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Index

® An index is a data structure that supports efficient access to data (i.e.,
row(s)) without having to scan entire table

® Based on a search key: rows having a particular value for the search key
attributes can be quickly located

T

Condition Set of ~ Matching
on - | index > Records ~ records
attribute

value /

(search key)
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Index Search Keys

® Candidate key vs. search key:
¢ Candidate key: set of attributes; guarantees uniqueness

¢ Search key: seguence of attributes; does not guarantee
uniqueness

® Types of (search) keys

¢ Sequential: the value of the key is monotonic with the insertion
order (e.g., counter or timestamp)

¢ Non sequential: the value of the key is unrelated to the insertion
order (e.g., social security number)




CSD Univ. of Crete Fall 2014

Index Structure

® Index entries
¢ The row itself (index and table are integrated in this case), or

¢ Search key value and a pointer to a row having that value (table is
stored separately in this case)

® Location mechanism

+ Algorithm + data structure for locating an index entry with a given
search key value

+ Various data structures can serve as indexes, e.g.,
e simple indexes on sorted (sequential) files
e secondary indexes on unsorted (heap) files
e hierarchical index structures (B-trees)
e hash tables
® Index entries are stored in accordance with the search key value

+ Entries with the same search key value are stored together (hash,
B+ tree)

¢ Entries may be sorted on search key value (B+ tree)
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Index Structure

Search key _.» S

value \
Location Mechanism
Location mechanism

makes it easy to find
Index entry for S

Once index entry ~ ----------- »\
IS found the row can S

be directly accessed
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Storage Structure

® Structure of file containing a table

oHeap file (no index, not integrated)

¢ Sorted file (no index, not integrated)

+Integrated file containing index and rows (index entries contain rows

In this case) e.g.,

e Indexed Sequential Access Method (ISAM)
e B+ tree
e Hash

® The simplest of cases: given a sorted file (data file), create another file
(index file) consisting of key-pointer pairs:
# a search key K is associated with a pointer pointing to a record of the
data file that has the search key K 6
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Indices: The Down Side

® An index is itself an ordered file
¢ The index file is physically ordered on disk by the key field

¢ The index file has records of fixed length, containing: key field, pointer
to data <ki, pi1>

® Additional I/O to access index pages (except if index is small enough to
fit In main memory)

® [ndex must be updated when table is modified

® SQL-92 does not provide for creation or deletion of indices
+Index on primary key generally created automatically
+Vendor specific statements:
e CREATE INDEX 1nd ON Student (Code)
e DROP INDEX 1nd 9
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Clustered Index

® Clustered index: index entries and rows are ordered in the same way

¢An integrated storage structure is always clustered (since rows and
Index entries are the same)

¢ The particular index structure (e.g., hash, tree) dictates how the rows
are organized in the storage structure

e There can be at most one clustered index on a table

¢CREATE TABLE generally creates an integrated, clustered (main)
iIndex

® Good for range searches when a range of search key values is requested
+Use location mechanism to locate index entry at start of range
e This locates first row

+Subsequent rows are stored in successive locations if index Is
clustered (not so if unclustered)

+Minimizes page transfers and maximizes likelihood of cache hits 10
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Clustered Secondary Index

1lodex File

.

Locating
lodex Entcies

3
L

A lodex Entcie

Mechanism for

s

Data File

Data Records

Fall 2014
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Unclustered Index

® Unclustered index: index entries and rows are not ordered in the same
way

® A secondary index might be clustered or unclustered with respect to
the storage structure it references

¢ It is generally unclustered (since the organization of rows in the
storage structure depends on main index)

¢ There can be many secondary indices on a table

¢ Index created by CREATE INDEX is generally an unclustered,
secondary index

13




w i CSD Univ. of Crete Fall 2014

Unclustered Secondary Index

1lndex File

LS

Mechanism for
Locating

londex Entcies

!

