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Index

 An index is a data structure that supports efficient access to data (i.e., 

row(s)) without having to scan entire table

 Based on a search key: rows having a particular value for the search key 

attributes can be quickly located

Set of
Recordsindex

Condition
on

attribute
value

Matching
records

(search key)
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Index Search Keys

 Candidate key vs. search key:

 Candidate key: set of attributes; guarantees uniqueness

 Search key: sequence of attributes; does not guarantee 

uniqueness

 Types of (search) keys

 Sequential: the value of the key is monotonic with the insertion 

order (e.g., counter or timestamp)

 Non sequential: the value of the key is unrelated to the insertion 

order (e.g., social security number)
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 Index entries

 The row itself (index and table are integrated in this case), or

 Search key value and a pointer to a row having that value (table is 
stored separately in this case)

 Location mechanism

 Algorithm + data structure for locating an index entry with a given 
search key value

 Various data structures can serve as indexes, e.g.,

 simple indexes on sorted (sequential) files

 secondary indexes on unsorted (heap) files

 hierarchical index structures (B-trees)

 hash tables

 Index entries are stored in accordance with the search key value

 Entries with the same search key value are stored together (hash, 
B+ tree)

 Entries may be sorted on search key value (B+ tree)

Index Structure
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Location Mechanism

Index entries

SSearch key

value

Location mechanism

makes it easy to find

index entry for S

S

S, …….

Once index entry

is found the row can 

be directly accessed

Index Structure
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Storage Structure

 Structure of file containing a table

Heap file (no index, not integrated)

Sorted file (no index, not integrated)

Integrated file containing index and rows (index entries contain rows 

in this case) e.g., 

 Indexed Sequential Access Method (ISAM)

B+ tree

Hash

 The simplest of cases: given a sorted file (data file), create another file 

(index file) consisting of key-pointer pairs:

 a search key K is associated with a pointer pointing to a record of the 

data file that has the search key K
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 An index is itself an ordered file

The index file is physically ordered on disk by the key field

The index file has records of fixed length, containing: key field, pointer 
to data <ki, pi>

 Additional I/O to access index pages (except if index is small enough to 
fit in main memory)

 Index must be updated when table is modified

 SQL-92 does not provide for creation or deletion of indices

Index on primary key generally  created automatically

Vendor specific statements:

CREATE INDEX ind ON Student (Code)

DROP INDEX ind

Indices: The Down Side
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 Clustered index:  index entries and rows are ordered in the same way

An integrated storage structure is always clustered (since rows and 
index entries are the same)

The particular index structure (e.g., hash, tree) dictates how the rows 
are organized in the storage structure

There can be at most one clustered index on a table

CREATE TABLE generally creates an integrated, clustered (main) 
index

 Good for range searches when a range of search key values is requested

Use location mechanism to locate index entry at start of range

This locates first row

Subsequent rows are stored in successive locations if index is 
clustered (not so if unclustered)

Minimizes page transfers and maximizes likelihood of cache hits

Clustered Index
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Clustered Secondary Index
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Unclustered Index

 Unclustered index: index entries and rows are not ordered in the same 

way

 A secondary index might be clustered or unclustered with respect to 

the storage structure it references

 It is generally unclustered (since the organization of rows in the 

storage structure depends on main index)

 There can be many secondary indices on a table

 Index created by CREATE INDEX is generally an unclustered, 

secondary  index
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Unclustered Secondary Index
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Sparse vs Dense Index

 Dense index: every search key value in the data file is in the index

index entry for each data record  (faster to locate a record)

Unclustered index must be dense

Secondary clustered index need not be dense

 Sparse index: not every search key value in the data file is in the index

index entry for each page of data file

 index indicates the block of records

 A good compromise

Sparse index with one index entry per block

Tradeoff between access time and space overhead
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Sparse, 
clustered
index sorted
on Id

Dense, 
unclustered
index sorted
on Name

data file sorted
on Id

Id          Name       Dept

Sparse vs Dense Index
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Search key should
be candidate key of
data file (else additional
measures required, more 
on that later)

Sparse Index
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 CREATE INDEX  Inx ON Tbl  (att1, att2)

 Search key is a sequence of attributes; index entries are lexically 
ordered

 Supports finer granularity equality search: 

 “Find row with value (A1, A2) ”

 Supports range search (tree index only):

 “Find rows with values between (A1, A2) and (A1, A2) ”

 Supports partial key searches (tree index only):

