Báवع由v $\Delta \varepsilon \delta 0 \mu \varepsilon ́ v \omega v$ Фроvтıбти́pıo 7: Tutorial on Query Optimization

TUTORIAL ON QUERY OPTIMIZATION

DB Logical Architecture

Relational Operators

Tab7e A
\square Selection

Set-difference

Measures of Query Cost

- Cost is generally measured as total elapsed time for answering query
- Many factors contribute to time cost: disk accesses, CPU, or even network communication
- Typically disk access is the predominant cost, and is also relatively easy to estimate
- Measured by taking into account
- Number of blocks read * average-block-read-cost
- Number of blocks written * average-block-write-cost
-Cost to write a block is greater than cost to read a block
- data is read back after being written to ensure that the write was successful

Measures of Query Cost

- For simplicity we just use number of block transfers from disk as the cost measure
-We ignore the difference in cost between sequential and random I/O for simplicity
-We also ignore CPU costs for simplicity
-We do not include cost to writing output to disk in our cost formula
- Costs depends on the size of the buffer in main memory
-Having more memory reduces need for disk access
- Amount of real memory available to buffer depends on other concurrent OS processes, and hard to determine ahead of actual execution
- We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available
- Real systems take CPU cost into account, differentiate between sequential and random I/O, and take buffer size into account

Nested-Loop Join

- Read in outer relation R block by block
-Then, for each tuples in R, we scan the entire inner relation S (read in S block by block)
- n_{R} : no. of record for R
- b_{R} : no. of block for R
- b_{S} : no. of block for S
- Worst Cost: $b_{R}+n_{R}{ }^{*} b_{S}$
foreach tuple r in R do
foreach tuple in S do

$$
\text { if } \mathrm{ri}==\mathrm{sj} \text { then } \mathrm{add}<\mathrm{r}, \mathrm{~s}>\text { to result }
$$

- Best Cost: $\mathrm{b}_{\mathrm{R}}+\mathrm{b}_{\mathrm{S}}$ (if smaller relation can fit in memory)
- Use small relation as outer relation
- Buffer: 3 pages (1 for R, 1 for S, 1 for output)

Nested Loops Join

Table S

Exercise

- Relations: S(A,B,C) and R(C,D, E)
- S has 20,000 tuples
- R has 45,000 tuples
- 25 tuples of S fit on one block (blocking factor)
- 30 tuples of R fit on one block
- S JOIN R
- S need 800 blocks (20000/25)
- R need 1500 blocks (45000/30)
- Assume M pages in memory
- If $M>800$, cost $=b_{R}+b_{S}=$ $1500+800=2300 \mathrm{I} / \mathrm{Os}$
- Consider only M <=800,

$$
\operatorname{cost}=b_{S}+n_{S}{ }^{*} b_{R}
$$

- Using S as outer relation
-Cost: $800+20000 * 1500$
= 30000800 I/Os
cost $=b_{R}+n_{R}{ }^{*} b_{S}$
- If R as outer relation
-Cost: 1500 + 45000*800 = 36001500 I/Os

Block Nested Loop Join

foreach block of M-2 pages of R do foreach page of S do

> for all matching in-memory tuples r in R-block and s in S-page add $<\mathrm{r}, \mathrm{s}>$ to result

- If M buffer pages available

Cost: $\mathrm{b}_{\mathrm{R}}+\left\lceil\mathrm{b}_{\mathrm{R}} /(\mathrm{M}-2)\right\rceil^{*} \mathrm{~b}_{\mathrm{S}}$

- M buffer pages (1 for inner S, 1 for output and all remaining M-2 pages to hold "block" of outer R
- If S is outer
-Cost $=\lceil 800 /(\mathrm{M}-2)\rceil$ * $1500+800 \mathrm{I} / \mathrm{Os}$
- If R is outer
\bullet Cost $=\lceil 1500 /(\mathrm{M}-2)\rceil * 800+1500 \mathrm{I} / \mathrm{Os}$