1lndex Entcies

Data Records

Data File

14
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Sparse vs Dense Index

® Dense index: every search key value in the data file is in the index
¢index entry for each data record (faster to locate a record)
e Unclustered index must be dense
e Secondary clustered index need not be dense

® Sparse index: not every search key value in the data file is in the index
¢index entry for each page of data file
e index indicates the block of records

® A good compromise
¢ Sparse index with one index entry per block
¢ Tradeoff between access time and space overhead

16
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Sparse vs Dense Index

Id Name Dept
/ 009406321 Jacob Taylor MGT / Mary Ecown
DD94D632L LOL202303 Jobho Smyth CS .~ Mary Erown
23456789 — 121232343 David Jones EE - Ying Chen
o —— \\ L3LL4LL5L  Anita Cohen  CS — Anita Cohen
234567891 Macy Brown ECO |~ Barcy Doe
333444555 Ying Chen CHE ™ David Jones
444555666 Sanjay Sen ENG [= i— Sanjay Sen
Slparse, 555666777 Macy Doe Cs AN Joha Smyth
_C ustered 666777888 Macy Bcown PHY \ Jacob Tayloc
index sorted 900120450 Ann White  MAT = Ann White
on Id
Dense,

data file sorted

on Id unclustered

index sorted
on Name

17
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Sparse Index

| I -

Search key should 17 19 ..
20

’//ﬂ
be candidate key of 20 ~
data file (else additional +0 \\ 2075
measures required, more 20

on that later) 33
4.

IR0

Ihdex file

Data file
18
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Multiple Attribute Search Key

® CREATE INDEX Inx ON Th1l (attl, att2)

® Search key is a sequence of attributes; index entries are lexically
ordered

® Supports finer granularity equality search:
¢ ‘Find row with value (Al, A2) ”

® Supports range search (tree index only):
¢ ‘Find rows with values between (Al, A2) and (A1, A2)"”

® Supports partial key searches (tree index only):
¢ Find rows with values of attl between Al and Al’

¢ But not “Find rows with values of att2 between A2 and A2'”
19




Locating an Index Entry

® Use scan (index entries not sorted)

® Use binary search (index entries sorted)

e If Q pages of index entries, then 10g9,Q page transfers (which is
a big improvement over binary search of the data pages of a F
page data file since F >>Q)

® Use multilevel index: Sparse index on sorted list of index entries

CSD Univ. of Crete Fall 2014

20
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Multiple Index Levels

® Since index files can be large, an index on an index file may be built
+Not all levels need to be equally dense or sparse

® A sparse index may be built on a dense 15-level index (otherwise the
2hd-level index would have as many records as the 1s-level index)

® Example 1: Sparse index occupies 1.000 blocks; a 2"9-level sparse index
would need only 10 blocks (for 100 records/block)

+ then to locate a record with a given key value, we need two 1/Os

® Example 2: Consider 5.000.000 ordered records, 100 records/block, thus
50.000 blocks

¢ Sequential search: average of 50.000 / 2 blocks read
+Binary search: log , 50.000 = 16

Sparse 3-level index: 4
*olock 5 blocks 500 blocks 20,000 blocks

S

23
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wo-Level Index

7 19| 2| 77 29
Spalsc o /, \\ B \
7 11 2] 15 19| 28 | 33 | 34 42| H | 33| 75 77| 78 | 80 | &4 29 | 92 | 4

Ihdex Enthies

® Separator level is a sparse index over pages of index entries

® Leaf level contains index entries

® Cost of searching the separator level << cost of searching index level
since separator level is sparse

® Cost or retrieving row once index entry is found is O (if integrated) or 1 (if
not)

24
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Secondary Indices

A-101 | Downtown | 500 =

350 - A-217 | Brighton 750 | -
4001 = A-110 | Downtown | 600 N
500 - A-215 | Mianus 700 .

600] -
7001
750
900 -

A-102 | Perryridge 400 -
A-201 | Perryridge 900 -

/ /\/’—: A-218 | Perryridge | 700 -

/ A-222 | Redwood 700 N

A-305 [ Round Hill | 350 | _
® Must be dense N
¢ Since the records are not physically stored in the search key order
+Can use multiple levels, with only the lowest being necessarily dense

® A sequential scan of the records in the search key of a secondary index
IS often very slow

+Requires many block accesses
® Data updates lead to updates of all index levels
#A likely significant overhead on modification of the database 26
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File not sorted on