 Find rows with values of att1 between A1 and A1

 But not “Find rows with values of att2 between A2 and A2 ”

Multiple Attribute Search Key
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Locating an Index Entry

 Use scan (index entries not sorted)

 Use binary search (index entries sorted)

 If Q pages of index entries, then log2Q page transfers (which is 

a big improvement over binary search of the data pages of a F
page data file since  F >>Q)

 Use multilevel index:  Sparse index on sorted list of index entries
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Multiple Index Levels

 Since index files can be large, an index on an index file may be built

Not all levels need to be equally dense or sparse

 A sparse index may be built on a dense 1st-level index (otherwise the 
2nd-level index would have as many records as the 1st-level index)

 Example 1: Sparse index occupies 1.000 blocks; a 2nd-level sparse index 
would need only 10 blocks (for 100 records/block)

 then to locate a record with a given key value, we need two I/Os

 Example 2: Consider 5.000.000 ordered records, 100 records/block, thus 
50.000 blocks

Sequential search: average of 50.000 / 2 blocks read

Binary search: log 2 50.000 = 16

Sparse 3-level index: 4 50,000 blocks
500 blocks5 blocks1 block
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 Separator level  is a sparse index over pages of index entries

 Leaf level contains index entries 

 Cost of searching the separator level << cost of searching index level 

since separator level is sparse

 Cost or retrieving row once index entry is found is 0 (if integrated) or 1 (if 

not)

Two-Level Index
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Secondary Indices

 Must be dense

Since the records are not physically stored in the search key order

Can use multiple levels, with only the lowest being necessarily dense

 A sequential scan of the records in the search key of a secondary index 
is often very slow

Requires many block accesses

 Data updates lead to updates of all index levels

A likely significant overhead on modification of the database
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50
30

70
20

40
80

10
100

60
90

File not sorted on 
secondary search key

Secondary Indices
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Sequence
field

50
30

70
20

40
80

10
100

60
90

• Sparse index

30
20
80
100

90
...

does not make sense!

Secondary Indices
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50
30

70
20

40
80

10
100

60
90

10
20
30
40

50
60
70
...

10
50
90
...

sparse
high
level

Lowest level has to be dense

Secondary Indices
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 If indexes are built on non-key attributes, then more than one record 

may have a given key value

 Assume that the order of records with identical search key values does 

not matter

 A dense index can be built with one entry with key K for each record that 

has search key K

 Searching: look for the first record with key K in the index file and find all 

the other records with the same value (they must immediately follow)

Indexes with Duplicate Search Keys
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Duplicate Keys & Primary Indices

10
10

20
10

30
20

30
30

45
40Index ????

 Different records can have 
the same key value

 How to design the indexing 
structure?
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Duplicate Keys & Dense Index

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

Dense Index

Record pointer
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Duplicate Keys & Better Dense Index

10
10

20
10

30
20

30
30

45
40

10
20
30
40

Dense Index

Record pointer
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Duplicate Keys and Sparse Index

10
10

20
10

30
20

30
30

45
40

10
10
20
30

Be careful 
when searching 
for 20 or 30!

Sparse Index

block pointer
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Duplicate Keys and Better Sparse Index

10
10

20
10

30
20

30
30

45
40

10
20
30
30

– place first new key from block

block pointer
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10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

one option...

Problem:
excess overhead!

• disk space
• search time

Duplicate Values & Secondary Indices
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10
20

40
20

40
10

40
10

40
30

10

another option: lists of pointers

40
30

20Problem:
variable size
records in
index!

Duplicate Values & Secondary Indices
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10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...









Yet another idea :
Chain records with same key?

Problems:
• Need to add fields to records, messes up maintenance
• Need to follow chain to know records

Duplicate Values & Secondary Indices



39

CSD Univ. of Crete Fall 2014

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets

Duplicate Values & Secondary Indices
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Index Update: Insertion

 Single-level index insertion

Perform a lookup using the search-key value appearing in the record 

to be inserted

Dense indices – if the search-key value does not appear in the index, 

insert it

Sparse indices – if the index stores an entry for each block of the file, 

no change needs to be made to the index unless a new block is 

created

 In the case where a new block is created, the first search-key

value appearing in the new block is inserted into the index

 Multilevel insertion and deletion algorithms are simple extensions of the 

single-level algorithms
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Index Update: Deletion

