists, it must choose an occupied buffer (usually LRU strategy is used)
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Basic Buffer Concepts
® Two variables maintained for each frame in
buffer pool
+Pin count Page Requests from Higher Levels
- Number of times page in frame has [
been requested but not released BUFFER POOL
- Number of current users of the page
. Set to 0 initially d_/l(&/‘
: : isk page
¢ Dirty bﬁ | ~_
- Indicates if page has been
modified since it was brought free frame
into the buffer pool from disk
. Turned off initially MAIN MEMORY J&
® Why Pin a Page? DISK
+ Page is in use by a query/transaction
¢ Log/recovery protocol enforced ordering
+ Page is hot and will be needed soon, Choice of frame dictated
e.g., root of index trees by rep|acement po“cy 1
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When a Page is Requested ...

® If requested page is not in pool:
# Choose a frame for replacement

Fall 2014

- If a free frame is not available, then choose a frame with pin count 0
- All requestors of the page in frame have unpinned or released it

+If dirty bit is on, write page to disk
+ Read requested page into chosen frame
+Pin the page (increment the pin count)
- A page in pool may be requested many times
+Return address of page to requestor

14
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Buffer Management: Parameters

® \What are the design parameters that distinguish one BM from another?
+ Buffer allocation: subdividing the pool
* \Who owns a subdivision?
- Global? Per query? Per relation?
* How many pages to allocate? (working set)
+ Replacement policy
* Which page to kick out when out of space?
* Policy can have big impact on number of I/Os
- Depends on the access pattern
¢ Load control
* Determine how much load to handle
® Frame is chosen for replacement by a replacement policy:
+ Least-recently-used (LRU)
+ Most-recently-used (MRU)
o First-In-First-Out (FIFO)
# Clock / Circular order 15
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Buffer Replacement Policies

@® Least-recently-used (LRU)
+ Buffers not used for a long time are less likely to be accessed

¢ Rule: Throw out the block that has not been read or written for the
longest time

* Maintain a table to indicate the last time the block in each buffer has
been accessed

* Each database access makes an entry in table
- Expensive ?
@® First-In-First-Out (FIFO)

+ Rule: Empty buffer that has been occupied the longest by the same
block

* Maintain a table to indicate the time a block is loaded into the buffer
* Make an entry in table each time a block is read from disk

- Less maintenance than LRU

- No need to modify table when block is accessed 16
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Buffer Replacement Policies

@® Clock Algorithm
« Buffers arranged in a circle 0
. Each buffer associated with a Flag (0 or 1) 0 1
- Flag set to 1 when
- A block is read into a buffer
. Contents of a buffer is accessed 0 1
+ A “hand” points to one of the buffers 1
- Rotate clockwise to find a buffer with Flag=0
. If it passes a buffer with Flag=1, setitto 0

+ Rule: Throw out a block from buffer if it remains unaccessed when the
hand

- makes a complete rotation to set its flag to 0, and
. another complete rotation to find the buffer with its 0 unchanged

17
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LRU-K

® Self-tuning

¢ Approach the behavior of buffering algorithms in which page sets with
known access frequencies are manually assigned to different buffer
pools of specifically tuned sizes

+ Does not rely on external hints about workload characteristics
+ Adapts in real time to changing patterns of access
¢ Provably optimal
® GUESS when the page will be referenced again
¢ Problems with LRU?
* Makes decision based on too little info

* Cannot tell between frequent/infrequent refs on time of last
reference

* System spends resources to keep useless stuff around

18
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Examples

® Example 1

+ CUSTOMER has 20k tuples

¢ Clustered B+-tree on CUST _ID, 20 b/key

+ 4K page, 4000 bytes useful space

+ 100 leaf pages, 10000 data pages

+ Many users (random access)

+ Buffer size: 101

¢ References L1,R1,L2,R2,L3,R3,...

+ Probability to ref Li is .005, to ref Ri is .00005
® Example 2

+ R has 1M tuples

¢ A bunch of processes ref 5000 (0.5%) tuples

+ A few batch processes do sequential scans

/\

Fall 2014
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LRU-K Basic Concepts

® |dea: Take into account history — last K references

® Parameters:
¢ Pages N={1,2,...,n}
+ Reference string ry,ry,..., 1y, ...
o1, = p for page p attime t
¢ b, = probability that r,,,=p
+ Time between references of p: |, = 1/b,

Fall 2014

¢ Classic LRU: K =1 (LRU-1), keeps track of the last reference only

20
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Fall 2014

LRU-K Algorithm

® Backward K-distance b,(p,K):
» #references from t back to the Kth most recent reference to p

® b,(p,K) = INF if Kth reference doesn’t exist

® Algorithm:

+ Drop page p with max Backward K-distance b,(p,K)

® Ambiguous when infinite (use subsidiary policy, e.g., LRU)

® LRU-2 is better than LRU-1

o Why?