Secondary Indices

secondary search key 30

50

20

/0

80

40

100

10

90

60

Fall 2014
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Secondary Indices

e Sparse index

Sequence
field \

30

50

20

/0

80

40

100

10

does not make sense! 90

60

Fall 2014
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Secondary Indices

/

\

0] 7
. 30
o a0 ~
90 \50 _
. \

60
sparse /0 -
high

level

Lowest level has to be dense

30

50

20

/0

80

40

100

10

90

60

Fall 2014
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Indexes with Duplicate Search Keys

If indexes are built on non-key attributes, then more than one record
may have a given key value

Assume that the order of records with identical search key values does
not matter

Fall 2014

A dense index can be built with one entry with key K for each record that

has search key K

Searching: look for the first record with key K in the index file and find all

the other records with the same value (they must immediately follow)

30
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Duplicate Keys & Primary Indices

® Different records can have
the same key value 10

10

® How to design the indexing 10
structure? 20

20
30

30
30

Index 7?7?77 140
45

31
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Duplicate Keys & Dense Index

Dense Index

10
10

—— -0
10
10 > 110
20 > 120
— 20
20
30 R
3 e

A 40

Record pointer 45

32
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Duplicate Keys & Better Dense Index

Dense Index

10 10
20
30 10

I
40 \ 20
/\\20

30

Record pointer
30

30

40
45

10

/1]

Fall 2014
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Duplicate Keys and Sparse Index

Sparse Index

10

 ?
10| — 10
10 — 10
20| —
Be careful /\ 50
when searching 30
for 20 or 30! block pointer
30
30
40

45

Fall 2014
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f? i1 CSD Univ. of Crete
<.

Duplicate Keys and Better Sparse Index

— place first new key from block

S —F Ty
10| — 10

20—+
30| — 10
N .
30

30
30

40
45

block pointer

35
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Duplicate Values & Secondary Indices

one option...
10 ~ 20
100 10
10
20 - 20
Problem: 40
201 -~
excess overhead!
- 30| ~ 10
e disk space 20 - 40
e search time 40| —
10
40|~ 40
40| —
\ 40

36
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Duplicate Values & Secondary Indices

another option: lists of pointers

10]
N
Problem: 20| 7
variable size
records in
index! 30 ~
40|

Fall 2014

20

10

20

40

10

40

10

40

30

40

37
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Duplicate Values & Secondary Indices

20

10

30

>110

200 +—

20

R

40| —+

50
60|

Yet another idea : \
Chain records with same key?

Problems:

40

10

J

40

/ 17

10

40

30

A
A

40

)

e Need to add fields to records, messes up maintenance
e Need to follow chain to know records

Fall 2014
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Duplicate Values & Secondary Indices

\\
= 20
20— > =
30 AN 20

40 \s’ N 40
50 10
40

60

10

B

AN
—

~

AN

buckets

Fall 2014
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Index Update: Insertion

® Single-level index insertion

+Perform a lookup using the search-key value appearing in the record
to be inserted

¢Dense indices — if the search-key value does not appear in the index,
Insert it

¢ Sparse indices — if the index stores an entry for each block of the file,
no change needs to be made to the index unless a new block is
created

¢ In the case where a new block is created, the first search-key
value appearing in the new block is inserted into the index

® Multilevel insertion and deletion algorithms are simple extensions of the
single-level algorithms

42
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Index Update: Deletion

® Single-level index deletion

+If deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index

¢Dense indices — deletion of the search-key is similar to file record
deletion

e Sparse indices — if an entry for the search key exists in the index, it is
deleted by replacing the entry in the index with the next search-key
value in the file (in search-key order)

o If the next search-key value already has an index entry, the entry
IS deleted instead of being replaced

43
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Index Data Structures

® Most index data structures can be viewed
as trees

® In general, the root of this tree will always
be in main memory, while the leaves will

Fall 2014

be located on disk

+ The performance of a data structure
depends on the number of nodes in the
average path from the root to the leaf

¢ Data structures with high fan-out

B tree

(maximum number of children of an
iInternal node) are thus preferred

Sequential Set

® B+ tree: Amendment to B-tree

e¢addresses for data records are in the
leaves and nowhere else

¢a key value is stored once, with the
address of the associated data record

46
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B+ Tree Properties

® A B+ Tree is a balanced tree whose leaves contain a sequence of key-
pointer pairs
+Same height for paths from root to leaf
+Given a search-key K, nearly same access time for different K values

