
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης
Βάσεων Δεδομένων

Φροντιστήριο 2: File Organization Examples

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

1

CSD Univ. of Crete Fall 2014

FILE ORGANIZATION EXAMPLES

2

CSD Univ. of Crete Fall 2014

Comparison of File Organizations

 Heap
 unordered file

 Sorted (Sequential) Files
 ordered by some field(s)

 Clustered B+ index
 balanced tree with high fanout

 Heap file with unclustered B+ index
 file is unordered

 Heap file with unclustered hash index
 “calculate” position of the record

3

CSD Univ. of Crete Fall 2014

Heap Files

 Rows appended to end of file as they are inserted
 Hence the file is unordered

 Deleted rows create gaps in file
 File must be periodically compacted to recover space

4

CSD Univ. of Crete Fall 2014

666666 MGT123 F1994 4.0
123456 CS305 S1996 4.0 page 0
987654 CS305 F1995 2.0

717171 CS315 S1997 4.0
666666 EE101 S1998 3.0 page 1
765432 MAT123 S1996 2.0
515151 EE101 F1995 3.0

234567 CS305 S1999 4.0
 page 2

878787 MGT123 S1996 3.0

Transcript Stored as a Heap File

5

CSD Univ. of Crete Fall 2014

Heap File - Performance

  Assume file contains F pages

  Inserting a row (with duplicate checking):
  Access path is scan
  Avg. F/2 page transfers if row already exists
  F+1 page transfers if row does not already exist

  Deleting a row:
  Access path is scan
  Avg. F/2+1 page transfers if row exists
  F page transfers if row does not exist

6

CSD Univ. of Crete Fall 2014

 Query
 Access path is scan
 Organization efficient if query returns all rows and order of access

is not important
•  SELECT * FROM Transcript

 Organization inefficient if a unique row is requested
• Avg. F/2 pages read to get information from a single page

SELECT T.Grade
FROM Transcript T
WHERE T.StudId=12345 AND T.CrsCode =‘CS305’
 AND T.Semester = ‘S2000’

Heap File - Performance

7

CSD Univ. of Crete Fall 2014

Heap File - Performance

 Organization inefficient when a subset of rows is requested: F pages
must be read

SELECT T.CrsCode, T.Grade
FROM Transcript T -- equality search
WHERE T.StudId = 123456

SELECT T.StudId, T.CrsCode
FROM Transcript T -- range search
WHERE T.Grade BETWEEN 2.0 AND 4.0

8

CSD Univ. of Crete Fall 2014

  Rows are sorted based on some attribute(s)
  Access path is binary search
  Equality or range query based on that attribute has cost log2F to

retrieve page containing first row
  Successive rows are in same (or successive) page(s) and cache hits

are likely
  By storing all pages on the same track, seek time can be minimized

  Example - Transcript sorted on StudId :

SELECT T.Course,
T.Grade
FROM Transcript T
WHERE T.StudId = 123456

SELECT T.Course, T.Grade
FROM Transcript T
WHERE T.StudId BETWEEN
 111111 AND 199999

Sorted File

9

CSD Univ. of Crete Fall 2014

111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
123456 CS305 F1995 2.0

123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

234567 CS305 S1999 4.0
 page 2

313131 MGT123 S1996 3.0

Transcript Stored as a Sorted File

10

CSD Univ. of Crete Fall 2014

  Problem: After the correct position for an insert has been determined,
inserting the row requires (on average) F/2 reads and F/2 writes

  (Partial) Solution 1: Leave empty space in each page: fillfactor

  (Partial) Solution 2: Use overflow pages (chains)
  Disadvantages:

•  Successive pages no longer stored contiguously
• Overflow chain not sorted, hence cost no longer log2 F

Maintaining Sorted Order

11

CSD Univ. of Crete Fall 2014

 3
111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
111111 ECO101 F2000 3.0
122222 REL211 F2000 2.0

 -
123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

 -
234567 CS305 S1999 4.0
 page 2

313131 MGT123 S1996 3.0

 7
111654 CS305 F1995 2.0
111233 PSY 220 S2001 3.0 page 3

Pointer to
overflow chain

Chain
pointer

Overflow

12

CSD Univ. of Crete Fall 2014

Cost Model for Analysis

NOTATION:
 B: The number of data pages
 R: Number of records per page
 F: Fanout of B-tree (number of children for each non-leaf node)

NOTES:
 Average-case analysis; based on several simplistic assumptions

(see text for more detail)
 CPU costs are ignored

13

CSD Univ. of Crete Fall 2014

B: Number of data pages (packed)
R: Number of records per page Heap File

Scan all
records

B

Equality
Search

0.5 B

Range
Search

B

Insert 2

Delete 0.5 B + 1

Scan ½ file on average

Load last page, add, write out

Find page, delete record, write out

Scan entire file since unordered

I/O Cost: Heap File

14

CSD Univ. of Crete Fall 2014

B: Number of data pages (packed)
R: Number of records per page Sorted File

Scan all
records

B

Equality
Search

log2B

Range
Search

log2B + #
matching
pages

Insert log2B + B

Delete log2B + B

Binary Search

Find first, then sequentially retrieve

log2B+0.5B+0.5B: Assume search
record in middle of file. To compact
file, need to read in remaining 0.5B
pages, adjust, then write out.

