: EAAHNIKH AHMOKPATIA
A " NANENIETHMIO KPHTHE

2uocTiRuaTta Alaxeipiong
Baoswv Asdopévwy
®povTrioTAplo 2: File Organization Examples

AnunTpng lNAegouoakng
Tunua Emotiung YtroAoyiotwy

FILE ORGANIZATION EXAMPLES

"% CSD Univ. of Crete Fall 2014

Comparison of File Organizations

® Heap
¢ unordered file

_ _ Relation + Tuple
® Sorted (Sequential) Files
+ ordered by some field(s)

® Clustered B+ index “Data File”
+ balanced tree with high fanou Record

® Heap file with unclustered B+ index @

o file is unordered

® Heap file with unclustered hash index
¢ “calculate” position of the record

i1 CSD Univ. of Crete Fall 2014

Heap Files

® Rows appended to end of file as they are inserted
+ Hence the file is unordered

® Deleted rows create gaps in file
+ File must be periodically compacted to recover space

CSD Univ. of Crete Fall 2014

Transcript Stored as a Heap File

666666 MGT123 F1994 4.0
123456 CS305 51996 4.0 page 0O
987654 CS305 F1995 2.0

/717171 (CS315 51997 4.0
666666 EE101 51998 3.0 page 1
765432 MAT123 S1996 2.0
515151 EE101 F1995 3.0

234567 CS305 S1999 4.0
page 2

878787 MGT123 S1996 3.0

CSD Univ. of Crete Fall 2014

Heap File - Performance

® Assume file contains F pages

® Inserting a row (with duplicate checking):
¢ Access path is scan
¢ Avg. F/2 page transfers if row already exists
¢ F+1 page transfers if row does not already exist

® Deleting a row:
¢ Access path is scan
¢ Avg. F/2+1 page transfers if row exists
¢ F page transfers if row does not exist

CSD Univ. of Crete Fall 2014

Heap File - Performance

® Query
o Access path is scan

+ Organization efficient if query returns all rows and order of access
IS not important

. SELECT * FROM Transcript
+ Organization inefficient if a unique row is requested
* Avg. F/2 pages read to get information from a single page

SELECT T.Grade

FROM Transcript T

WHERE T.StudId=12345 AND T.CrsCode =‘CS305’
AND T.Semester = ‘S2000’

CSD Univ. of Crete Fall 2014

Heap File - Performance

+ Organization inefficient when a subset of rows is requested: F pages
must be read

SELECT T.CrsCode, T.Grade
FROM Transcript T -- equality search
WHERE T.StudId = 123456

SELECT T.StudId, T.CrscCode
FROM Transcript T -- range search
WHERE T.Grade BETWEEN 2.0 AND 4.0

84 CSD Univ. of Crete Fall 2014

Sorted File

® Rows are sorted based on some attribute(s)
+ Access path is binary search

+ Equality or range query based on that attribute has cost log,F to
retrieve page containing first row

¢ Successive rows are in same (or successive) page(s) and cache hits
are likely
+ By storing all pages on the same track, seek time can be minimized

® Example - Transcript sorted on Studld :

SELECT T.Course, SELECT T.Course, T.Grade
T.Grade FROM Transcript T
FROM Transcript T WHERE T.StudId BETWEEN

WHERE T.StudId = 123456 111111 AND 199999

CSD Univ. of Crete

Transcript Stored as a Sorted File

111111 MGT123 F1994 4.0
111111 CS305 51996 4.0
123456 CS305 F1995 2.0
123456 CS315 51997 4.0
123456 EE101 51998 3.0
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0
234567 (CS305 51999 4.0
313131 MGT123 51996 3.0

page 0

page 1

page 2

Fall 2014

"% CSD Univ. of Crete Fall 2014

Maintaining Sorted Order

® Problem: After the correct position for an insert has been determined,
inserting the row requires (on average) F/2 reads and F/2 writes

® (Partial) Solution 1: Leave empty space in each page: fillfactor

® (Partial) Solution 2: Use overflow pages (chains)
+ Disadvantages:

* Successive pages no longer stored contiguously
* Overflow chain not sorted, hence cost no longer log, F

10

CSD Univ. of Crete

Overflow

Fall 2014

-’
-’
.,
.,
-,
-’

