
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης
Βάσεων Δεδομένων

Φροντιστήριο 1: Tutorial on buffer
management

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

1

CSD Univ. of Crete Fall 2014

TUTORIAL ON

BUFFER MANAGEMENT

2

CSD Univ. of Crete Fall 2014

Typical Memory Hierarchy

CPU

Registers

L1 Cache

CPU Die

L2 Cache

Main Memory

Hard disk Memory page

Bus

L2 Cache Line

L1 Cache Line

Virtual
Memory Swap file

3

CSD Univ. of Crete Fall 2014

Memory Hierarchy

 L1 Cache L2 Cache Main memory

Block size 16--32 bytes 32--64 bytes 4--16 KB
Size 16--64 KB 256KB--8MB 4--16 GB
Hit time 1 Clock Cycle 1--4 Clock

Cycles
10--40 Clock
Cycles

Backing Store L2 Cache Main memory Disk

Block
replacement

Random Random Replacement
strategies

Miss penalty 4--20 clock
cycles

40--200 clock
cycles

~6M clock
cycles

4

CSD Univ. of Crete Fall 2014

Storage Capacity

5

CSD Univ. of Crete Fall 2014

Storage Cost

6

CSD Univ. of Crete Fall 2014

Latest Disk Performance Measures

 The fastest enterprise disks revolve at 15000
revolutions per minute (rpm) (e.g. Seagate
Cheetah 15K)

 By late 2010 the fastest high-performance
drives were capable of
 an average latency of 2ms
 an average seek time of between 3 and

6ms and
 maximum data transfer rates in the region

of
• 133 MB/s for Parallel ATA drives (Ultra

ATA/133)
• 600 MB/s for Serial ATA drives (SATA 600)
• 640 MB/s for SCSI drives (Ultra-640 SCSI)

1

10

100

1000

10000

1980 2000

CPU
(60%/yr)

DRAM
(10%/yr)

Disk
(5%/yr)

Performance Improvement

7

CSD Univ. of Crete Fall 2014

Pages and Blocks
 Data files decomposed into pages

 Fixed size piece of contiguous information in the file
 Unit of exchange between disk and main memory

 Disk divided into page size blocks of storage
 Page can be stored in any block

 Disk-block access methods must take care of some information within
each block, as well as information about each block:
 allocate records (tuples) within blocks
 support record addressing by address and by value
 support auxiliary (secondary indexing) file structures for more efficient

processing
 Application’s request to read item satisfied by the following:

 Read page containing item to buffer in DBMS
 Transfer item from buffer to application

 Application’s request to change item satisfied by the following:
 Read page containing item to buffer in DBMS (if it is not already there)
 Update item in DBMS buffer
 (Eventually) copy buffer page to page on disk

8

CSD Univ. of Crete Fall 2014

Block Access Time

 Time= Seek Time+ Rotational Delay+ Transfer Time+ Other
 Rule of Thumb

 Random I/O: Expensive
 Sequential I/O: Much less

 Example:1 KB Block Size
 Random I/O: ~ 20 ms
 Sequential I/O: ~ 1 ms

  Improving Access Time of Secondary Storage
 Organization of data on disk
 Disk scheduling algorithms

• e.g., elevator algorithm
 Multiple disks
 Mirrored disks
 Prefetching and large-scale buffering

9

CSD Univ. of Crete Fall 2014

Complete Model Specification

�  Data resides on some N disk blocks
¿  Implies N*B data elements!

�  Computation can be performed only
on data in main memory
¿  Main memory can store M blocks
¿  Data size much larger than main

memory size
¿  N >> M: interesting case

�  Model of Computation
¿  Minimum transfer unit: a page = b

bytes or B records
¿  n records -> n/B = N pages
¿  I/O complexity: in number of pages

CPU Memory

10

CSD Univ. of Crete Fall 2014

Reducing Number of Page Transfers

 DBMS seek to minimize the number of block transfers between the disk
and memory
 We can reduce the number of disk accesses by keeping as many

blocks as possible in main memory
 Keep cache of recently accessed pages in main memory

 Goal: request for page can be satisfied from cache instead of disk
 Purge pages when cache is full