21
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Problem 1

® Early page replacement
¢ Page b,(p,K) is infinite, so drop
+What ifitis a rare but “bursty” case?
* Introduce a time-out period, say 5 sec
¢ What if there are Correlated References?
1.Intra-transaction, e.g., read tuple, followed by update
2.Transaction Retry

3.Intra-process, i.e., a process references page via 2 transactions,
e.g., update RIDs 1-10, commit, update 11-20, commit, ...

* In contrast, Uncorrelated References are inter-process pairs of
references, i.e., two processes reference the same page
independently

22
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Example

® With or without timeouts, invalid conclusions may result, e.g., assume
the intra-transaction correlated reference pair — read/update

o Without

e Algorithm sees p (read)

* Drops it (infinite b,(p,K)) (wrong decision)
¢ With

* Algorithm sees p (read)

* Sees it again before timeout (update)

* Keeps it around (wrong decision again)

® Timeout should still be used

+ But inter-arrival time should be computed based on uncorrelated
access

23
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Addressing Correlation
@® Correlated Reference Period (CRP)

+ No penalty or credit for refs within CRP
¢ |,: interval from end of one CRP to begin of the next

CRP CRP

Fall 2014
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Problem 2

® Reference Retained Information

+ Algorithm needs to keep info for pages that may not be resident
anymore. Consider the following LRU-2 example where p is
referenced periodically, but in periods longer than t:

* p is referenced and comes in for the first time
* b,(p,2) = INF, p is dropped
* p is referenced again

* If no info on p is retained, p may be dropped again, then referenced
again, then dropped again etc.

* Though the page is frequently referenced, we would have no
history about it to recognize this fact

25
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Solution to Problem 2

@® Retained Information Period (RIP)

¢ Period after which we drop information about page p

* [f a page p that has never been referenced before, suddenly becomes
popular enough to be kept in buffer, we should recognize this fact as long
as two references to the page are no more than the RIP apart

+ Upper bound for RIP: max Backward K-distance of all pages we want
to ensure to be memory resident

26
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Data Structures and Algorithm for LRU-K

® HIST(p) — history control block of page p = Time of K most recent
references to p - correlated

® LAST(p) — time of most recent ref to page p, correlated references OK
® Maintained for all pages p: b.(p,K) < RIP
@ Algorithm

If p is in the buffer { // update history of p
1f (t - LAST(p)) > CRP { // uncorrelated ref
// close correlated period and start new
for 1 = K-1 to 1
move HIST(p,1) 1nto slot HIST(p,1

+1)

HIST(p,1) = t
¥
LAST(p) = t

} 27
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LRU-K Algorithm (Cont)

else { // select replacement victim
min = t
for all pages q in buffer {
if (t - LAST(p) > CRP // eligible for replacement
and HIST(q,K) < min { // max Backward-K
victim = q
y min = HIST(q,K)
1f victim dirty, write back before dropping
Fetch p into the victim’s buffer
1f no HIST(p) exists {
allocate HIST(p)
for 1 = 2 to K HIST(p,1) = O
} else {
for 1 = 2 to K HIST(p,1) = HIST(p,1-1)

HIST(p,1) = t // last non-correlated reference
LAST(p) = t // last reference
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Domain Separation

® Classify pages as types

+ Each type has a domain of buffers
® LRU within domain
® Example: B+-tree index

¢ One domain per index level

+ One domain per leaf/data pages
® Problems

¢ Static domains, i.e., dynamics of page references may vary in
different queries

+ Does not differentiate the relative importance between different types
of pages
@ Extensions
¢ Priority ranking for domains to find free pages

+ Dynamically vary domain sizes
29
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“New” Algorithm in INGRES

@ Each relation needs a working set
+ Buffer pool is subdivided and allocated on a per-relation basis
+ Each active relation is assigned a resident set which is initially empty

¢ The resident sets are linked in a priority list; unlikely reused relations
are near the top