Pointer to
overflow chain

Chain
pointer

111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0
111111 ECO101 F2000 3.0
122222 REL211 F2000 2.0
123456 CS315 S1997 4.0
123456 EE101 S1998 3.0
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0
234567 CS305 S1999 4.0
313131 MGT123 S1996 3.0
7/
111654 CS305 F1995 2.0
111233 PSY 220 S2001 3.0

page 0

page 1

page 2

page 3

11

@ CSD Univ. of Crete

Cost Model for Analysis

NOTATION:
® B: The number of data pages

® R: Number of records per page
® F: Fanout of B-tree (number of children for each non-leaf node)

NOTES:
+ Average-case analysis; based on several simplistic assumptions

(see text for more detail)
+ CPU costs are ignored

Fall 2014

12

@ CSD Univ. of Crete

/O Cost: Heap File

: Number of data pages (packed)
: Number of records per page

Scan 2 file on average

Scan entire file since unordered

Load last page, add, write out

Find page, delete record, write out

Scan all
records

Equality
Search

Range
Search

Insert

Delete

Heap File
B

0.5 B

0.5B + 1

Fall 2014

13

@ CSD Univ. of Crete

Fall 2014

/O Cost: Sorted File (on Search Key)

B: Number of data pages (packed)
R: Number of records per page

Binary Search

Find first, then sequentially retrieve

log,B+0.5B+0.5B: Assume search
record in middle of file. To compact
file, need to read in remaining 0.5B
pages, adjust, then write out.

Scan all
records

Equality
Search

Range
Search

Insert

Delete

Sorted File
B

log,B

log,B + #
matching
pages

log,B + B
log,B + B

14

Fall 2014

, @ CSD Univ. of Crete

Clustered B+ Tree File Example (Alt #1)

AL
N\

e dﬁ\\

13933 w4{44 ||4547 ___5453

o
- - "
1(3 __1]|13 lﬂ ___24 23

® B+ Tree: Balanced trees (all paths from root to leaf have the same
length) with data stored only in leaf nodes

® Alternative #1 index: Index and data records stored together. In the B+
tree index case, data records are stored in the leaf nodes.

® Clustered index: The order of data records in the file is the same as the
order of data entries in the index

+ Alternative #1 is clustered by definition.

——

|______Data______JENF

@ CSD Univ. of Crete

/O Cost: Clustered B+

R: Number of data pages (packed)
F:

Number of records per page
Fanout of B-Tree

Assume 67% occupancy —

This is the height of the tree (root to
appropriate leaf). Note that the leaf
holds actual records.

Use the pointers to additional pages —

Find leaf, insert or delete, write out

Fall 2014

ree File (Alt #1)

Scan all
records

Equality
Search

Range
Search

Insert

7
\ Delete

Clustered Tree
1.5 B

log. (1.5 B)

log. (1.5 B)
+ #matching
pages

log. (1.5 B)
+ 1

log. (1.5 B)
+ 1 6

J % CSD Univ. of Crete Fall 2014

Heap File with Unclustered B+ Tree Example

-~

1|3 _1*13;1# _Hz*zzt 13033 | __4*44 | ‘__4#41 Hs*s:z

DATA BLOCKS WITH RECORDS

record with record with record with
search key 11 search key 3 search key 1

17

B:
R:
F:

CSD Univ. of Crete

Fall 2014

/O Cost: Heap File with Unclustered B+ Tree

Number of data pages (packed)
Number of records per page
Fanout of B-Tree

Index size of 10% data size. Scan all
index leaf pages 0.1(1.5B)= 0.15B.
For each record, one I/O.

Scan all
records

This is the height of the tree (root to
appropriate leaf). Then load page on
which record resides.

Equality
" Search

Note one I/O for each matching record
since unclustered index.

Range
— * Search

Find corresponding index data entry,
read corresponding page, insert or
delete, write out page and
corresponding index block.

P Insert
., Delete

Unclustered Tree

BR+0.15B

log. (0.15B) + 1

log. (0.15B) +
#matching
records

log. (0.15B) + 3
log. (0.15B) + 3

18

L% CSD Univ. of Crete

Heap File with Hash Index Example

Block address
on disk

K 0 |

i |
2 ‘l§
Oy 3 \
Bucket Directory /
i

B-1 '

-—

Fall 2014

19

B:
R:

CSD Univ. of Crete

/O Cost: Heap File with Unclustered Hash Index

Number of data pages (packed)
Number of records per page

Assume 80% occupancy, index size of
10% data size, so 0.10(1.25B) index
pages. For each record, one I/O.