Index Nested-Loop Join

Index Nested-Loop Join

- Primary $B+$ tree index on the join attribute of R :
$\rightarrow b_{S}+n_{S^{*}}\left(x_{R}+1\right)$
where:
- $n_{S}\left(n_{R}\right)$ is the number of $S(R)$ tuples
- x_{R} is the height of the $B+-$ tree index on the join attribute
$-\mathrm{n}_{\mathrm{S}^{*}}\left(\mathrm{x}_{\mathrm{R}}+1\right)$ is the cost of using B+-tree index to find matching tuple in R
- Secondary $B+$ tree index on the join attribute of R :
$\rightarrow b_{S}+n_{R^{*}}\left(x_{R}+1\right)$
*where $n_{R} *\left(x_{R}+1\right)$ is the cost of using $B+$-tree index to find matching tuple in R

Index Nested loop join

- Hash index on the join attribute of R:
$\bullet b_{S}+n_{S}{ }^{*} H$
\bullet Where H is the average number of page accesses necessary to retrieve a tuple from R with a given key
- We use:
$\bullet H=1.2$ for a primary hash index and
$\bullet H=2.2$ for a secondary hash index

External Sorting

- File has b_{R} pages
- M : number of main memory page buffers
- No. of runs in the first pass $R=b_{R} / M$
- No. of passes to sort file completely

$$
\begin{aligned}
P & =\left\lceil\log _{M-1}\left(b_{R} / M\right)\right\rceil+1 \\
& =\left\lceil\log _{M-1} R\right\rceil+1
\end{aligned}
$$

- Total cost for sorting

$$
\begin{aligned}
& =b_{R}{ }^{*}\left(2^{*}\left\lceil\log _{M-1} R\right\rceil+1\right) \\
& =b_{R}{ }^{*} 2^{*}\left\lceil\log _{M-1} R\right\rceil+b_{R}
\end{aligned}
$$

Merge Join

- Assuming S and R are not initially sorted on the join key
- Cost $=$ Sorting $+b_{R}+b_{s}$
- Sorting $=1500$ * $\left(2 *\left\lceil\log _{M-1}(1500 / \mathrm{M})\right\rceil+1\right)+800 *\left(2 * 「 \log _{M-1}\right.$ $(800 / \mathrm{M})\rceil+1)$

Merge Join

- Assuming that there is a secondary B+tree on Rx
- Cost = C R1 + C R2
- where $C_{R x}=\left(n_{R x}{ }^{*} p s\right) /\left(0.69^{*} b s\right)+b_{R x}$ for the R which has the index on the join attribute
$\checkmark p s$: the size of the tuple reference (tuple identifier, rid)
\checkmark bs : the size of the block
- i.e.: the leaf nodes of the index tree (assumed to be 69% full) have to be scanned for pointers to the tuples of the relation and the blocks containing the tuples itself must be read at least once

Hash join

- Hash both relations on the join attribute using the same hash function
- Since S is smaller, we use it as the build relation and R as probe relation
- Assume no overflow occurs
- If $\mathrm{M}>=800$, no need for recursive partitioning, cost $=3(1500+800)=$ 6900 disk access $=3\left(b_{R}+b_{s}\right)$
- Else, cost $=2(1500+800)\left\lceil\log _{M-1}(800)-1\right\rceil+1500+800$ disk access
$=2\left(b_{R}+b_{s}\right)\left\lceil\log _{M-1}\left(b_{s}\right)-1\right\rceil+b_{R}+b_{s}$

Why Optimize?

- Given a query and a database of size m, how big can the output of applying the query to the database be?
- Example: $R(A)$ with 2 rows. One row has value 0 . One row has value 1 .
-How many rows are in $\mathrm{R} \times \mathrm{R}$?
How many in $R \times R \times R$?
\rightarrow Size of output as a function of input: $\mathrm{O}(?)$
- Usually, queries are small
-Therefore, it is usually assumed that queries are of a fixed size
Use term data complexity when we analyze time, assuming that query is constant
- What is the size of the output in this case?