+ Ordering of relation is pre-determined, and may be adjusted
subsequently

¢ Search from top of the list
¢ With each relation, use MRU
® Pros
+ A new approach that tracks the locality of a query through relations
® Cons
+ MRU is not always good
+ How to determine priority (especially in multi-user context)?
¢ Costly search of list under high loads 30
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Hot-Set Model

® Hot set: set of pages over which there is a looping behavior
+ Hot set in memory implies efficient query processing

o #page faults vs size of buffers — points of discontinuities called hot
points

® Key ideas
+ Give query |hot set| pages
+ Allow <=1 deficient query to execute

+ Hot set size computed by query optimizer (provides more accurate
reference pattern)

+ User LRU within each partition
® Problems
+ LRU not always best and allocate more memory

+ Over-allocates pages for some phases of query
31
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DBMIN: DBMS Reference Patterns

® Based on “Query Locality Set Model”
+ DBMS supports a limited set of operations
+ Reference patterns exhibited are regular and predictable
+» Complex patterns can be decomposed into simple ones

® Reference pattern classification

¢ Sequential
* Straight sequential (SS)
* Clustered sequential (CS)
* Looping sequential (LS)

¢ Random
* Independent random (IR)
* Clustered random (CR)

¢ Hierarchical
* Straight hierarchical (SH)
 Hierarchical with straight sequential (H/SS)
 Hierarchical with clustered sequential (H/CS)
 Looping hierarchical (LH) 32
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¢ #pages? 1

+ Replacement algorithm? R4
Replaced with next one

Sequential Patterns

® Straight sequential (SS)
+ File scan without repetition
* E.g., selection on an unordered relation

Table R

R1
R2
R3

R5

Fall 2014
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Sequential Patterns (Cont)

@® Clustered sequential (CS)

o Like inner S for merge-join (sequential
with backup)

¢ Local rescan in SS
¢ Join condition: R.a=S.a

+ #Pages? #pages in largest cluster
+ Replacement algo? FIFO/LRU

Y

ANEE Y

QOIN|NN| B DD

AL\

Fall 2014
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® Looping sequential (LS)
+ Sequential reference be repeated
several times

*e.g., Like inner S for nested-loop-
join

¢ #Pages? As many as possible
+ Replacement algo? MRU

Sequential Patterns (Cont)

Y

\

OIN | P DDA
NI A\

<
<

NN PR PA DD

Fall 2014
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Random Pattterns

® Independent Random (IR)
+ Genuinely random accesses
* e.g., hon-clustered index scan

+ #Pages? 1 page (assuming low prob. of
reaccesses)

+ Replacement algo? Any!

R1

R2

R3

R4

R5

R6

Fall 2014
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Random Patterns

@® Clustered Random (CR)

+ Random accesses which
demonstrate locality
* e.g., join with inner, non-
clustered, non-unique index on
join column

+ #Pages? #pages in largest cluster
+ Replacement algo? FIFO/LRU

R1

R2

S1

R3

S2

R4

S3

R5

5S4

R6

S5

S6

Fall 2014
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Hierarchical Patterns

@® Straight Hierarchical (SH)

¢ Access index pages ONCE (retrieve a
single tuple)
* Like SS

+ Followed by straight sequential scan
(H/SS)

*Like SS

+ Followed by clustered scan (H/CS)
*Like CS

R1

R2

R3

R4

R5

R6

Fall 2014
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Hierarchical Patterns

@® Looping Hierarchical (LH)

+ Repeatedly traverse an index, e.g., when inner index in join is
repeatedly accessed

+ #Pages? Height of tree
+ Replacement algo? LIFO (to keep the root)

Fall 2014
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What's Implemented in DBMS?

® DB2 & Sybase ASE
+ Named pools to be bound to tables or indexes
+ Each pool can be configured to use clock replacement or LRU (ASE)
+ Client can indicate pages to replace

® Oracle

+ A table can be bound to 1 to 2 pools, one with higher priority to be
kept

® Others
+ Global pools with simple policies

: ‘@3 CSD Univ. of Crete Fall 2014
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Fall 2014

Overview of Oracle Architecture

PMON SMON

RECO

S000

PO00

A

Redo Log \

SGA Buffer
Shared SQL Area Database Buffer Cache T )
4
4,000,000 KByte 1,200,000 KByte 2,100 KByte
\ V * /
DBWO CKPT LGWR
Server / \ *
* —— Data File @
————— Raw Device
USER — \~_
—_— N

Total SGA Size :

1700 Mbyte

Fixed Size :
70 Kbyte

Variable Size :

490 MByte

TL-812

—>» | ARCH

Archive Log Mode(50M)
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Memory Structure : Shared Pool

Shared SQL

Area

Control Structures
for examples;

Locks

Library

Cache handles
and so on ...