Retrieve hash bucket, then appropriate
page.

Hash index doesn’t help. Scan all records
(without index this would be 1.25B)

Read and write hash bucket, read and
write appropriate page.

[\

Scan all
records

Equality
Search

Range
Search

Insert

Delete

Fall 2014

Hash Index
BR+0.125B

BR+0.125B
(or 1.25B)

4
4

20

le, -:,3 CSD Univ. of Crete

/O Cost of Operations: Summary

File
Scan all B
records
Equality 0.5 B
Search
Range B
Search
Insert 2
Delete 2

B: The number of data pages,
F: Fanout of B-Tree

Heap Sorted File

B
log,B

log,B +
#matching
pages

log,B + B

log,B + B

Clustered
Tree

1.5 B
log-(1.5 B)

log- (1.5 B)
+ #matching
pages

log-(1.5 B)
+ 1

log. (1.5 B)
+ 1

Unclustered
Tree

B(R+0.15)

log-(0.15B)
+ 1

log:(0.15B)
+
#matching
records

log:(0.15B)
+ 3

log:(0.15B)
+ 3

Fall 2014

R: Number of records per page,

Unclustered

Hash Index

B(R+0.125)
2

B(R+0.125)

21

CSD Univ. of Crete Fall 2014

Heap Files Example

@® Consider a problem of data storage/retrieval:
+ The application has 10,000,000 records of 100 bytes each
+ The key value is a single attribute employee number

® Available on the machine for an application:
+ 64MB main memory

+ 1MB main memory allocation for buffer (area of main memory in
which data from disk is placed)

+ 64GB disk

22

"% CSD Univ. of Crete Fall 2014

Questions and Answers 1-4

1. Does the data fit on the disk? Yes, 1GB (1,000,000,000) is the
requirement and 64GB is available

2. Does all the data fit in main memory at once? No, main memory even if
all available holds only 64MB (64,000.000)

3. Assume that 2,000 records fit per disk page

a) How many pages are required to hold the data”? So R=2,000
(records/page) and there are 10,000,000 records so number of
pages needed (B) is 10,000,000/2,000 = 5,000

b) Given an average disk access time D=0.015 secs and the a\(erage
time to process a record C=10"" secs/record, how long does it take
for an exhaustive search of the file stored as a heap? B(D+RC) =
5000(0.015 + 2000*10°7) = 76 secs

4. Repeat 3) with a)100 records/page and b)10,000 records/page
a) If R=100 then B=100,000 so B(D+RC) = 100,000(0.015+ 100*10") =
1501 secs
b) I1f6R=1O,OOO then B= 1000 so B(D+RC) = 1000(0.015+10000*10°") =
secs

Note that_simpéy packing more records/page dramatically reduces the
process time. So increase R to as high a figure as the amount of main

memory available 23

"% CSD Univ. of Crete Fall 2014

Questions and Answers 5-7

Can the number of records/page be increased further? No as buffer
size of TMB (1,000,000) in main memory can only fit 10,000 records at
100 bytes each

What is the average cost of finding a particular record in this file with
2000 records/page using:
a) heap access method?B(D+RC)/2=2500(0.015+2000*10-7)=38 secs

b) sequential7(sorted) access method? log ,B *D + C *log ,R = 13"
0.015 +10"* 11 = 0.195 secs

So sequential is much faster than heap in finding a particular record.
Note: here log to base 2 of X is the power of 2 needed to reach or exceed
X. These Io?s are whole numbers for our purposes. E.g. log,8 = 3;
log,256=8; 10g,300=9
What is the average cost of inserting a particular record into this file with
2,000 records/page using:
a) a heap access method? 2D + C = (2*0.015)+10" = 0.03 secs

0
b) a sequential (sorted) access method? Io% ,B*D+C *log,R+B*(D
+ RC)="13*0.015 +107 * 11+5000 * 0.015 % 38 * 2 ~ 151.195 secs