 Single-level index deletion

If deleted record was the only record in the file with its particular 

search-key value, the search-key is deleted from the index

Dense indices – deletion of the search-key is similar to file record 

deletion

Sparse indices – if an entry for the search key exists in the index, it is 

deleted by replacing the entry in the index with the next search-key 

value in the file (in search-key order)

 If the next search-key value already has an index entry, the entry 

is deleted instead of being replaced
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Index Data Structures

 Most index data structures can be viewed 
as trees

 In general, the root of this tree will always 
be in main memory, while the leaves will 
be located on disk

The performance of a data structure 
depends on the number of nodes in the 
average path from the root to the leaf

Data structures with high fan-out 
(maximum number of children of an 
internal node) are thus preferred

 B+ tree: Amendment to B-tree

addresses for data records are in the 
leaves and nowhere else

a key value is stored once, with the 
address of the associated data record

B tree

Sequential Set
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B+ Tree Properties

 A B+ Tree is a balanced tree whose leaves contain a sequence of key-
pointer pairs

Same height for paths from root to leaf

Given a search-key K, nearly same access time for different K values

 A B+ Tree is constructed by parameter n, the maximum key capacity of 

a node. n+1 is also called the B+ tree order or fan-out

Non-root nodes must always be at least half full (or half empty)

Each internal node (non-leaf and non-root) has (n+1)/2 to n+1
pointers and (n+1)/2-1 to n search-key values

The root node has at least 2 pointers or else is a leaf

Each leaf node has (n+1)/2 to n search-key values

P1 P2 P3

K1 K2

Case for n=2

P1

K1 K2 Kn

P2 Pn Pn+1

General case for n
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B+ Tree Properties

 Search keys are sorted in order

K1 < K2 < … < Kn

 Non-leaf Node

For each search-key value K in sub-tree Si 
pointed by Pi ,  Ki-1 ≤ K < Ki
 e.g. (key values in S1) < K1
 e.g. K1 ≤ (key values in S2) < K2

 Leaf Node

Pi points to record or bucket with
search key value Ki

Pi+1 points to the neighbor leaf node

P1 P2 P3

K1 K2

S1 S2 S3

K1 K2

Record of K1 Record of K2

Record of K2

…

P1 P2

P3 …
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B+ Tree Searching

 Given a search-key value k

Start from the root, look for the largest search-key value (Kl) in the 

node such that  Kl ≤ k < Kl+1
Follow pointer Pl+1 to next level, until you reach a leaf node 

If k is found to be equal to Kl in the leaf, follow Pl to search the 

record or bucket

Pl+1

K1 K2 Kn
P2 Pn Pn+1P1 P3

… Kl Kl+1

Record of Kl

Record of Kl

…

Kl Kl+1

Pl k = Kl
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B+ Tree Insertion

 Overflow

When number of search-key values exceed n

 Leaf Node

Split into two nodes:

 1st node contains (the first) (n+1)/2 values 

 2nd node contains the remaining values 

Copy the smallest search-key value of the 2nd node to parent node

7 9 13 15

Insert 8

7 8

9

9 13 15
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B+ Tree Insertion (cont.)

 Non-Leaf Node

Split into two nodes:

 1st node contains (the first) (n+1)/2-1 values

Move the smallest of the remaining values, together with pointer, 

to the parent

 2nd node contains the remaining values

7 8 13 15

9
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B+ Tree Deletion

 Underflow

When number of search-key values < (n+1)/2-1

 Leaf Node

Redistribute to sibling

 Still, right node shouldn’t have less than left node

 Replace the between-value in parent by their 

smallest value of the right node

Merge (the two siblings contain too few entries)

 Move all values, pointers to left node

 Remove the between-value in parent

9 10

Delete 10

9 10 13 14

13

16

18

9 13 14 16

14 18

9 10 13 14

13 18 22

9 13

18

14

22
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B+ Tree Deletion (cont.)