• For example, use LRU algorithm
• Record clean/dirty state of page (clean pages don’t have to be

written)

CPU L1 L2 Main
Memory

Disk

11

CSD Univ. of Crete Fall 2014

Accessing Data Through Cache

cache

DBMS

Application

Page frames

Page transfer

block Item
transfer

 Buffer - portion of main memory used to store copies of disk blocks
 Buffer manager - subsystem responsible for allocating buffer space in

main memory and handling block transfer between buffer and disk

12

CSD Univ. of Crete Fall 2014

Buffering Strategies

 Double Buffering: Two buffers can be used to allow processing and I/O to
overlap
 Suppose that a program is only writing to a disk
 CPU wants to fill a buffer at the same time that I/O is being performed
 If two buffers are used and I/O-CPU overlapping is permitted, CPU can

be filling one buffer while the other buffer is being transmitted to disk
 When both tasks are finished, the roles of the buffers can be exchanged
 The actual management is done by the OS

 Multiple Buffering: instead of two buffers any number of buffers can be
used to allow processing and I/O to overlap

 Buffer pooling:
 There is a pool of buffers
 When a request for a block is received, OS first looks to see that the

block is in some buffer
 If not there, it brings the block to some free buffer. If no free buffer

exists, it must choose an occupied buffer (usually LRU strategy is used)

13

CSD Univ. of Crete Fall 2014

Basic Buffer Concepts
 Two variables maintained for each frame in

buffer pool
 Pin count

•  Number of times page in frame has
been requested but not released

•  Number of current users of the page
•  Set to 0 initially

 Dirty bit
•  Indicates if page has been

modified since it was brought
into the buffer pool from disk

•  Turned off initially
 Why Pin a Page?

 Page is in use by a query/transaction
 Log/recovery protocol enforced ordering
 Page is hot and will be needed soon,

e.g., root of index trees

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

Choice of frame dictated
by replacement policy

14

CSD Univ. of Crete Fall 2014

When a Page is Requested ...

  If requested page is not in pool:
 Choose a frame for replacement

•  If a free frame is not available, then choose a frame with pin count 0
•  All requestors of the page in frame have unpinned or released it

 If dirty bit is on, write page to disk
 Read requested page into chosen frame
 Pin the page (increment the pin count)

• A page in pool may be requested many times
 Return address of page to requestor

15

CSD Univ. of Crete Fall 2014

Buffer Management: Parameters

 What are the design parameters that distinguish one BM from another?
 Buffer allocation: subdividing the pool

• Who owns a subdivision?
•  Global? Per query? Per relation?

• How many pages to allocate? (working set)
 Replacement policy

• Which page to kick out when out of space?
• Policy can have big impact on number of I/Os

•  Depends on the access pattern
 Load control

• Determine how much load to handle
 Frame is chosen for replacement by a replacement policy:

 Least-recently-used (LRU)
 Most-recently-used (MRU)
 First-In-First-Out (FIFO)
 Clock / Circular order

16

CSD Univ. of Crete Fall 2014

Buffer Replacement Policies

  Least-recently-used (LRU)
 Buffers not used for a long time are less likely to be accessed
 Rule: Throw out the block that has not been read or written for the

longest time
• Maintain a table to indicate the last time the block in each buffer has

been accessed
• Each database access makes an entry in table

•  Expensive ?
 First-In-First-Out (FIFO)

 Rule: Empty buffer that has been occupied the longest by the same
block
• Maintain a table to indicate the time a block is loaded into the buffer
• Make an entry in table each time a block is read from disk

•  Less maintenance than LRU
•  No need to modify table when block is accessed

17

CSD Univ. of Crete Fall 2014

Buffer Replacement Policies

 Clock Algorithm
 Buffers arranged in a circle

•  Each buffer associated with a Flag (0 or 1)
•  Flag set to 1 when

•  A block is read into a buffer
•  Contents of a buffer is accessed

  A “hand” points to one of the buffers
•  Rotate clockwise to find a buffer with Flag=0
•  If it passes a buffer with Flag=1, set it to 0

 Rule: Throw out a block from buffer if it remains unaccessed when the
hand
•  makes a complete rotation to set its flag to 0, and
•  another complete rotation to find the buffer with its 0 unchanged

0

1

0

1
1

0

1

0

18

CSD Univ. of Crete Fall 2014

LRU-K

 Self-tuning
 Approach the behavior of buffering algorithms in which page sets with

known access frequencies are manually assigned to different buffer
pools of specifically tuned sizes

 Does not rely on external hints about workload characteristics
 Adapts in real time to changing patterns of access
 Provably optimal

 GUESS when the page will be referenced again
 Problems with LRU?