Optimizer Architecture

Optimizer Architecture

- Rewriter: Finds equivalent queries that, perhaps can be computed more efficiently; all such queries are passed on to the Planner
- Examples of Equivalent queries: Join orderings
- Planner: Examines all possible execution plans and chooses the cheapest one, i.e., fastest one
\checkmark Uses other modules to find best plan
- Algebraic Space: Determines which types of queries will be examined
-Example: Try to avoid Cartesian Products
- Method-Structure Space: Determines what types of indexes are available and what types of algorithms for algebraic operations can be used
Example: Which types of join algorithms can be used
- Cost Model: Estimates the cost of execution plans
\checkmark Uses Size-Distribution Estimator for this
- Size-Distribution Estimator: Estimates size of tables, intermediate results, frequency distribution of attributes and size of indexes

Algebraic Space

- We consider queries that consist of select, project and join (Cartesian product is a special case of join)
- Such queries can be represented by a tree.
- Example: emp(name, age, sal, dno)
dept(dno, dname, floor, mgr, ano)
act(ano, type, balance, bno)
bank(bno, bname, address)

```
select name, floor
from emp, dept
where emp.dno=dept.dno and sal > 100k
```


3 Trees

EMP

Restriction 1 of Algebraic Space

- Algebraic space may contain many equivalent queries
- Important to restrict space
- Restriction (heuristic) 1: Only allow queries for which selection and projection:
- are processed as early as possible
- are processed on the fly
- Which trees in our example conform to Restriction 1?

Performing Selection and Projection "On the Fly"

- Selection and projection are performed as part of other actions
- Projection and selection that appear one after another are performed one immediately after another
- Projection and Selection do not require writing to the disk
- Selection is performed while reading relations for the first time
- Projection is performed while computing answers from previous action
- The three trees differ in the way that selection and projection are performed
- In T3, there is "maximal pushing of selection and projection"
-Rewriter finds such expressions

Restriction 2 of Algebraic Space

- Since the order of selection and projection is determined, we can write trees only with joins
- Restriction (heuristic) 2: Cross/Cartesian products are never formed, unless the query asks for them
- Why this restriction?
- Example:

$$
\begin{aligned}
& \text { select name, floor, balance } \\
& \text { from emp, dept, acnt } \\
& \text { where emp.dno=dept.dno and } \\
& \text { dept.ano = acnt.ano }
\end{aligned}
$$

3 Trees

EMP DEPT

Restriction 3 of Algebraic Space

- The left relation is called the outer relation in a join and the right relation is the inner relation (as in terminology of nested loops algorithms)
- Restriction (heuristic) 3: The inner operand of each join is a database relation, not an intermediate result (left-deep plans)
- Example:

```
select name, floor, balance
from emp, dept, acnt, bank
where emp.dno=dept.dno and dept.ano=acnt.ano
    and acnt.bno = bank.bno
```


3 Trees

Pipelining Joins

- Consider computing: (Emp >4 Dept) >4 Acnt. In principle, we should -compute Emp >4 Dept, write the result to the disk *then read it from the disk to join it with Acnt
- When using block and index nested loops join, we can avoid the step of writing to the disk
- We allow plans that
-Perform selection and projection early and on the fly
-Do not create cross products
\checkmark Use database relations as inner relations (also called left - deep trees)

Pipelining Joins - Example

Planner

- Dynamic programming algorithm to find best plan for performing join of N relations
- Intuition:
- Find all ways to access a single relation
- Estimate costs and choose best access plan(s)
-For each pair of relations, consider all ways to compute joins using all access plans from previous step
- Choose best plan(s)...
*For each i-1 relations joined, find best option to extend to i relations being joined...
-Given all plans to compute join of n relations, output the best