® A B+ Tree is constructed by parameter n, the maximum key capacity of
a node. n+1 is also called the B+ tree order or fan-out

+Non-root nodes must always be at least half full (or half empty)

e Each internal node (non-leaf and non-root) has [ (n+1) /2]to n+1
pointers and [ (n+1) /2 |-1 to n search-key values

e The root node has at least 2 pointers or else is a leaf

e Each leaf node has | (n+1) /2] to n search-key values
Case for n=2 General case for n

Ki || Ko Ki |1 Ko Kn

R I R Y
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B+ Tree Properties

® Search keys are sorted in order
oK, < K), < .. < K,

® Non-leaf Node

#For each search-key value K in sub-tree S. ' P2
pointed by P; , K;_; SK < K; Pf P, P3\

e e.g. (key valuesin S;) < K, g ; g ; g;
ee.g.K; < (keyvaluesins,) < K,

® L eaf Node K K P; |
#P; points to record or bucket with P
search key value K; Record of K| Record of K,

# P, ; points to the neighbor leaf node Record of K,

48
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B+ Tree Searching

® Given a search-key value k

o Start from the root, look for the largest search-key value (K;) in the
node such that K; < k < Ky,

+Follow pointer P4, to next level, until you reach a leaf node

K]_ | K2 II<'I |IK1_L1 K

ST N R

+If k is found to be equal to K, in the leaf, follow P, to search the
record or bucket
Ky 1Ky

Record of Ky P4 k = Ky
Record of K,

49
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B+ Tree Insertion

® Overflow
+When number of search-key values exceed n

Insert 8
7 9 13 || 15

® L eaf Node
¢ Split into two nodes:
e 1stnode contains (the first) L(n+1) /2] values
e 2"d node contains the remaining values
e Copy the smallest search-key value of the 2" node to parent node

/9.\

7/ 8 19 || 13]] 15

50
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B+ Tree Insertion (cont.)

® Non-Leaf Node
¢ Split into two nodes:
e 15t node contains (the first) [ (n+1) /2 |-1 values

e Move the smallest of the remaining values, together with pointer,
to the parent

e 2"d node contains the remaining values

T

o1




® Underflow

® Leaf Node

CSD Univ. of Crete

¢ Redistribute to sibling
e Still, right node shouldn’t have less than left node

e Replace the between-value in parent by their
smallest value of the right node

B+

13

18 ||

22

/

ree Deletion

o When number of search-key values < [ (n+1)/21]-1

Delete 10

Fall 2014

10

13| 18

/

9

10

13

14

16

- .

9

13

14

16

¢ Merge (the two siblings contain too few entries)
e Move all values, pointers to left node
e Remove the between-value in parent

13

14

18 |

22

)

13

14

52
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B+ Tree Deletion (cont.)

Fall 2014

® Non-Leaf Node y, e
¢ Redistribute to sibling 9 | 10 14/ 15 || 16
e Through parent a B
e Right node not less than left node 14] 18
/
9 13 15|| 16
+Merge (the two siblings contain too few entries)
e Bring down parent
e Move all values, pointers to left node
e Delete the right node, and pointers in parent
18 || 22

13| 18 || 22 ‘
/

9 10 14|| 16 9 13

14

16

53
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Example on B+ Tree

® Construct a B+ tree
¢ Assume the tree is initially empty
+ All paths from root to leaf are of the same length

¢ The number of pointers that will fit in one node (the order/fan-out of
the tree) is four (n=3)

¢ Leaf nodes must have between 2 and 3 values (L(n+1) /2] and n)

¢ Non-leaf nodes other than root must have between 2 and 4 children
( (n+1) /2] and n+1)

¢ Root must have at least 2 children

54
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® Insert 2, 3,5

® Insert /7, 11

Insertions

A 4

7

11

Fall 2014

Next: Insert 17 -
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Insert 17

Next: Insert 19
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Insert 19

Next: Insert 23 -
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Insert 23

5 |11 || 19
// i
2|3 > 5 7

11 17

A\ 4

A 4

19 || 23

Next: Insert 29
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Insert 29

Next: Insert 31




"9 CSD Univ. of Crete Fall 2014
Insert 31
11 | N\
5 % 19 29 N
2| 3 > 5 7 > 11 17 > 19 23 —>) 29 31
Next: Insert 9 4
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Insert 9
11 |\
5 % 19 29 N
2| 3 > 5 7 9 > 11 17 — | 19 23 > 29 31
Next: Insert 10
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Insert 10