• Makes decision based on too little info
• Cannot tell between frequent/infrequent refs on time of last

reference
• System spends resources to keep useless stuff around

19

CSD Univ. of Crete Fall 2014

Examples

 Example 1
 CUSTOMER has 20k tuples
 Clustered B+-tree on CUST_ID, 20 b/key
 4K page, 4000 bytes useful space
 100 leaf pages, 10000 data pages
 Many users (random access)
 Buffer size: 101
 References L1,R1,L2,R2,L3,R3,…
 Probability to ref Li is .005, to ref Ri is .00005

 Example 2
 R has 1M tuples
 A bunch of processes ref 5000 (0.5%) tuples
 A few batch processes do sequential scans

20

CSD Univ. of Crete Fall 2014

LRU-K Basic Concepts

  Idea: Take into account history – last K references
 Classic LRU: K = 1 (LRU-1), keeps track of the last reference only

 Parameters:
 Pages N={1,2,…,n}
 Reference string r1,r2,…, rt, …
 rt = p for page p at time t
 bp = probability that rt+1=p
 Time between references of p: Ip = 1/bp

21

CSD Univ. of Crete Fall 2014

LRU-K Algorithm

 Backward K-distance bt(p,K):
 #references from t back to the Kth most recent reference to p

  bt(p,K) = INF if Kth reference doesn’t exist

 Algorithm:
 Drop page p with max Backward K-distance bt(p,K)

 Ambiguous when infinite (use subsidiary policy, e.g., LRU)

  LRU-2 is better than LRU-1
 Why?

22

CSD Univ. of Crete Fall 2014

Problem 1

 Early page replacement
 Page bt(p,K) is infinite, so drop
 What if it is a rare but “bursty” case?

•  Introduce a time-out period, say 5 sec
 What if there are Correlated References?

1. Intra-transaction, e.g., read tuple, followed by update
2. Transaction Retry
3. Intra-process, i.e., a process references page via 2 transactions,

e.g., update RIDs 1-10, commit, update 11-20, commit, …
• In contrast, Uncorrelated References are inter-process pairs of

references, i.e., two processes reference the same page
independently

23

CSD Univ. of Crete Fall 2014

 With or without timeouts, invalid conclusions may result, e.g., assume
the intra-transaction correlated reference pair – read/update
 Without

• Algorithm sees p (read)
• Drops it (infinite bt(p,K)) (wrong decision)

 With
• Algorithm sees p (read)
• Sees it again before timeout (update)
• Keeps it around (wrong decision again)

 Timeout should still be used
 But inter-arrival time should be computed based on uncorrelated

access

Example

24

CSD Univ. of Crete Fall 2014

Addressing Correlation

 Correlated Reference Period (CRP)
 No penalty or credit for refs within CRP
 Ip: interval from end of one CRP to begin of the next

CRP

Ip

CRP

25

CSD Univ. of Crete Fall 2014

Problem 2

 Reference Retained Information
 Algorithm needs to keep info for pages that may not be resident

anymore. Consider the following LRU-2 example where p is
referenced periodically, but in periods longer than t:
• p is referenced and comes in for the first time
• bt(p,2) = INF, p is dropped
• p is referenced again
• If no info on p is retained, p may be dropped again, then referenced

again, then dropped again etc.
• Though the page is frequently referenced, we would have no

history about it to recognize this fact

26

CSD Univ. of Crete Fall 2014

Solution to Problem 2

 Retained Information Period (RIP)
 Period after which we drop information about page p