Reminder: Dynamic Programming

- To find an optimal plan for joining S, R, R_{3}, R_{4}, choose the best among:

Optimal plan for joining $R, R_{3}, R_{4}+$ for reading $S+$ optimal join of S with result of previous joins

Optimal plan for joining $S, R_{3}, R_{4}+$ for reading $R+$ optimal join of R with result of previous joins

- Optimal plan for joining $S, R, R_{4}+$ for reading $R_{3}+$ optimal join of R_{3} with result of previous joins
\checkmark Optimal plan for joining $S, R, R_{3}+$ for reading $R_{4}+$ optimal join of R_{4} with result of previous joins

Not Good Enough: Interesting Orders

- Example, suppose we are computing $(R(A, B) \diamond \triangleleft S(B, C)) » \triangleleft T(B, D)$
\bullet Maybe merge-sort join of R and S is not the most efficient, but the result is sorted on B
- If T is sorted on B , the performing a sort-merge join of R and S , and then of the result with T , maybe the cheapest total plan
- For some joins, such as sort-merge join, the cost is cheaper if relations are ordered
-Therefore, it is of interest to create plans where attributes that participate in a join are ordered on attributes in joins later on
- For each interesting order, save the best plan
\bullet We save plans for non interesting order if it better than all interesting order costs

Example

- We want to compute the query:

```
select name, mgr
from emp, dept
where emp.dno=dept.dno and sal>30K and floor = 2
```

- Available Indexes: B+tree index on emp.sa1, B+tree index on emp.dno, hashing index on dept.floor
- Join Methods: nested loops and sort-merge
- In the example, all cost estimations are fictional

Step 1 - Accessing Single Relations

Relation	Interesting Order	Plan	Cost
emp	emp.dno	Access through B+tree on emp.dno	700
		Access through B+tree on emp.sa7 Sequential scan	200 600
		Access through hashing on dept.floor Sequential scan	50 200

- Which do we save for the next step?

Step 2 - Joining 2 Relations

Join Method	Outer/Inner	Plan	Cost
nested loops	emp/dept	©For each emp tuple obtained through B+Tree on emp.sa1, scan dept through hashing index on dept.floor to find tuples matching on dno	1800
	అFor each emp tuple obtained through B+Tree on emp.dno and satisfying selection, scan dept through hashing index on dept.floor to find tuples matching on dno	3000	

Step 2 - Joining 2 Relations

Join Method	Outer/Inner	Plan	Cost
nested loops	dept/emp	-For each dept tuple obtained through hashing index on dept.f1oor, scan emp through B+Tree on emp.sa1 to find tuples matching on dno	2500
QFor each dept tuple obtained through hashing index on dept.floor, scan emp through B+Tree on emp.dno to find tuples satisfying the selection on emp.sa1	1500		

Step 2 - Joining 2 Relations

Join Method	Outer/ Inner	Plan	Cost
sort merge		- Sort the emp tuples resulting from accessing the B+Tree on emp. sa1 into L1 - Sort the dept tuples resulting from accessing the hashing index on dept. floor into L2 -Merge L1 and L2	2300
	- Sort the dept tuples resulting from accessing the hashing index on dept. floor into L2 -Merge L2 and the emp tuples resulting from accessing the B+Tree on emp.dno and satisfying the selection on emp.sa1	2000	

- Which plan will be chosen?

Picking a Query Plan

- Suppose we want to find the natural join of: Reserves, Sailors, Boats
- The 2 options that appear the best are (ignoring the order within a single join): (Sailors $\triangleright \triangleleft$ Reserves) $\triangleright \triangleleft$ Boats Sailors $\triangleright \triangleleft$ (Reserves $\triangleright \triangleleft$ Boats)
- We would like intermediate results to be as small as possible
-Which is better?
--> Generating and comparing plans