VAN

/

‘ / 19 | 29 N
> 9 1 17

10 > 1

Next: Insert8
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Insert 8

11

9 29 N

1
10 — | 11 17 » | 19 23

=
e,

29 31

A\ 4

Next: Delete 23
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Delete 23

11 NG

Next: Delete 19 o,
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Delete 19

/ o
5 9

/ v
5 !

Next: Delete 17
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Delete 17
/ N

2 3 » | 5 7 8

A\ 4

v
O

10 11 29 31

Next: Delete 10
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Delete 10
/ N

2 3 » | 5 7 8

A\ 4

v
O

11 29 31

Next: Delete 11
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Delete 11

31

Fall 2014
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B+

rees: Second Example

Fall 2014

® Assume a student table: Student(name, age, gpa, major)
tuples(Student) = 16
pages(Student) =4

Bob, 21, 3.7, CS

Kane, 19, 3.8, ME

Louis, 32, 4, LS

Chris, 22, 3.9, CS

Mary, 24, 3, ECE

Lam, 22, 2.8, ME

Martha, 29, 3.8, CS

Chad, 28, 2.3, LS

Tom, 20, 3.2, EE

Chang, 18, 2.5, CS

James, 24, 3.1, ME

Leila, 20, 3.5, LS

Kathy, 18, 3.8, LS

Vera, 17, 3.9, EE

Pat, 19, 2.8, EE

Shideh, 16, 4, CS

69
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Non-Clustered Secondary B+

ree

® A non-clustered secondary B+ tree on the gpa attribute

// 3.6 \\

(2.3, (4, 2)) (3, (1,2)) (3.7, (1, 1)) (3.9, (4.1))
(2.5, (2,3))| (3.1, (3,3)) (3.8, (3,2))| (3.9, (24))
(2.8,(2,2))( (3.2, (1,3) (3.8, (2,1))| (4, (3,1))
(2.8, (34)| (3.5, (4,3)) (3.8, (14))| 4, (4,4))

Bob, 21, 3.7, CS Kane, 19, 3.8, ME || Louis, 32, 4, LS Chris, 22, 3.9, CS

Mary, 24, 3, ECE

Lam, 22, 2.8, ME

Martha, 29, 3.8, CS

Chad, 28, 2.3, LS

Tom, 20, 3.2, EE

Chang, 18, 2.5, CS

James, 24, 3.1, ME

Leila, 20, 3.5, LS

Kathy, 18, 3.8, LS

Vera, 17, 3.9, EE

Pat, 19, 2.8, EE

Shideh, 16, 4, CS_




CSD Univ. of Crete

Clustered B+

ree

® A clustered B+ tree on the gpa attribute

1 2.9 )|3.6

3.8

Fall 2014

Chad, 28, 2.3, LS

Mary, 24, 3, ECE

Bob, 21, 3.7, CS

Chris, 22, 3.9, CS

Chang, 18, 2.5, CS

James, 24, 3.1, ME

Kathy, 18, 3.8, LS

Vera, 17, 3.9, EE

Lam, 22, 2.8, ME

Tom, 20, 3.2, EE

Kane, 19, 3.8, ME

Louis, 32, 4, LS

Pat, 19, 2.8, EE

Leila, 20, 3.5, LS

Martha, 29, 3.8, CS

Shideh, 16, 4, CS

® |t is impossible to have a clustered secondary B+ tree on an attribute

72




CSD Univ. of Crete Fall 2014

Clarifications on B+ Trees

® B+ trees can be used to store relations as well as index structures

® In the drawn B+ trees we assume (this is not the only scheme) that an
iInternal node with g pointers stores the maximum keys of each of the
first g-1 sub-trees it is pointing to; that is, it contains g-1 keys

® Before a B+ tree can be generated the following parameters have to be
chosen (based on the available block size; it is assumed one node is
stored in one block):