•  If a page p that has never been referenced before, suddenly becomes
popular enough to be kept in buffer, we should recognize this fact as long
as two references to the page are no more than the RIP apart

 Upper bound for RIP: max Backward K-distance of all pages we want
to ensure to be memory resident

27

CSD Univ. of Crete Fall 2014

Data Structures and Algorithm for LRU-K

 HIST(p) – history control block of page p = Time of K most recent
references to p - correlated

 LAST(p) – time of most recent ref to page p, correlated references OK
 Maintained for all pages p: bt(p,K) < RIP
 Algorithm

If p is in the buffer { // update history of p
 if (t – LAST(p)) > CRP { // uncorrelated ref
 // close correlated period and start new
 for i = K-1 to 1
 move HIST(p,i) into slot HIST(p,i
+1)
 HIST(p,1) = t
 }
 LAST(p) = t
}

28

CSD Univ. of Crete Fall 2014

LRU-K Algorithm (Cont)

else { // select replacement victim
 min = t
 for all pages q in buffer {
 if (t – LAST(p) > CRP // eligible for replacement
 and HIST(q,K) < min { // max Backward-K
 victim = q
 min = HIST(q,K)
 }
 if victim dirty, write back before dropping
Fetch p into the victim’s buffer
 if no HIST(p) exists {
 allocate HIST(p)
 for i = 2 to K HIST(p,i) = 0
 } else {
 for i = 2 to K HIST(p,i) = HIST(p,i-1)
 }
 HIST(p,1) = t // last non-correlated reference
 LAST(p) = t // last reference
}

29

CSD Univ. of Crete Fall 2014

Domain Separation

 Classify pages as types
 Each type has a domain of buffers

  LRU within domain
 Example: B+-tree index

 One domain per index level
 One domain per leaf/data pages

 Problems
 Static domains, i.e., dynamics of page references may vary in

different queries
 Does not differentiate the relative importance between different types

of pages
 Extensions

 Priority ranking for domains to find free pages
 Dynamically vary domain sizes

30

CSD Univ. of Crete Fall 2014

“New” Algorithm in INGRES

 Each relation needs a working set
 Buffer pool is subdivided and allocated on a per-relation basis
 Each active relation is assigned a resident set which is initially empty
 The resident sets are linked in a priority list; unlikely reused relations

are near the top
 Ordering of relation is pre-determined, and may be adjusted

subsequently
 Search from top of the list
 With each relation, use MRU

 Pros
 A new approach that tracks the locality of a query through relations

 Cons
 MRU is not always good
 How to determine priority (especially in multi-user context)?
 Costly search of list under high loads

31

CSD Univ. of Crete Fall 2014

Hot-Set Model

 Hot set: set of pages over which there is a looping behavior
 Hot set in memory implies efficient query processing
 #page faults vs size of buffers – points of discontinuities called hot

points
 Key ideas

 Give query |hot set| pages
 Allow <=1 deficient query to execute
 Hot set size computed by query optimizer (provides more accurate

reference pattern)
 User LRU within each partition

 Problems
 LRU not always best and allocate more memory
 Over-allocates pages for some phases of query

32

CSD Univ. of Crete Fall 2014

DBMIN: DBMS Reference Patterns

 Based on “Query Locality Set Model”
 DBMS supports a limited set of operations
 Reference patterns exhibited are regular and predictable
 Complex patterns can be decomposed into simple ones

 Reference pattern classification
 Sequential

• Straight sequential (SS)
• Clustered sequential (CS)
• Looping sequential (LS)

 Random
• Independent random (IR)
• Clustered random (CR)

 Hierarchical
• Straight hierarchical (SH)
• Hierarchical with straight sequential (H/SS)
• Hierarchical with clustered sequential (H/CS)
• Looping hierarchical (LH)

33

CSD Univ. of Crete Fall 2014

Sequential Patterns

 Straight sequential (SS)
 File scan without repetition

• E.g., selection on an unordered relation

 #pages? 1
 Replacement algorithm?
 Replaced with next one

R1
R2
R3
R4
R5
R6

Table R

34

CSD Univ. of Crete Fall 2014

Sequential Patterns (Cont)