 Non-Leaf Node

Redistribute to sibling

Through parent

Right node not less than left node

Merge (the two siblings contain too few entries)

Bring down parent

Move all values, pointers to left node

Delete the right node, and pointers in parent

9 10 14 15

13

16

18

9 13 15 16

14 18

9 10 14 16

13 18 22

9 13

18

14

22

16
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 Construct a B+ tree 

 Assume the tree is initially empty 

 All paths from root to leaf are of the same length

 The number of pointers that will fit in one node (the order/fan-out of 

the tree) is four (n=3)

 Leaf nodes must have between 2 and 3 values ((n+1)/2 and  n)

 Non-leaf nodes other than root must have between 2 and 4 children 

((n+1)/2 and n+1)

 Root must have at least 2 children

Example on B+ Tree
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Insertions

 Insert 2, 3, 5

 Insert 7, 11

2 3 5

2 3 5 7 11

5

Next: Insert 17
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Insert 17

2 3 5 7 11 17

5 11

Next: Insert 19
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Insert 19

2 3 5 7 11 17 19

5 11

Next: Insert 23
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Insert 23

2 3 5 7 11 17 19 23

5 11 19

Next: Insert 29
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Insert 29

2 3 5 7 11 17 19 23 29

5 11 19

Next: Insert 31
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Insert 31

11

2 3 5 7 11 17 19 23 29 31

5 19 29

Next: Insert 9
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Insert 9

11

5 7 9 11 17 19 23 29 31

5 19 29

2 3

Next: Insert 10
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11

2 3 5 7 11 17 19 23 29 31

5 9 19 29

9 10

Insert 10

Next: Insert 8



63

CSD Univ. of Crete Fall 2014

Insert 8

11

2 3 5 7 8 11 17 19 23 29 31

5 9

19 29

9 10

Next: Delete 23
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Delete 23

11

2 3 5 7 8 11 17 19 29 31

5 9 19

9 10

Next: Delete 19
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Delete 19

11

2 3 5 7 8 11 17 29 31

5 9 19

9 10

Next: Delete 17
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Delete 17

2 3 5 7 8 11 29 31

5

9 10

11

9

Next: Delete 10
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Delete 10

2 3 5 7 8 29 31

5

9 11

29

9

Next: Delete 11
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2 3 5 7 8

5 9

9 29 31

Delete 11
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 Assume a student table:  Student(name, age, gpa, major)

tuples(Student) = 16

pages(Student) = 4

Bob, 21, 3.7, CS

Mary, 24, 3, ECE

Tom, 20, 3.2, EE

Kathy, 18, 3.8, LS

Kane, 19, 3.8, ME

Lam, 22, 2.8, ME

Chang, 18, 2.5, CS

Vera, 17, 3.9, EE

Louis, 32, 4, LS

Martha, 29, 3.8, CS

James, 24, 3.1, ME

Pat, 19, 2.8, EE

Chris, 22, 3.9, CS

Chad, 28, 2.3, LS

Leila, 20, 3.5, LS

Shideh, 16, 4, CS

B+ Trees: Second Example
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 A non-clustered secondary B+ tree on the gpa attribute

Bob, 21, 3.7, CS

Mary, 24, 3, ECE

Tom, 20, 3.2, EE

Kathy, 18, 3.8, LS

Kane, 19, 3.8, ME

Lam, 22, 2.8, ME

Chang, 18, 2.5, CS

Vera, 17, 3.9, EE

Louis, 32, 4, LS

Martha, 29, 3.8, CS

James, 24, 3.1, ME

Pat, 19, 2.8, EE

Chris, 22, 3.9, CS

Chad, 28, 2.3, LS

Leila, 20, 3.5, LS

Shideh, 16, 4, CS

(3.7, (1, 1))

(3.8, (3,2))

(3.8, (2,1))

(3.9, (2,4))

(4, (3,1))

(3.8, (1,4))

(3.9, (4,1))

(4, (4,4))

(2.3, (4, 2))

(2.5, (2,3))

(2.8, (2,2))

(3.1, (3,3))

(3.2, (1,3)

(2.8, (3,4))

(3, (1,2))

(3.5, (4,3))

3.6

Non-Clustered Secondary B+ Tree
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 A clustered B+ tree on the gpa attribute

 It is impossible to have a clustered secondary B+ tree on an attribute

Bob, 21, 3.7, CSMary, 24, 3, ECE

Tom, 20, 3.2, EE

Kathy, 18, 3.8, LS

Kane, 19, 3.8, MELam, 22, 2.8, ME

Chang, 18, 2.5, CS Vera, 17, 3.9, EE

Louis, 32, 4, LS

Martha, 29, 3.8, CS

James, 24, 3.1, ME

Pat, 19, 2.8, EE

Chris, 22, 3.9, CSChad, 28, 2.3, LS

Leila, 20, 3.5, LS Shideh, 16, 4, CS

2.9 3.6 3.8

Clustered B+ Tree
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Clarifications on B+ Trees