-

Shared Pool

PL/SQL Procedures
and Package

for example:

Character Set
Conversion

Memo

Network Security
Attributes

Qnd soon .. )

( Reusable
Runtime

~

/Control Structua:s

Memory /

Fall 2014

® Shared Pool Contents
- Text of the SQL or PL/SQL statement
- Parsed form of the SQL or PL/SQL statement
- Execution plan for the SQL or PL/SQL
statements

- Data dictionary cache containing rows of data
dictionary information

® Library Cache
- shared SQL area
- private SQL area
- PL/SQL procedures and package
- control structures : lock and library cache
handles
® Dictionary Cache
- names of all tables and views in the database
- names and datatypes of columns in database
tables
- privileges of all Oracle users
® SHARED_POOL_SIZE 42
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Memory Structure :Database Buffer Cache

e Database Buffer Cache holds copies of data blocks read from disk

e All users concurrently connected to the system share access to the buff
er cache

e Dirty List
e LRU List
® Size = DB_BLOCK_SIZE * DB_BLOCK_BUFFERS

Ak
PR
an, e,

D
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ety

ey -;.':-1':1'.'
----------------

ooy
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Memory Structure :Redo Log Buffer

® Circular buffer containing information about changes made to the databa
se

® Saves Redo entries
® Redo entries are used in Database Recovery
® DBWR writes contents of Redo Log Buffer to Online Redo Log

® LOG_BUFFER
————————— change vector #1
change vector #1

-~
~

T~ change vector #1

44
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Overall Cache Hit Ratio

® DBMS buffer tuning (Oracle 9i)

® Cache hitratio= (# logical read - # physical read) / #
logical read

® Ideally, hit ratio > 80%

® Overall buffer cache hit ratio for entire instance:

SELECT (Pl.value+P2.value-pP3.value)/(Pl.value+P2.value)
FROM v$sysstat P1l, v$sysstat P2, v¥sysstat P3

WHERE Pl.name = 'db block gets*

AND P2.name = 'consistent gets"

AND P3.name = 'physical reads'

45
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Session Cache Hit Ratio

@® Buffer cache hit ratio for one specific session:

SELECT (Pl.value+P2.value-P3.value) / (Pl.value+P2.value)

FROM v$sesstat P1l, v$statname N1, v$sesstat P2,
v$statname N2, v$sesstat P3, v$statname N3

WHERE Nl.name = 'db block gets*

AND Pl.statistic# = Nl.statistic#

AND Pl.sid = <enter SID of session here>

AND N2.name = 'consistent gets"

AND P2.statistic# = N2.statistic#

AND P2.sid = P1l.sid

AND N3.name = 'physical reads

AND P3.statistic# = N3.statistic#

AND P3.sid = P1l.sid

46
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Adjust Buffer Cache Size

® Buffer size = db_block_buffers * db_block_size
edb_block_size is set at database creation; cannot tune
¢ Change the db_block_buffers parameter

Fall 2014
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Should Buffer Cache Be Larger?

® Setdb_block_lru_extended_statistics to 1000

SELECT 250 * TRUNC (rownum / 250) + 1 || " to " ||
250 * (TRUNC (rownum / 250) + 1) "Interval',
SUM (count) "Buffer Cache Hits*

FROM v$recent_bucket

GROUP BY TRUNC (rownum / 250)

Interval Buffer Cache Hits

1 to 250 16083
251 to 500 11422
501 to 750 683
751 to 1000 177

® Incurs overhead! Set back to 0 when done

48
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Should Buffer Cache Be Smaller?

® Set db_block_lru_statistics to true

SELECT 1000 * TRUNC (rownum / 1000) + 1 || " to " ||
1000 * (TRUNC (rownum / 1000) + 1) "Interval',
SUM (count) "Buffer Cache Hits®

FROM v$current_bucket

WHERE rownum > O

GROUP BY TRUNC (rownum / 1000)

Interval Buffer Cache Hits

1 to 1000 668415
1001 to 2000 281760
2001 to 3000 166940
3001 to 4000 14770
4001 to 5000 7030

5001 to 6000 959

49
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/0O Intensive SQL Statements

® v$sqglarea contains one row for each SQL statement currently in the
system global area