 Clustered sequential (CS)
 Like inner S for merge-join (sequential

with backup)
 Local rescan in SS
 Join condition: R.a = S.a

 #Pages? #pages in largest cluster
 Replacement algo? FIFO/LRU

4
4
4
7
7
8

4
4
4
7
7

4

35

CSD Univ. of Crete Fall 2014

Sequential Patterns (Cont)

  Looping sequential (LS)
 Sequential reference be repeated

several times
• e.g., Like inner S for nested-loop-

join

 #Pages? As many as possible
 Replacement algo? MRU

4
4
4
7
7
8

4
4
4
7
7

4

36

CSD Univ. of Crete Fall 2014

Random Pattterns

  Independent Random (IR)
 Genuinely random accesses

• e.g., non-clustered index scan

 #Pages? 1 page (assuming low prob. of
reaccesses)

 Replacement algo? Any!

R1
R2
R3
R4
R5
R6

37

CSD Univ. of Crete Fall 2014

Random Patterns

 Clustered Random (CR)
 Random accesses which

demonstrate locality
• e.g., join with inner, non-

clustered, non-unique index on
join column

 #Pages? #pages in largest cluster
 Replacement algo? FIFO/LRU

R1
R2
R3
R4
R5
R6

S2
S3
S4
S5
S6

S1

38

CSD Univ. of Crete Fall 2014

Hierarchical Patterns

 Straight Hierarchical (SH)
 Access index pages ONCE (retrieve a

single tuple)
• Like SS

 Followed by straight sequential scan
(H/SS)
• Like SS

 Followed by clustered scan (H/CS)
• Like CS

R1
R2
R3
R4
R5
R6

39

CSD Univ. of Crete Fall 2014

Hierarchical Patterns

  Looping Hierarchical (LH)
 Repeatedly traverse an index, e.g., when inner index in join is

repeatedly accessed

 #Pages? Height of tree
 Replacement algo? LIFO (to keep the root)

40

CSD Univ. of Crete Fall 2014

What’s Implemented in DBMS?

 DB2 & Sybase ASE
 Named pools to be bound to tables or indexes
 Each pool can be configured to use clock replacement or LRU (ASE)
 Client can indicate pages to replace

 Oracle
 A table can be bound to 1 to 2 pools, one with higher priority to be

kept

 Others
 Global pools with simple policies

41

CSD Univ. of Crete Fall 2014

Overview of Oracle Architecture

SGA
Shared SQL Area Database Buffer Cache

KByte 1,200,000 KByte

Redo Log
Buffer

KByte 2,100 KByte

The image cannot be
displayed. Your computer
may not have enough
memory to open the image,
or the image may have been

The image cannot be displayed.
Your computer may not have
enough memory to open the
image, or the image may have
been corrupted. Restart your

The image cannot be
displayed. Your
computer may not have
enough memory to open
the image, or the image

PMON

LGWR

Data File
 Raw Device

The image cannot be displayed. Your computer may not have
enough memory to open the image, or the image may have
been corrupted. Restart your computer, and then open the
file again. If the red x still appears, you may have to delete
the image and then insert it again.

The image cannot be displayed.
Your computer may not have
enough memory to open the
image, or the image may have
been corrupted. Restart your

Server

USER

The image cannot be displayed.
Your computer may not have
enough memory to open the
image, or the image may have
been corrupted. Restart your

ARCH

TL-812

Archive Log Mode(50M)

Fixed Size :
70 Kbyte

Variable Size :
 490 MByte

4,000,000 KByte

Total SGA Size :
1700 Mbyte

The image cannot be displayed.
Your computer may not have
enough memory to open the
image, or the image may have
been corrupted. Restart your

DBW0 CKPT

The image cannot be
displayed. Your
computer may not have
enough memory to open
the image, or the image

The image cannot be
displayed. Your
computer may not have
enough memory to open
the image, or the image

The image cannot be
displayed. Your
computer may not have
enough memory to open
the image, or the image

The image cannot be
displayed. Your
computer may not have
enough memory to open
the image, or the image

The image cannot be
displayed. Your
computer may not have
enough memory to open
the image, or the image

SMON RECO D000 S000 P000

42

CSD Univ. of Crete Fall 2014

Memory Structure : Shared Pool

Shared Pool

Library Cache

Shared SQL
Area

PL/SQL Procedures

and Package

Control Structures
for examples;

Locks
Library
Cache handles
and so on ...