 B+ trees can be used to store relations as well as index structures

 In the drawn B+ trees we assume (this is not the only scheme) that an 

internal node with q pointers stores the maximum keys of each of the 

first q-1 sub-trees it is pointing to; that is, it contains q-1 keys

 Before a B+ tree can be generated the following parameters have to be 

chosen (based on the available block size; it is assumed one node is 

stored in one block):

 the order of the tree (n+1) (n+1 is the maximum number of pointers 

an intermediate node might have; a non-root node must have 

between (n+1)/2) and n+1 pointers)

 the maximum number m of entries the leaf node can hold (in general 

leaf nodes (except the root) must hold between (m+1)/2 and m

entries)

 Internal nodes usually store more entries than leaf nodes



74

CSD Univ. of Crete Fall 2014

 If n is even: Assume n=10:

 (n+1)/2: then the number of pointers is between 5 and 10; in the case of 

underflow without borrowing, 4 pointers have to be merged with 5 pointer 

yielding a node with 9 pointers

 n/2+1: then it is between 6 and 10; in the case of underflow without 

borrowing, 5 pointers have to be merged with 6 pointer yielding 11 pointers 

which is one too many

 If n is odd: Assume n=11; then in both cases the number of pointers is 

between 6 and 11; in the case of an underflow without borrowing a 5 

pointer node has to be merged with a 6 pointer node yielding an 11 

pointer node

 Conclusion: We infer from the discussion that the minimum vs. 

maximum numbers of entries for a tree

 of height 3 is: 2*(n+1)/2) * (n+1)/2) * (m+1)/2 vs. n*n*n*m

 of height h+1 is: 2*((n+1)/2))h *((m+1)/2) vs. nh+1*m

Why (n+1)/2 and not n/2 + 1??
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Choosing Order n+1 and Leaf Entry Maximum m

 Idea: One B+ tree node is stored in one block; choose maximal m and 

n+1 without exceeding block size!!

 Example 1: Want to store tuples of a relation E(ssn,name,salary) in 

a B+ tree using ssn as the search key (alternative ); ssn and salary 

take 4 bytes; name takes 12 bytes. B+ pointers take 2 bytes; the block 

size is 2.048 bytes and the available space inside a block for B+tree 

entries is 2.000 bytes. Choose n and m:

 (n+1)*2 + n*4 ≤2.000 n ≤ 1998/6=333

 m ≤ 2000/(4+12+4) = 2000/20=100

 Answer: Choose n=333 and m=100

Block

B+ tree Block Meta Data

Storage for
B+ tree node entries

B+ tree Block Meta Data:
Neighbor pointers, #entries, 
Parent pointer, sibling bits,…
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 Example 2: Want to store an index for a relation E(ssn,name,salary)
in a B+ tree using ssn as the search key; storing ssn’s takes 4 bytes; 

index pointers take 4 bytes; the block size is 2.048 bytes and the 

available space inside the block for B+ tree entries is 2.000 bytes. 

Choose n and m:

 (n+1)*4 + n*4 ≤ 2.000 n ≤ 1996/8=249

 m ≤ 2.000/(4 + 4) = 2.000/8 = 250

 Answer: Choose n=249 and m=250

Choosing Order n+1 and Leaf Entry Maximum m
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 Possible Approaches:

 Just allow duplicate keys

Consequences:

 Search is still efficient

 Insertion is still efficient (but could create “hot spots”)

 Deletion faces a lot of problems: We have to follow the leaf 

pointers to find the entry to be deleted, and then updating the 

intermediate nodes might get quite complicated (can partially be 

solved by creating two-way node pointers)

 Just create unique keys by using key+data (key*)

Consequences: 

 Deletion is no longer a problem

 n (because of the larger key size) is significantly lower, and 

therefore the height of the tree is likely higher

Coping with Duplicate Keys in B+ Trees
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Duplicate Keys in B+ Trees (first approach)

 In a non-leaf node, Ki is the smallest new value appearing in subtree 

pointed to by (i+1) pointer. If there is no new value, Ki = NULL.
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Duplicate Keys in B+ Trees (first approach)

 Search algorithm the same but if you reach a leaf, you must be prepared 

to search the sibling if the last value of leaf equals the search value

 Insertion algorithm is the same, but attention must be kept when an old 

value is inserted in a leaf and we must split

The parent might get a NULL key value pointing to the second leaf of 

the split

 Deletion algorithm is the same, but attention must be kept when there is 

underflow, because in this case the parent node must be updated
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Duplicate Key Insertion in a B+ Tree