I/O Cost: Sorted File (on Search Key)

15

CSD Univ. of Crete Fall 2014

Clustered B+ Tree File Example (Alt #1)

  B+ Tree: Balanced trees (all paths from root to leaf have the same
length) with data stored only in leaf nodes

  Alternative #1 index: Index and data records stored together. In the B+
tree index case, data records are stored in the leaf nodes.

  Clustered index: The order of data records in the file is the same as the
order of data entries in the index
  Alternative #1 is clustered by definition.

16

CSD Univ. of Crete Fall 2014

B: Number of data pages (packed)
R: Number of records per page
F: Fanout of B-Tree

Clustered Tree
Scan all
records

1.5 B

Equality
Search

logF (1.5 B)

Range
Search

logF (1.5 B)
+ #matching

pages

Insert logF (1.5 B)
+ 1

Delete logF (1.5 B)
+ 1

Assume 67% occupancy

This is the height of the tree (root to
appropriate leaf). Note that the leaf
holds actual records.

Use the pointers to additional pages

Find leaf, insert or delete, write out

I/O Cost: Clustered B+ Tree File (Alt #1)

17

CSD Univ. of Crete Fall 2014

Heap File with Unclustered B+ Tree Example

18

CSD Univ. of Crete Fall 2014

B: Number of data pages (packed)
R: Number of records per page
F: Fanout of B-Tree Unclustered Tree

Scan all
records

BR+0.15B

Equality
Search

logF (0.15B) + 1

Range
Search

logF (0.15B) +
#matching
records

Insert logF (0.15B) + 3

Delete logF (0.15B) + 3

Index size of 10% data size. Scan all
index leaf pages 0.1(1.5B)= 0.15B.
For each record, one I/O.

This is the height of the tree (root to
appropriate leaf). Then load page on
which record resides.

Note one I/O for each matching record
since unclustered index.

Find corresponding index data entry,
read corresponding page, insert or
delete, write out page and
corresponding index block.

I/O Cost: Heap File with Unclustered B+ Tree

19

CSD Univ. of Crete Fall 2014

Heap File with Hash Index Example

20

CSD Univ. of Crete Fall 2014

B: Number of data pages (packed)
R: Number of records per page

Hash Index
Scan all
records

BR+0.125B

Equality
Search

2

Range
Search

BR+0.125B
(or 1.25B)

Insert 4

Delete 4

Assume 80% occupancy, index size of
10% data size, so 0.10(1.25B) index
pages. For each record, one I/O.
Retrieve hash bucket, then appropriate
page.

Hash index doesn’t help. Scan all records
(without index this would be 1.25B)

Read and write hash bucket, read and
write appropriate page.

I/O Cost: Heap File with Unclustered Hash Index

21

CSD Univ. of Crete Fall 2014

B: The number of data pages, R: Number of records per page,
F: Fanout of B-Tree

Heap
File

Sorted File Clustered
Tree

Unclustered
Tree

Unclustered
Hash Index

Scan all
records

B B 1.5 B B(R+0.15) B(R+0.125)

Equality
Search

0.5 B log2B logF(1.5 B) logF(0.15B)
+ 1

2

Range
Search

B log2B +
#matching

pages

logF(1.5 B)
+ #matching

pages

logF(0.15B)
+

#matching
records

B(R+0.125)

Insert 2 log2B + B logF(1.5 B)
+ 1

logF(0.15B)
+ 3

4

Delete 2 log2B + B logF(1.5 B)
+ 1

logF(0.15B)
+ 3

4

I/O Cost of Operations: Summary

22

CSD Univ. of Crete Fall 2014

Heap Files Example

 Consider a problem of data storage/retrieval:
 The application has 10,000,000 records of 100 bytes each
 The key value is a single attribute employee_number