So heap is far faster for insertions 24

CSD Univ. of Crete Fall 2014

Hashed Files Example

® Consider a problem of data storage/retrieval:
+ The application has 5,000,000 records of 100 bytes each
+ The key value is a single attribute employee number of the form:
* Annnnnnn (7 n’s)
* where A is a capital letter and n is a number

® Available on the machine for an application:
¢ 64MB main memory

+ 1MB main memory allocation for buffer (area of main memory in
which data from disk is placed)

+ 64GB disk

25

N CSD Univ. of Crete Fall 2014

Questions and Answers 1-5

1. What is the total number of possible employee numbers? Annnnnnn —
nnnnnnn gives the range 0000000-9999999 (10,000,000
combinations), A gives 26 possibilities (A-Z) so the key can be
represented in 260,000,000 ways, ample for 5,000,000 actual records

2. Can you find a hash function which maps the data into 1000 pages?
Yes: remove initial letter, divide by 1000 and take the remainder as the
page number giving the range of page numbers 0 .. 999

3. How many records will this produce per page? Number of records in
file/number of pages in the file, that is 5,000,000/1,000 = 5,000

4. s this the number of records per page to be used in the
implementation? No, aim for about 80% packing so have perhaps
4,000 records/page

5. What assumptions does this hash function make about distribution of
key values? That they are random with respect to the hash function. If
disproportionately high numbers of key values ended in 000, page 0

would become full very quickly leading to excessive collisions N

i3 CSD Univ. of Crete Fall 2014

6.

Questions and Answers 6-7

l—rllcr)g\ﬁ I%ngn\éwgtg tg aIE(e) r}‘lnd the record with key E00112237? Trace

Apply hash functlon to key value:
Remove initial letter giving 00112233
Findzrggnainder after dividing 00112233 by 1000: giving page number of

Retrieve page 233 from disk (transfer to main memory, cost = D)

Search page 233 in main memooyéassume found on average by
searchln% half page, cost =

Total Cost =D + 0.5RC =0.015 + (0.5*5000*10-") = 0.01530 secs (very

How Iongnwnl it take to insert a record with key J99106577? Trace
through the steps taken.

Apply hash function to key value:
Remove initial letter giving 9910657

Find6r§5nainder after dividing 9910657 by 1000: giving page number of

Retrieve page 657 from disk (transfer to main memory, cost = D)

Insert new record m(tg page 657 in main memory (assume anywhere as
In heap, cost =

Write page 657 back to disk (cost = D)
Cost=D+C +D=0.015+ 10" + 0.015 =0.0300001 secs (very fast) 2

Fall 2014

- i CSD Univ. of Crete
9

Question 8 — Hash Search

8. How long will it take to find all employee numbers in the range
K0011200..K00112997

® How many pages will this be distributed over?
+ Not known. Really need idea of denseness - does every possible key
exist?
® Maximum is over pages 200, 201,, 299 so 100 pages; minimum is
over 0 pages (does not exist)

® Because of uncertainty, hash method with any range (even on key)
Involves complete scan

® Cost =B*(D + RC) =1000*(0.015 + (5000*10-7)) = 15.5 secs (very long)

28

‘7@9 i CSD Univ. of Crete Fall 2014

Question 9 — Sorted/Heap

9. How does the cost here compare with that in sorted and heap
files?

® Heap cost: search all of file — cost = B(D+RC) = 833*(0.015 +
6,000*10-") = 13.0 secs (very long, B=833 as can pack 6,000 records
per page at 100% full)

® Sorted cost: find initial page by binary chop then find all records in
one, possibly two, accesses. Cost = Dlog,B+Clog,R = 0.15 secs (by
far the fastest)

® Thereis a minor extra cost for sorted. What is it?

29

CSD Univ. of Crete Fall 2014

Questions 10/11 — Cost K?