Select
Pick Min

Analyzing Result Sizes

- In order to answer the question in the previous slide, we must be able to estimate the size of (Sailors $\triangleright \triangleleft$ Reserves) and (Reserves $\triangleright \triangleleft$ Boats)
- The DBMS stores statistics about the relations and indexes
-Cardinality: Num of tuples NTuples(R) in each relation R
-Size: Num of pages N Pages (R) in each relation R
\checkmark Index Cardinality: Num of distinct key values NKeys(I) for each index I
\diamond Index Size: Num of pages INPages(I) in each index I
\diamond Index Height: Num of non-leaf levels IHeight(I) in each B+ Tree index I
- Index Range: The minimum ILow(I) and maximum value IHigh(I) for each index I
- They are updated periodically (not every time the underlying relations are modified)

Estimating Result Sizes

- Consider

$$
\begin{aligned}
& \text { SELECT attribute-7ist } \\
& \text { FROM relation-7ist } \\
& \text { WHERE } \text { term }_{1} \text { and } \ldots \text { and term }
\end{aligned}
$$

- The maximum number of tuples is the product of the cardinalities of the relations in the FROM clause
- The WHERE clause is associating a reduction factor with each term column = value: $1 /$ NKeys(I) if there is an index I on column. This assumes a uniform distribution; otherwise, System R assumes 1/10
- column1 = column2: 1/Max(NKeys(I1),NKeys(I2)) if there is an index I1 on column1 and I2 on column2. If only one column has an index, we use it to estimate the value; otherwise, use 1/10
column > value: (High(I)-value)/(High(I)-Low(I)) if there is an index I on column
- Estimated result size is: maximum size times product of reduction factors²

Example

```
SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid and S.rating > 3
    and R.agent = 'Joe'
```

- Cardinality $(\mathrm{R})=100,000$
- Cardinality $(\mathrm{S})=40,000$
- NKeys(Index on S.sid) $=40,000$
- NKeys(Index on R.agent) $=100$
- High(Index on Rating) $=10$, Low $=0$
- Maximum cardinality: 100,000 * 40,000
- Reduction factor of R.sid = S.sid: $1 / 40,000$
- Reduction factor of S.rating $>3:(10-3) /(10-0)=7 / 10$
- Reduction factor of R.agent = 'Joe': 1/100
- Total Estimated size: (Maximum cardinality) * (Reduction factor of R.sid) * $($ Reduction factor of S.rating) * $($ Reduction factor of R.agent $=$ S.sid $)=$ 100,000 * 40,000 * $(1 / 40,000)$ * $(7 / 10)$ * $(1 / 100)=700$

Second Example of Join Order Selection

- Consider the join of the four relations named R, S, T, U :

$\mathrm{R}(\mathrm{a}, \mathrm{b}), 1.000$ total tuples	$\mathrm{S}(\mathrm{b}, \mathrm{c}), 1.000$ total tuples	$\mathrm{T}(\mathrm{c}, \mathrm{d}), 1.000$ total tuples	$\mathrm{U}(\mathrm{a}, \mathrm{d}), 1.000$ total tuples
$\mathrm{V}(\mathrm{R}, \mathrm{a})=100$			$\mathrm{~V}(\mathrm{U}, \mathrm{a})=50$
$\mathrm{~V}(\mathrm{R}, \mathrm{b})=200$	$\mathrm{~V}(\mathrm{~S}, \mathrm{~b})=100$		
	$\mathrm{~V}(\mathrm{~S}, \mathrm{c})=500$	$\mathrm{~V}(\mathrm{~T}, \mathrm{c})=20$	
		$\mathrm{~V}(\mathrm{~T}, \mathrm{~d})=50$	$\mathrm{~V}(\mathrm{U}, \mathrm{d})=1000$