SELECT executions, buffer_gets, disk_reads,
first_load_time, sql_text

FROM v$sqlarea

ORDER BY disk_reads

® Executions: # times the statement has been executed since entering
SGA

® Buffer_gets: total # logical reads by all executions of the statement
® Disk_reads: total # physical reads by all executions of the statement

50
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Swapping of Data Pages
® Monitoring tools: sar or vmstat

® If system is swapping
+ Remove unnecessary system daemons and applications
+ Decrease number of database buffers
+ Decrease number of UNIX file buffers

Fall 2014
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Paging of Program Blocks
® Monitoring tools: sar or vmstat
® To reduce paging
¢ Install more memory
+ Move some programs to another machine

¢ Configure SGA to use less memory

® Compare paging activities during fast versus slow response

Fall 2014
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SAR — Monitoring Tool

® vmstat -S 5 8

procs memory page disk faults cpu
rbw swap free sisopipofrdesrfOsOs1s3 insy csussyid

000 18925864 0000 0OO0OO0OO0 OO0 O 9074 24 0 0 99
000 85356 8372 0000 0000 OO0 O 4625 21 0 0100
000 85356 8372 0000 0O0OO0OO0O OO O 4720 18 0 0100
000 85356 8372 0000 0000 OO0 2 5322 20 0 0100
000 85356 8372 0000 0O0OO0OO0O0 OO O 8723 21 0 0100
000 85356 8372 0000 0000 OO O 4841 23 0 0100
000 85356 8372 0000 0000 OO O 4420 18 0 0100
000 85356 8372 0000 0O0OO0OO0O0 OO0 O 5171 24 0 0100
7
T # swap-in, # page-in,
1 = swapped swap-out page-out

out processes persec  persec

53




Example Buffer Replacement Policies

® Assume a page reference pattern, which executes 3 consecutive scans
in a set of five (disk) pages

® Assume that you begin with an empty pool of 3 frames
1. Calculate the following:

o #page faults if LRU is used

+ #page faults if MRU is used

+ #page faults if Clock algorithm is used

2. What happens if the buffer (frame) pool is not empty (for LRU and
MRU)? For example, assume that the first frame buffer is not empty

3. Repeat first part with an arbitrary random page reference pattern
4. |Is LRU approximated by the Clock Algorithm?

CSD Univ. of Crete Fall 2014
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Consecutive Scans with Empty Pool

® LRU (15 page faults)

Frames | Read | 1 | 2 345112131415
v Page
| L4 442121 2[5]5]5[3]3]3
2 222 s S s| 333111 |[4]4
3 3313444 2[2]2]5
Page fault? YL YY)y Y| Y[ Y]y Y| Y|y [y y[y]y
® MRU (9 page faults)
Frames | Read 213 ST 2131451123 ]14]5
B Pli‘u
| 1 1 1 1 1|1 1] 1]1 21313 3
2 201 2121212123414 4]|4]14]14]4
3 34555555555 ](5]5
PI”L fault? Y|yl yly yln|n|y|ly|ln|n]y]/|lYy n n
® Clock aIgorlthm (15 page faults)
Frames | Read | | 5 12131415
v Page
| PL-for-1er-[40 J410 [40-]210 120 [210-]510 |51 [51-]31 [31 |31-
2 20 120 [20-051 [S1 [50-131 (31 [30-]11 |11 [10-[41 41
3 31 (30 [30-f11 |10 |10-[41 [40 |[40-]21 120 [20-]51
Page fault? Yl oy vy [y vy ]|y |yl[y]y]y|y[y]y
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" Consecutive Scans with Non-Empty Buffer Pool

® \We consider two cases:

+ Case 1: First frame buffer does not contain any of the five pages
we have to scan

+ Case 2: First frame buffer contains one of the five pages we have
to scan. Assume it contains the first one

CSD Univ. of Crete Fall 2014
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Case 1: First Frame Contains Page X

® LRU (15 page faults)

Frames\ Page 1 2 3| 4| 5] 1| 2| 3| 4( 5| 1| 2| 3| 4| 5
Read

1 X X[ 3] 3 3| 1| 1| 1| 4| 4| 4| 2| 2| 2| 2
21 1) 1) 1| 4| 4| 4| 2| 2| 2 5( 5| 5| 3| 3| 3
3 21 2| 21 5] 5] 5 3| 3 3( 1] 1] 1] 4| 4

Page fault(yorn) [ y | vy | v | y| Y|l Y| Y| Y| Y| Y| Y| Y| Y| Y| VY

® MRU (12 page faults)