10. How long will it take to find all employee numbers beginning with
K?

11. How does the cost here compare with that in sorted and heap
files?

® Cannot say how many records there are

Hashed — cost will be search of whole file =B*(D + RC) =1000*(0.015 +
(5000*10-7)) = 15.5 secs (very long, longer than heap as <100% full)

® Heap — cost will be search of whole file = B(D+RC) = 833(0.015 +
6,000*10-7) = 13.0 secs (very long)

® Sorted — cost will be D log,B+Clog,R = (0.015*10)+ (10-"*13) = 0.15
Secs

So sorted is very much faster

Note hashing gives fast single-record access but is slow for searching
on ranges 30

84 CSD Univ. of Crete Fall 2014

Optimization of Disk-Block Access: Methods

® Disk-arm Scheduling: requests for several blocks may be speeded up by
requesting them in the order they will pass under the head

«+ If the blocks are on different cylinders, it is advantageous to ask for
them in an order that minimizes disk-arm movement

+ Elevator algorithm -- move the disk arm in one direction until all
requests from that direction are satisfied, then reverse and repeat

+ Sequential access is 1-2 orders of magnitude faster; random access
is about 2 orders of magnitude slower

® Non-volatile write buffers
o store written data in a RAM buffer rather than on disk

& write the buffer whenever it becomes full or when no other disk
requests are pending

+ buffer must be non-volatile to protect from power failure
e called non-volatile random-access memory (NV-RAM)
* typically implemented with battery-backed-up RAM

+ dramatic speedup on writes; with a reasonable-sized buffer write
latency essentially disappears N

I twe do i : 82 (hints: ESP, clustering

84 CSD Univ. of Crete Fall 2014

Optimization of Disk-Block Access: Methods

@ File organization LCIustering): reduce access time by organizing blocks
8n disk in adway that corresponds closely to the way we expect them to
e accesse

+ sequential files should be kept organized sequentially

+ hierarchical files should be organized with mothers next to daughters
¢ for joining tables (relations) put the joining tuples next to each other
¢ over time fragmentation can become an issue

* restoration of disk structure (copy and rewrite, reordered) controls
fragmentation

® Log-based file system
+ does not update in-place, rather writes updates to a log disk
» essentially, a disk functioning as a non-volatile RAM write buffer
+ all access in the log disk is sequential, eliminating seek time
+ eventually updates must be propagated to the original blocks

 as with NV-RAM write buffers, this can occur at a time when no
disk requests are pending

* the updates can be ordered to minimize arm movement

+ this can generate a high degree of fragmentation on files that require
constant updates

e fragmentation increases seek time for sequential reading of files

32

:.-;“; ¥ CSD Univ. of Crete Fall 2014

Storage Access

@® Basic concepts (some already familiar):

+ a block is a contiguous sequence of sectors from a single track; blocks
are units of both storage allocation and data transfer

o (ejl_fill(e IS a sequence of records stored in fixed-size blocks (pages) on the
IS

¢ each block (page) has a unique address called BID

¢ optimization is done by reducing I/O, seek time, etc.

+ database systems seek to minimize the number of block transfers
between the disk and memory. We can reduce the number of disk
accesses by keeping as many blocks as possible in main memory.

+ buffer - portion of main memory used to store copies of disk blocks

+ buffer manager - subsystem resEonsibIe for allocating buffer space in
main memory and handling block transfer between buffer and disk

® Disk-block access methods must take care of some information within each
block, as well as information about each block:

+ allocate records (tuples) within blocks
¢ support record addressing by address and by value

+ support auxiliary (secondary indexing) file structures for more efficient

processing .

TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong

XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong

2NUEIWMUATO

2NUEIWMUATO

2nNUEiwpa adglodoTnong

*To TTapdv UAIKOG diaTiBeTal pe Toug Opoucg TnS adelag xpriong Creative Commons
Avagopd, Mn Eptropikr) Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] R peTayavaspn Aigbvnc
EK600n E&oupouvmu TQ GUTOTEZ)\r] Epya Tplva X PWTOYPAPIEC, 6|0(yp0(ppona K.A.TT.,
TA OTTOIA EUTTEPIEXOVTAI OE AUTO KAl T OTToia ava@EpovTal padi ue Toug OPOUC XProng
TOUG OTO «2Znueiwpa Xpriong Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.

2NUEIWNA Ava@popac

Copyright MNavemotiuio Kpntng, Anuntpng NAecouocdkng. «ZUCTAMATA
Alaxeipiong Baoewv Asdopévwy. PpovtioTplo 2: File Organization
Examples». 'Ekdoon: 1.0. HpakAgio/P€Bupvo 2015. AlaBEoiuo atrd 1n
dIKTUOKN dlevBuvon: http://www.csd.uoc.gr/~hy460/