Dictionary
Cache

Control Structures
for example:

Character Set
Conversion
Memory
Network Security
Attributes

and so on ..

l  Shared Pool Contents
 - Text of the SQL or PL/SQL statement
 - Parsed form of the SQL or PL/SQL statement
 - Execution plan for the SQL or PL/SQL
 statements
 - Data dictionary cache containing rows of data
 dictionary information
l  Library Cache
 - shared SQL area
 - private SQL area
 - PL/SQL procedures and package
 - control structures : lock and library cache
 handles
l  Dictionary Cache
 - names of all tables and views in the database
 - names and datatypes of columns in database
 tables
 - privileges of all Oracle users
l  SHARED_POOL_SIZE

Reusable
Runtime
Memory

43

CSD Univ. of Crete Fall 2014

Memory Structure :Database Buffer Cache

l  Database Buffer Cache holds copies of data blocks read from disk
l  All users concurrently connected to the system share access to the buff

er cache
l  Dirty List
l  LRU List
l  Size = DB_BLOCK_SIZE * DB_BLOCK_BUFFERS

SGA

Shared Pool

Shared SQL Area

Database Buffer Cache

44

CSD Univ. of Crete Fall 2014

Memory Structure :Redo Log Buffer

l  Circular buffer containing information about changes made to the databa
se

l  Saves Redo entries
l  Redo entries are used in Database Recovery
l  DBWR writes contents of Redo Log Buffer to Online Redo Log
l  LOG_BUFFER

change vector #1

change vector #1

change vector #1

redo record

45

CSD Univ. of Crete Fall 2014

Overall Cache Hit Ratio

 DBMS buffer tuning (Oracle 9i)

 Cache hit ratio = (# logical read - # physical read) / #
logical read

  Ideally, hit ratio > 80%

 Overall buffer cache hit ratio for entire instance:

SELECT (P1.value+P2.value-P3.value)/(P1.value+P2.value)
FROM v$sysstat P1, v$sysstat P2, v$sysstat P3
WHERE P1.name = 'db block gets‘
AND P2.name = 'consistent gets‘
AND P3.name = 'physical reads'

46

CSD Univ. of Crete Fall 2014

Session Cache Hit Ratio

 Buffer cache hit ratio for one specific session:

SELECT (P1.value+P2.value-P3.value) / (P1.value+P2.value)
FROM v$sesstat P1, v$statname N1, v$sesstat P2,
 v$statname N2, v$sesstat P3, v$statname N3
WHERE N1.name = 'db block gets‘
AND P1.statistic# = N1.statistic#
AND P1.sid = <enter SID of session here>
AND N2.name = 'consistent gets‘
AND P2.statistic# = N2.statistic#
AND P2.sid = P1.sid
AND N3.name = 'physical reads‘
AND P3.statistic# = N3.statistic#
AND P3.sid = P1.sid

47

CSD Univ. of Crete Fall 2014

Adjust Buffer Cache Size

 Buffer size = db_block_buffers * db_block_size
 db_block_size is set at database creation; cannot tune
 Change the db_block_buffers parameter

48

CSD Univ. of Crete Fall 2014

Should Buffer Cache Be Larger?

 Set db_block_lru_extended_statistics to 1000

  Incurs overhead! Set back to 0 when done

SELECT 250 * TRUNC (rownum / 250) + 1 || ' to ' ||
 250 * (TRUNC (rownum / 250) + 1) "Interval",
 SUM (count) "Buffer Cache Hits“
FROM v$recent_bucket
GROUP BY TRUNC (rownum / 250)

Interval Buffer Cache Hits
--------------- -----------------------
1 to 250 16083
251 to 500 11422
501 to 750 683
751 to 1000 177