Notes

- $V(R, a)$: \# of distinct values for attribute
- $\operatorname{Cost}\{R, S\}=($ size of $R x$ size of $S) / \max \left(V\left(R, _\right), V\left(S, _\right)\right)$, where \quad is the join attribute
- Cost $\{R, S, U\}=($ size of $R x$ size of $S x$ size of $U) /(2$ greater nums from ($\mathrm{V}\left(\mathrm{R}, __{-}\right), \mathrm{V}\left(\mathrm{S}, __{-}\right), \mathrm{V}\left(\mathrm{U}, _\right)$), where _ is the join attribute

Second Example of Join Order Selection

- For the singleton sets, the costs and best plans are given in the table below

	R	S	T	U
Size	1.000	1.000	1.000	1.000
Cost	0	0	0	0
Best plan	R	S	T	U

- As the costs for all relations are the same, the dynamic programming algorithm will consider them all.

Second Example of Join Order Selection

- Now, we consider the pairs of relations
\bullet Again, the cost is 0 for each, as we do not have intermediate results

	\{R,S\}	$\{\mathrm{R}, \mathrm{T}\}$	$\{\mathrm{R}, \mathrm{U}\}$	$\{S, T\}$	$\{S, U\}$	\{T,U\}
Size	5.000	1.000.000	10.000	2.000	1.000.000	1.000
Cost	0	0	0	0	0	0
Best plan	RxS	RxT	RxU	SxT	SxU	TxU

- The dynamic programming algorithm again keeps them all for the next run, as the costs are 0 .

Second Example of Join Order Selection

- Now, we consider the join of three out of these four relations:

	\{ $\mathrm{R}, \mathrm{S}, \mathrm{T}\}$	\{R,S,U\}	\{R,T, U \}	\{S,T,U\}
Size	10.000	50.000	10.000	2.000
Cost	2.000	5.000	1.000	1.000
Best plan	(SxT) \times R	(RxS) xU	(TxU)xR	(TxU)xS

- As you can see, the best plan is clearly "(TxU)xS", with the least cost and size.

Second Example of Join Order Selection

- Finally, we consider the join of all relations. We come to these four final results (for dynamic programming):

((SxT)xR)xU	12.000
((RxS)xU)xT	55.000
((TxU) xR) xS	11.000
((TxU)xS)xR	3.000
((TxU) \times (RxS)	6.000
((RxT) \times (SxU)	2.000.000
((SxT) x (RxU)	12.000

Selecting Algorithms for Plan Operators

- For each operator, select algorithms based on I/O cost estimation
- For selection operator, consider
- Index-scan algorithms that use single attribute indexes, multiple indexes, or multidimensional indexes
-Table-scan algorithm using no index
- For join operator, consider
- All types of join algorithms if enough statistics is available
- If statistics is in sufficient, follow some simple ideas
- Try one-pass algorithm or nested-loops
- Use sort-join if one or both arguments are already sorted
- If index is available, use index-join
- If sort and index are not available and multi-pass join is necessary, use a hash join

Pipelining Example

- Relations:

$$
\begin{array}{ll}
R(W, X), & b_{R}=5000 \\
S(X, Y), & b_{S}=10000 \\
U(Y, Z), & b_{U}=10000
\end{array}
$$

- Buffer: $\mathrm{M}=101$ blocks
- Both joins are hash join
- Size k is estimated, and used to choose join algorithms

Case 1: $k \leq 49$

- Can pipeline result of 1st join into 2nd join
- Two-pass hash join for RD S:

Both R and S are hashed into 100 partitions, where each R partition has 50 blocks

- Join corresponding R \& S partitions using 50 buffer blocks for R partition, 1 block for S partition, and store the result in 49 blocks as a hash table
- One-pass hash join for the 2nd join:
- Use 1 buffer block for U (no need to partition U), join with the intermediate result that is already in buffer
- Cost $=3(5000+10000)+10000=55000$

Case 2: $49<\mathrm{k} \leq 5000$

- Overlap the 1st join with the hash partitioning of the 2nd join
- Two-pass hash join for the 1st join:
-Partition R \& S into 100 partitions, so that each R partition contains 50 blocks
- Join corresponding R \& S partitions (using 51 buffer blocks)