 Available on the machine for an application:
 64MB main memory
 1MB main memory allocation for buffer (area of main memory in

which data from disk is placed)
 64GB disk

23

CSD Univ. of Crete Fall 2014

Questions and Answers 1-4
1.  Does the data fit on the disk? Yes, 1GB (1,000,000,000) is the

requirement and 64GB is available
2.  Does all the data fit in main memory at once? No, main memory even if

all available holds only 64MB (64,000.000)
3.  Assume that 2,000 records fit per disk page

a)  How many pages are required to hold the data? So R=2,000
(records/page) and there are 10,000,000 records so number of
pages needed (B) is 10,000,000/2,000 = 5,000

b)  Given an average disk access time D=0.015 secs and the average
time to process a record C=10-7 secs/record, how long does it take
for an exhaustive search of the file stored as a heap? B(D+RC) =
5000(0.015 + 2000*10-7) = 76 secs

4.  Repeat 3) with a)100 records/page and b)10,000 records/page
a)  If R=100 then B=100,000 so B(D+RC) = 100,000(0.015+ 100*10-7) =

1501 secs
b)  If R=10,000 then B= 1000 so B(D+RC) = 1000(0.015+10000*10-7) =

16 secs
 Note that simply packing more records/page dramatically reduces the
process time. So increase R to as high a figure as the amount of main
memory available

24

CSD Univ. of Crete Fall 2014

Questions and Answers 5-7

5.  Can the number of records/page be increased further? No as buffer
size of 1MB (1,000,000) in main memory can only fit 10,000 records at
100 bytes each

6.  What is the average cost of finding a particular record in this file with
2000 records/page using:

a)  heap access method?B(D+RC)/2=2500(0.015+2000*10-7)=38 secs
b)  sequential (sorted) access method? log 2B * D + C * log 2R = 13*

0.015 +10-7 * 11 ≈ 0.195 secs
So sequential is much faster than heap in finding a particular record.
Note: here log to base 2 of X is the power of 2 needed to reach or exceed

X. These logs are whole numbers for our purposes. E.g. log28 = 3;
log2256=8; log2300=9

7.  What is the average cost of inserting a particular record into this file with
2,000 records/page using:

a)  a heap access method? 2D + C = (2*0.015)+10-7 ≈ 0.03 secs
b)  a sequential (sorted) access method? log 2B * D + C * log 2R + B*(D

+ RC)= 13*0.015 +10-7 * 11+5000 * 0.015 + 38 * 2 ≈ 151.195 secs
So heap is far faster for insertions

25

CSD Univ. of Crete Fall 2014

Hashed Files Example

  Consider a problem of data storage/retrieval:
  The application has 5,000,000 records of 100 bytes each
  The key value is a single attribute employee_number of the form:

•  Annnnnnn (7 n’s)
•  where A is a capital letter and n is a number

  Available on the machine for an application:

  64MB main memory
  1MB main memory allocation for buffer (area of main memory in

which data from disk is placed)
  64GB disk

26

CSD Univ. of Crete Fall 2014

Questions and Answers 1-5

1.  What is the total number of possible employee numbers? Annnnnnn –
nnnnnnn gives the range 0000000-9999999 (10,000,000
combinations), A gives 26 possibilities (A-Z) so the key can be
represented in 260,000,000 ways, ample for 5,000,000 actual records

2.  Can you find a hash function which maps the data into 1000 pages?
Yes: remove initial letter, divide by 1000 and take the remainder as the
page number giving the range of page numbers 0 .. 999

3.  How many records will this produce per page? Number of records in
file/number of pages in the file, that is 5,000,000/1,000 = 5,000

4.  Is this the number of records per page to be used in the
implementation? No, aim for about 80% packing so have perhaps
4,000 records/page

5.  What assumptions does this hash function make about distribution of
key values? That they are random with respect to the hash function. If
disproportionately high numbers of key values ended in 000, page 0
would become full very quickly leading to excessive collisions

27

CSD Univ. of Crete Fall 2014

Questions and Answers 6-7
6.  How long will it take to find the record with key E0011223? Trace

through the steps taken.
Apply hash function to key value:
Remove initial letter giving 00112233
Find remainder after dividing 00112233 by 1000: giving page number of

233
Retrieve page 233 from disk (transfer to main memory, cost = D)
Search page 233 in main memory (assume found on average by

searching half page, cost = 0.5RC)
Total Cost = D + 0.5RC = 0.015 + (0.5*5000*10-7) = 0.01530 secs (very

fast)
7.  How long will it take to insert a record with key J9910657? Trace

through the steps taken.
Apply hash function to key value:
Remove initial letter giving 9910657
Find remainder after dividing 9910657 by 1000: giving page number of

657
Retrieve page 657 from disk (transfer to main memory, cost = D)
Insert new record into page 657 in main memory (assume anywhere as

in heap, cost = C)
Write page 657 back to disk (cost = D)
Cost = D + C + D= 0.015 + 10-7 + 0.015 = 0.0300001 secs (very fast)