Frames\ Page Read 1 2] 3 4] 5| 12 3| 4| 5| 1| 2| 3| 4| 5
1] x| x| x| x| x| x| x| x| x| x| x| x| x| x| x
21 1| 1| 1| 1| | 1] 2| 3| 4| 4| 4| 4| 4| 4| 5
3 2| 3| 4| 5| 5| 5| 5 5 5| 1| 2 3| 3| 3
Pagefault?(yorn) | y| y| y| y| y| n|vy| Yyl y|l n| y| y|[ y| n| vV
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® LRU (14 page faults)

CSD Univ. of Crete

Case 2: First Frame Contains Page 1

Frames\ Page

1

2

3

4

5

1

1

1

4

4

2

2

2

5

3

3

3

Read
1
2
3
Page fault?(y or n)

n

y

y

y

y

® MRU (8 page faults)

Frames\ Page Read 31 4] 5
11 1] 1f 111

2 21 2 2| 2

3 31 4] 5

Page fault?(yorn) [ n| y| y| y| ¥
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Random Page Reference Pattern

® \We consider the following
arbitrary and random page
reference pattern:
[2,4,1,2,4,3,5,3,2,1,1,4,4,5,3]

® LRU (10 page faults)
Frames\ PageRead | 2| 4| 1| 2| 4| 3| 5| 3| 2| 1| 1| 4| 4| 5| 3

1 2 2 2 2 2| 2 5| 5[ 5| 1 1| 1 1| 1] 3
2 | 4| 4| 4| 4| 4| 4| 4| 2| 2| 2| 2| 2| 5| 5

3 1) 1 1 3] 3| 3| 3| 3| 3| 4| 4| 4| 4

Page fault?(yorn) [ y| y| y| n| n| y| y| n{ y|[ y| n| y| n| y| vy
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Random Page Reference Pattern

® MRU (8 page faults)

Frames\ Page 4 3 5 3 2 1 1 4 4 5 3
Read
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 4 4| 4 4 3 5 3 3 3 3 3 3 3 3
3 1 1 1 1 1 1 1 1 1 4 4 5 5

Page fault? (y or n) vyl vy| y| n n y y y n n n y n y n

® Clock algorithm (10 page faults)

Frames\ Page Read 2 4 1 2 4 3 5 3 2 1 1 4 4 5 3
1 2 2 2|2 2 2 5 5 5 1 1 1 1 1 3
1 1 111 1 0 1 1 0 1 1 1 1 0 1
2 4 4 4 4 4 4 4 2 2 2 2 5 5
1 1 1 1 0 0 0 1 1 1 0 0 1 1
3 1 1 1 3 3 3 3 3 3 4 4 4 4
1 1 1 1 1 1 1 0 0 1 1 1 0
Page fault?(yorn) | y| y| y!| n| n|l y| yv| n| y| y| n| yv| n| y]| vy 60
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LRU Approximated by Clock Algorithm?

® Yes, considering the previous example, they have the same behavior and
performance

® From theoretical perspective, the Clock algorithm is a cheap
implementation of LRU

¢ This leads to the Clock being adopted instead of LRU most times
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Summary
® Monitor cache hit ratio
® Increase/reduce buffer cache size
® Pay attention to I/O intensive SQL statements
® Avoid swapping

® Check for excessive paging
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TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong



XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [ npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong
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2nNUEiwpa adglodoTnong

*To TTapdv UAIKOG diaTiBeTal pe Toug Opoucg TnS adelag xpriong Creative Commons
Avagopd, Mn Eptropikr) Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] R peTayavaspn Aigbvnc
EK600n E&oupouvmu TQ GUTOTEZ)\r] Epya Tplva X PWTOYPAPIEC, 6|0(yp0(ppona K.A.TT.,
TA OTTOIA EUTTEPIEXOVTAI OE AUTO KAl T OTToia ava@EpovTal padi ue Toug OPOUC XProng
TOUG OTO «2Znueiwpa Xpriong Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.



2NUEIWNA Ava@popac

Copyright TMavemotiuio Kpntng, AnuAtpng TMAecouocdkns. «ZUCTAMOATA
Ailaxeipiong Baoceswv Acgdopévwyv. @povriotipio 1: Tutorial on buffer
management». 'Ekdoon: 1.0. HpdkAeio/P€Bupvo 2015. AlaBéoiyo atd 1n
dIKTUOKN dlevBuvon: http://www.csd.uoc.gr/~hy460/