+ the order of the tree (n+1) (n+1 is the maximum number of pointers
an intermediate node might have; a non-root node must have
between [ (n+1)/2) | and n+1 pointers)

¢ the maximum number m of entries the leaf node can hold (in general
leaf nodes (except the root) must hold between | (m+1)/2] and m
entries)

® Internal nodes usually store more entries than leaf nodes
73
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Why [ (n+1)/2] and notLn/2] + 1?2

® Ifniseven: Assume n=10:

¢ [ (n+1)/2]: then the number of pointers is between 5 and 10; in the case of
underflow without borrowing, 4 pointers have to be merged with 5 pointer
yielding a node with 9 pointers

¢ |n/2J+1: then it is between 6 and 10; in the case of underflow without
borrowing, 5 pointers have to be merged with 6 pointer yielding 11 pointers
which is one too many
® If nis odd: Assume n=11; then in both cases the number of pointers is
between 6 and 11; in the case of an underflow without borrowing a 5
pointer node has to be merged with a 6 pointer node yielding an 11
pointer node

® Conclusion: We infer from the discussion that the minimum vs.
maximum numbers of entries for a tree
¢ of height 3is: 24 (n+1)/2)| *[(n+1)/2)] *[(m+1)/2] vs. n*n*n*m
¢ of height h+1 is: 2*( (n+1)/2) )" *((m+1)/2)] vs. n™***m y
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' Choosing Order n+1 and Leaf Entry Maximum m

® |dea: One B+ tree node is stored in one block; choose maximal m and
n+1 without exceeding block size!!

® Example 1: Want to store tuples of a relation E(ssh,name,salary) in
a B+ tree using ssn as the search key (alternative @); ssn and salary

take 4 bytes; name takes 12 bytes. B+ pointers take 2 bytes; the block
size is 2.048 bytes and the available space inside a block for B+tree

entries is 2.000 bytes. Choose n and m:
¢ (n+1)*2 + n*4 <2.000 -n < 1998/6=333
¢ m < 2000/(4+12+4) = 2000/20=100
¢ Answer: Choose n=333 and m=100

B+ tree Block Meta Data| B+ tree Block Meta Data:
Block Storage for Neighbor pointers, #entries,
B+ tree node entries Parent pointer, sibling bits, ...

75
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" Choosing Order n+1 and Leaf Entry Maximum m

® Example 2: Want to store an index for a relation E(ssn,name,salary)
In a B+ tree using ssn as the search key; storing ssn’s takes 4 bytes;
Index pointers take 4 bytes; the block size is 2.048 bytes and the
available space inside the block for B+ tree entries is 2.000 bytes.

Choose n and m:
¢ (n+1)*4 + n*4 < 2.000 ->n < 1996/8=249
¢ M < 2.000/(4 + 4) =2.000/8 = 250
¢ Answer: Choose n=249 and m=250

Fall 2014
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Coping with Duplicate Keys in B+ Trees

® Possible Approaches:
® Just allow duplicate keys
Consequences:
e Search is still efficient
e Insertion is still efficient (but could create “hot spots”)

e Deletion faces a lot of problems: We have to follow the leaf
pointers to find the entry to be deleted, and then updating the
Intermediate nodes might get quite complicated (can partially be
solved by creating two-way node pointers)

® Just create unique keys by using key+data (key*)
Consequences:
e Deletion is no longer a problem

e n (because of the larger key size) is significantly lower, and
therefore the height of the tree is likely higher 77
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Duplicate Keys in B+ Trees (first approach)

® In a non-leaf node, K; is the smallest new value appearing in subtree
pointed to by (i+1) pointer. If there is no new value, K; = NULL.
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Duplicate Keys in B+

Fall 2014

rees (first approach)

® Search algorithm the same but if you reach a leaf, you must be prepared
to search the sibling if the last value of leaf equals the search value

® |nsertion algorithm is the same, but attention must be kept when an old
value is inserted in a leaf and we must split

+The parent might get a NULL key value pointing to the second leaf of

the split

® Deletion algorithm is the same, but attention must be kept when there is
underflow, because in this case the parent node must be updated
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Duplicate Key Insertion in a B+

® Initial B+ Tree as below. Insertion of 13 two times.
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B+ Tree Performance