28

CSD Univ. of Crete Fall 2014

Question 8 – Hash Search

8. How long will it take to find all employee numbers in the range
K0011200..K0011299?

  How many pages will this be distributed over?
  Not known. Really need idea of denseness - does every possible key

exist?
  Maximum is over pages 200, 201, …., 299 so 100 pages; minimum is

over 0 pages (does not exist)
  Because of uncertainty, hash method with any range (even on key)

involves complete scan
  Cost = B*(D + RC) =1000*(0.015 + (5000*10-7)) = 15.5 secs (very long)

29

CSD Univ. of Crete Fall 2014

Question 9 – Sorted/Heap

9. How does the cost here compare with that in sorted and heap
files?

  Heap cost: search all of file – cost = B(D+RC) = 833*(0.015 +
6,000*10-7) = 13.0 secs (very long, B=833 as can pack 6,000 records
per page at 100% full)

  Sorted cost: find initial page by binary chop then find all records in
one, possibly two, accesses. Cost = Dlog2B+Clog2R ≈ 0.15 secs (by
far the fastest)

  There is a minor extra cost for sorted. What is it?

30

CSD Univ. of Crete Fall 2014

Questions 10/11 – Cost K?

10. How long will it take to find all employee numbers beginning with
K?

11. How does the cost here compare with that in sorted and heap
files?

  Cannot say how many records there are
  Hashed – cost will be search of whole file =B*(D + RC) =1000*(0.015 +

(5000*10-7)) = 15.5 secs (very long, longer than heap as <100% full)
  Heap – cost will be search of whole file = B(D+RC) = 833(0.015 +

6,000*10-7) = 13.0 secs (very long)
  Sorted – cost will be D log2B+Clog2R = (0.015*10)+ (10-7*13) ≈ 0.15

secs
  So sorted is very much faster
  Note hashing gives fast single-record access but is slow for searching

on ranges

31

CSD Univ. of Crete Fall 2014

Optimization of Disk-Block Access: Methods
 Disk-arm Scheduling: requests for several blocks may be speeded up by

requesting them in the order they will pass under the head
 If the blocks are on different cylinders, it is advantageous to ask for

them in an order that minimizes disk-arm movement
 Elevator algorithm -- move the disk arm in one direction until all

requests from that direction are satisfied, then reverse and repeat
 Sequential access is 1-2 orders of magnitude faster; random access

is about 2 orders of magnitude slower
 Non-volatile write buffers

 store written data in a RAM buffer rather than on disk
 write the buffer whenever it becomes full or when no other disk

requests are pending
 buffer must be non-volatile to protect from power failure

• called non-volatile random-access memory (NV-RAM)
• typically implemented with battery-backed-up RAM

 dramatic speedup on writes; with a reasonable-sized buffer write
latency essentially disappears

 why can’t we do the same for reads? (hints: ESP, clustering)

32

CSD Univ. of Crete Fall 2014

  File organization (Clustering): reduce access time by organizing blocks
on disk in a way that corresponds closely to the way we expect them to
be accessed
  sequential files should be kept organized sequentially
  hierarchical files should be organized with mothers next to daughters
  for joining tables (relations) put the joining tuples next to each other
  over time fragmentation can become an issue

•  restoration of disk structure (copy and rewrite, reordered) controls
fragmentation

  Log-based file system
  does not update in-place, rather writes updates to a log disk

•  essentially, a disk functioning as a non-volatile RAM write buffer
  all access in the log disk is sequential, eliminating seek time
  eventually updates must be propagated to the original blocks

•  as with NV-RAM write buffers, this can occur at a time when no
disk requests are pending

•  the updates can be ordered to minimize arm movement
  this can generate a high degree of fragmentation on files that require

constant updates
•  fragmentation increases seek time for sequential reading of files

Optimization of Disk-Block Access: Methods

33

CSD Univ. of Crete Fall 2014

Storage Access
  Basic concepts (some already familiar):

  a block is a contiguous sequence of sectors from a single track; blocks
are units of both storage allocation and data transfer

  a file is a sequence of records stored in fixed-size blocks (pages) on the
disk

  each block (page) has a unique address called BID
  optimization is done by reducing I/O, seek time, etc.
  database systems seek to minimize the number of block transfers

between the disk and memory. We can reduce the number of disk
accesses by keeping as many blocks as possible in main memory.

  buffer - portion of main memory used to store copies of disk blocks
  buffer manager - subsystem responsible for allocating buffer space in

main memory and handling block transfer between buffer and disk
  Disk-block access methods must take care of some information within each

block, as well as information about each block:
  allocate records (tuples) within blocks
  support record addressing by address and by value
  support auxiliary (secondary indexing) file structures for more efficient

processing

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:
–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο
–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο
–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Φροντιστήριο 2: File Organization
Examples». Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη
δικτυακή διεύθυνση: http://www.csd.uoc.gr/~hy460/