49

CSD Univ. of Crete Fall 2014

Should Buffer Cache Be Smaller?
 Set db_block_lru_statistics to true

SELECT 1000 * TRUNC (rownum / 1000) + 1 || ' to ' ||
 1000 * (TRUNC (rownum / 1000) + 1) "Interval",
 SUM (count) "Buffer Cache Hits“
FROM v$current_bucket
WHERE rownum > 0
GROUP BY TRUNC (rownum / 1000)

Interval Buffer Cache Hits
------------ -----------------------
1 to 1000 668415
1001 to 2000 281760
2001 to 3000 166940
3001 to 4000 14770
4001 to 5000 7030
5001 to 6000 959

50

CSD Univ. of Crete Fall 2014

I/O Intensive SQL Statements

 v$sqlarea contains one row for each SQL statement currently in the
system global area

 Executions: # times the statement has been executed since entering
SGA

 Buffer_gets: total # logical reads by all executions of the statement
 Disk_reads: total # physical reads by all executions of the statement

SELECT executions, buffer_gets, disk_reads,
 first_load_time, sql_text
FROM v$sqlarea
ORDER BY disk_reads

51

CSD Univ. of Crete Fall 2014

Swapping of Data Pages

 Monitoring tools: sar or vmstat

  If system is swapping
 Remove unnecessary system daemons and applications
 Decrease number of database buffers
 Decrease number of UNIX file buffers

52

CSD Univ. of Crete Fall 2014

Paging of Program Blocks

 Monitoring tools: sar or vmstat

 To reduce paging
 Install more memory
 Move some programs to another machine
 Configure SGA to use less memory

 Compare paging activities during fast versus slow response

53

CSD Univ. of Crete Fall 2014

SAR – Monitoring Tool

 vmstat –S 5 8

1 = swapped
 out processes

swap-in,
swap-out
per sec

page-in,
page-out
per sec

procs memory page disk faults cpu
 r b w swap free si so pi po fr de sr f0 s0 s1 s3 in sy cs us sy id
 0 0 0 1892 5864 0 0 0 0 0 0 0 0 0 0 0 90 74 24 0 0 99
 0 0 0 85356 8372 0 0 0 0 0 0 0 0 0 0 0 46 25 21 0 0 100
 0 0 0 85356 8372 0 0 0 0 0 0 0 0 0 0 0 47 20 18 0 0 100
 0 0 0 85356 8372 0 0 0 0 0 0 0 0 0 0 2 53 22 20 0 0 100
 0 0 0 85356 8372 0 0 0 0 0 0 0 0 0 0 0 87 23 21 0 0 100
 0 0 0 85356 8372 0 0 0 0 0 0 0 0 0 0 0 48 41 23 0 0 100
 0 0 0 85356 8372 0 0 0 0 0 0 0 0 0 0 0 44 20 18 0 0 100
 0 0 0 85356 8372 0 0 0 0 0 0 0 0 0 0 0 51 71 24 0 0 100

54

CSD Univ. of Crete Fall 2014

Example Buffer Replacement Policies

 Assume a page reference pattern, which executes 3 consecutive scans
in a set of five (disk) pages

 Assume that you begin with an empty pool of 3 frames
1.  Calculate the following:

 #page faults if LRU is used
 #page faults if MRU is used
 #page faults if Clock algorithm is used

2.  What happens if the buffer (frame) pool is not empty (for LRU and
MRU)? For example, assume that the first frame buffer is not empty

3.  Repeat first part with an arbitrary random page reference pattern
4.  Is LRU approximated by the Clock Algorithm?

55

CSD Univ. of Crete Fall 2014

Consecutive Scans with Empty Pool
  LRU (15 page faults)

 MRU (9 page faults)

 Clock algorithm (15 page faults)

56

CSD Univ. of Crete Fall 2014

Consecutive Scans with Non-Empty Buffer Pool

 We consider two cases:
 Case 1: First frame buffer does not contain any of the five pages

we have to scan
 Case 2: First frame buffer contains one of the five pages we have

to scan. Assume it contains the first one

57

CSD Univ. of Crete Fall 2014

Case 1: First Frame Contains Page X

  LRU (15 page faults)

 MRU (12 page faults)

yyyyyyyyyyyyyyyPage fault?(y or n)