During the join, hash the result into 50 partitions (using the remaining 50 buffer blocks) \& write the partitions to disk

- Two-pass hash join for the 2nd join:
-Partition U into 50 partitions
- Join corresponding partitions of intermediate result \& U, using intermediate result partition as build relation (use 1 to 100 buffer blocks)
- Cost $=3(10000+5000)+k+2(10000)+(k+10000)=75000+2 k$

Case 3: k > 5000

- Cannot use pipelining
- Two-pass hash join for the 1st join:

Partition R \& S into 51 partitions, so that each R partition has <100 blocks

- Join corresponding R \& S partitions, write results to disk
- Two-pass hash join for the 2nd join:
-Partition intermediate result \& U into more than 50 partitions
- Join corresponding partitions of U \& intermediate result, using the smaller partition as the build relation
- Cost $=3(5000+10000)+k+3(10000+k)=75000+4 k$

Pipelining vs. Materialization

- Pipelining: Apply next operator to the output of one stage, as the output is generated.
- Materialization: Create a temporary relation as the output of a stage, pass to next stage

Pipelining vs. Materialization

- Advantages of 64 bit processors
- More main memory possible
- And so, more pipelining operations possible without having to write intermediate results to disk
-Complex in-memory processing does not require intermediate results being temporarily written to disk
- Saves costly disk I/O's and increases scalability
- Disadvantages of 64 bit processors
- Application must be fully supporting 64 bit to make full use of the speed advantages
-Upgrading to a 32 bit system with (more) parallel processors (using shared memory perhaps) might be cheaper to implement
- DBMS's implementing 64 bit are e.g. Oracle 10 g

Ordering of Physical Operations

- Pre-order traversal

- Post-order traversal

Notation for Physical Query Plans

- Non-standard among DBMSs
- Typical physical plan operators include
-For leave nodes:
TableScan(R), SortScan(R,AttrList), IndexScan(R,A), IndexScan(R, A θC)
\bullet For selection nodes:
combination of
TableScan(R),
Filter(Cond),
SortScan(R, AttrList)

Two-pass
hash join
101 buffers

Two-pass
hash join
TableScan(U) 101 buffers

TableScan(R)
TableScan(S)

Points to Remember

- Step 1: Choose a logical plan
- Involves choosing a query tree, which indicates the order in which algebraic operations are applied
- Heuristic: Pushed trees are good, but sometimes "nearly fully pushed" trees are better due to indexing
-So: Take the initial "master plan" tree and produce a fully pushed tree plus several nearly fully pushed trees
- Step 2: Reduce search space
-Deal with associativity of binary operators (join, union, ...)
-Choose a particular shape of a tree (left-deep trees)
- Equals the number of ways to parenthesize N-way join - grows very rapidly
-Choose a particular permutation of the leaves
- E.g., 4! permutations of the leaves A, B, C, D
- Step 3: Use a heuristic search to further reduce complexity
-The choice of left-deep trees still leaves open too many options
\bullet A heuristic algorithm is used to get a 'good' plan

Tદ́лоs Evótఇтаऽ

EI \triangle KH YПHPEEIA $\triangle I A X E I P I E H E$

Хрпиатобо́тпоп

 દ́pyou tou ठıסáव́бкоvta.

Eupwraïkń'Evшov Eupwraïкó Koıvшviкó Taцzio EIDIKH YПHPEटIA $\triangle I A X E I P I \Sigma H \Sigma$

$\Sigma \eta \mu \varepsilon ı \omega ́ \mu \alpha т \alpha$
$\Sigma \eta \mu \varepsilon ı \omega ́ \mu \alpha т \alpha$

 Avaчo

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

 غ́pyou кац $\alpha \delta \varepsilon$ เоסóxo

ミпигíw α Avaчopás

 ठıктuakи́ סІєúӨuvoŋ: http://www.csd.uoc.gr/~hy460/