Tree levels
¢ Tree Fanout
e Size of key
e Page utilization

Tree maintenance
¢ Online
e On Inserts
e On deletes
¢ Offline

Tree locking

Tree root in main memory

Fall 2014
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B+

Fall 2014

ree Performance

® Key length influences fanout
¢ Choose small key when creating an index

¢ Key compression

e Prefix compression (Oracle 8, MySQL): only store that part of the
key that is needed to distinguish it from its neighbors: Smi, Smo,
Smy for Smith, Smoot, Smythe.

e Front compression (Oracle 5): adjacent keys have their front
portion factored out: Smi, (2)o, (2)y. There are problems with this

approach:

. Processor overhead for maintenance
. Locking Smoot requires locking Smith too
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Using Indexes: First Example

® Executives(ename, title, dname, address)

® Each attribute is 25 bytes, page size is 1.000 bytes; i.e., we store 10
records per page (record size = 100 bytes)

® Relation contains 100.000 records, 10.000 pages
® Consider query:  SELECT E.title, E.ename
FROM Executives E
WHERE E.title = ‘MANAGER’
® Assume only 10% of tuples meet the selection condition
® Selectivity S=0,1
® Pointer size =5 bytes; index entry size = 30 (5+25); index entries per
page = 33
® Assume that there are 1.000 job titles. Index on job title contains only

two levels (assuming that all index nodes are full)
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Using Indexes: First Example (cont.)

® Sequential scan of files
+Cost = File size = 10.000
® Binary search for file (sorted on title)

+Cost = log,(File size) + # file pages containing qualifying records =
log,(10.000) + 1.000= 1.013

+Here we could also say log,(10.000) + 999, since the first page
containing Manager records is retrieved by binary search

® Clustered B+ tree index on title (file sorted on title)
¢Cost = index lookup + (File size) *S =2 + (10.000)*0.1=1.002

+We use the index to retrieve the first record - since the file is clustered,
the remaining Manager records are stored sequentially after the first ong

® Clustered B+ tree index on ename

¢ NoO use of index. File Scan
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Using Indexes: First Example (cont.)

® Unclustered B+ tree index on title
¢Cost = index lookup + # of leaf node blocks + # of records * S

+Cost = 2 + (100.000*0,1)/200 + 100.000*0,1 + = 2+50+10.000=10.052
(we can put 200 pointers per block i.e., 1.000/5)

® Clustered B+ tree index on <title, ename>

+Cost = index lookup + # of index entries * S (The index now has
larger size, since each entry is 55 bytes)

® Clustered B+ tree index on <ename, title>
+Index only scan, Cost = # of index entries
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Using Indexes: Second Example

® Assume that relation R(A, B, C) has the following properties:
¢ R has 54.000 tuples

20 tuples of R can fit in 1 block

Attribute A is an integer with range from 1 to 270

Attribute values are uniformly distributed in the relation

Tuples with the same attribute value of A are put in the same block
and blocks with the same attribute value of A are chained by pointers

¢ Thereis a B+ Tree index on A, which stores 10 pointers per node

*® 6 6 O

® What is the minimum height of the B+ Tree? How many block accesses
for the following query using B+ Tree with minimum height?

SELECT A
FROM r
WHERE A = 150
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Using Indexes: Second Example (cont.)

® The height of the tree would be minimum when space of each node is
fully occupied

=> Each node has 10 pointers to the next level node
=> Height = log,,(270) = 2,43
=> Minimum Height is 3

® Number of data blocks = 54.000 tuples / 20 = 2.700
® Number of data blocks for each value of A=2.700/ 270 = 10

® To implement the query, we give A=150 as the search-key value to the
B+ Tree and we need to access 3 levels (3 index blocks) to find out the
blocks storing tuples with A=150

® Total no. of block accesses = index block accesses + data block
accesses=3+10=13 %0




CSD Univ. of Crete

Tree-Structured Indexing Summary

Seqguential and direct access

Straightforward insertion and deletion maintaining ordering
Grows as required—only as big as needs to be
Predictable scanning pattern

Predictable and constant search time

but .....

maintenance overhead

overkill for small static files

duplicate keys?

relies on random distribution of key values for efficient insertion

Fall 2014
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