441113335552223

3335552224441112

2222444111333XX1

543215432154321Frames\ Page
Read

yyyyyyyyyyyyyyyPage fault?(y or n)

441113335552223

3335552224441112

2222444111333XX1

543215432154321Frames\ Page
Read

ynyyynyyynyyyyyPage fault? (y or n)

333215555554323

5444444321111112

ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ1

543215432154321Frames\ Page Read

ynyyynyyynyyyyyPage fault? (y or n)

333215555554323

5444444321111112

ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ1

543215432154321Frames\ Page Read

58

CSD Univ. of Crete Fall 2014

Case 2: First Frame Contains Page 1

  LRU (14 page faults)

 MRU (8 page faults)
yyyyyyyyyyyyyynPage fault?(y or n)

52224441113333

441113335552222

3335552224441111

543215432154321Frames\ Page
Read

yyyyyyyyyyyyyynPage fault?(y or n)

52224441113333

441113335552222

3335552224441111

543215432154321Frames\ Page
Read

nnyynnyynnyyyynPage fault? (y or n)

55555555555433

444444432222222

3332111111111111

543215432154321Frames\ Page Read

nnyynnyynnyyyynPage fault? (y or n)

55555555555433

444444432222222

3332111111111111

543215432154321Frames\ Page Read

59

CSD Univ. of Crete Fall 2014

Random Page Reference Pattern

 We consider the following
arbitrary and random page
reference pattern:
[2,4,1,2,4,3,5,3,2,1,1,4,4,5,3]

  LRU (10 page faults)

yynynyynyynnyyyPage fault? (y or n)

44443333331113

552222244444442

3111115552222221

354411235342142Frames\ Page Read

yynynyynyynnyyyPage fault? (y or n)

44443333331113

552222244444442

3111115552222221

354411235342142Frames\ Page Read

60

CSD Univ. of Crete Fall 2014

Random Page Reference Pattern

 MRU (8 page faults)

 Clock algorithm (10 page faults)

nynynnnyyynnyyyPage fault? (y or n)

55441111111113

333333335344442

2222222222222221

354411235342142Frames\ Page
Read

nynynnnyyynnyyyPage fault? (y or n)

55441111111113

333333335344442

2222222222222221

354411235342142Frames\ Page
Read

yynynyynyynnyyyPage fault? (y or n)

4
0

4
1
-

4
1

4
1

3
0

3
0

3
1
-

3
1

3
1

3
1

1
1
-

1
1

1
1

3

5
1
-

5
1

2
0

2
0

2
1
-

2
1
-

2
1

4
0

4
0
-

4
0

4
1

4
1
-

4
1

4
1

2

3
1

1
0

1
1
-

1
1
-

1
1

1
1

5
0

5
1
-

5
1

2
0
-

2
1

2
1

2
1
-

2
1
-

2
1
-

1

354411235342142Frames\ Page Read

yynynyynyynnyyyPage fault? (y or n)

4
0

4
1
-

4
1

4
1

3
0

3
0

3
1
-

3
1

3
1

3
1

1
1
-

1
1

1
1

3

5
1
-

5
1

2
0

2
0

2
1
-

2
1
-

2
1

4
0

4
0
-

4
0

4
1

4
1
-

4
1

4
1

2

3
1

1
0

1
1
-

1
1
-

1
1

1
1

5
0

5
1
-

5
1

2
0
-

2
1

2
1

2
1
-

2
1
-

2
1
-

1

354411235342142Frames\ Page Read

61

CSD Univ. of Crete Fall 2014

LRU Approximated by Clock Algorithm?

 Yes, considering the previous example, they have the same behavior and
performance

 From theoretical perspective, the Clock algorithm is a cheap
implementation of LRU
 This leads to the Clock being adopted instead of LRU most times

62

CSD Univ. of Crete Fall 2014

Summary

 Monitor cache hit ratio

  Increase/reduce buffer cache size

 Pay attention to I/O intensive SQL statements

 Avoid swapping

 Check for excessive paging

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:
–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο
–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο
–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Φροντιστήριο 1: Tutorial on buffer
management». Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη
δικτυακή διεύθυνση: http://www.csd.uoc.gr/~hy460/