 Initial B+ Tree as below. Insertion of 13 two times.
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Duplicate Key Insertion in a B+ Tree
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B+ Tree Performance

 Tree levels

 Tree Fanout

 Size of key

 Page utilization

 Tree maintenance

 Online

 On inserts

 On deletes

 Offline

 Tree locking

 Tree root in main memory
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B+ Tree Performance

 Key length influences fanout

 Choose small key when creating an index

 Key compression

 Prefix compression (Oracle 8, MySQL): only store that part of the 

key that is needed to distinguish it from its neighbors: Smi, Smo, 

Smy for Smith, Smoot, Smythe.

 Front compression (Oracle 5): adjacent keys have their front 

portion factored out: Smi, (2)o, (2)y. There are problems with this 

approach:

 Processor overhead for maintenance

 Locking Smoot requires locking Smith too
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Using Indexes: First Example

 Executives(ename, title, dname, address)

 Each attribute is 25 bytes, page size is 1.000 bytes; i.e., we store 10 

records per page (record size = 100 bytes)

 Relation contains 100.000 records, 10.000 pages

 Consider query: SELECT E.title, E.ename

FROM Executives E

WHERE E.title = ‘MANAGER’

 Assume only 10% of tuples meet the selection condition

 Selectivity S = 0,1

 Pointer size = 5 bytes; index entry size = 30 (5+25); index entries per 

page = 33

 Assume that there are 1.000 job titles. Index on job title contains only 

two levels (assuming that all index nodes are full)
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Using Indexes: First Example (cont.)

 Sequential scan of files

Cost = File size = 10.000

 Binary search for file (sorted on title) 

Cost = log2(File size) + # file pages containing qualifying records = 

log2(10.000) + 1.000= 1.013 

Here we could also say log2(10.000) + 999, since the first page 

containing Manager records is retrieved by binary search

 Clustered B+ tree index on title (file sorted on title)

Cost = index lookup + (File size) *S  = 2 + (10.000)*0.1=1.002

We use the index to retrieve the first record - since the file is clustered, 

the remaining Manager records are stored sequentially after the first one

 Clustered B+ tree index on ename

No use of index. File Scan
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Using Indexes: First Example (cont.)

 Unclustered B+ tree index on title

Cost = index lookup + # of leaf node  blocks + # of records  * S

Cost = 2 + (100.000*0,1)/200 + 100.000*0,1 + = 2+50+10.000=10.052 
(we can put 200 pointers per block i.e., 1.000/5) 

 Clustered B+ tree index on <title, ename>

Cost = index lookup +  # of index entries * S (The index now has 
larger size, since each entry is 55 bytes)

 Clustered B+ tree index on <ename, title>

Index only scan, Cost = # of index entries 
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Using Indexes: Second Example

 Assume that relation R(A,B,C) has the following properties: 

 R has 54.000 tuples

 20 tuples of R can fit in 1 block

 Attribute A is an integer with range from 1 to 270

 Attribute values are uniformly distributed in the relation

 Tuples with the same attribute value of A are put in the same block 
and blocks with the same attribute value of A are chained by pointers

 There is a B+ Tree index on A, which stores 10 pointers per node

 What is the minimum height of the B+ Tree? How many block accesses 
for the following query using B+ Tree with minimum height?

SELECT A 

FROM r 

WHERE A = 150
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Using Indexes: Second Example (cont.)

 The height of the tree would be minimum when space of each node is 
fully occupied

=> Each node has 10 pointers to the next level node

=> Height = log10(270) = 2,43

=> Minimum Height is 3

 Number of data blocks = 54.000 tuples / 20 = 2.700

 Number of data blocks for each value of A = 2.700 / 270 = 10

 To implement the query, we give A=150 as the search-key value to the 
B+ Tree and we need to access 3 levels (3 index blocks) to find out the 
blocks storing tuples with A=150

 Total no. of block accesses = index block accesses + data block 
accesses = 3 + 10 = 13
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Tree-Structured Indexing Summary

 Sequential and direct access

 Straightforward insertion and deletion maintaining ordering

 Grows as required—only as big as needs to be

 Predictable scanning pattern

 Predictable and constant search time

but ..…

 maintenance overhead

 overkill for small static files

 duplicate keys?

 relies on random distribution of key values for efficient insertion
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Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons 
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τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης 
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/
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έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
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