
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης
Βάσεων Δεδομένων

Φροντιστήριο 7: Tutorial on Query
Optimization

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

1

CSD Univ. of Crete Fall 2014

TUTORIAL ON QUERY
OPTIMIZATION

2

CSD Univ. of Crete Fall 2014

queries

Query

Execution

engine

Access Plan
Executor

Parser

Operator Evaluator
Optimizer

Access Methods

Buffer Manager

Disk Manager

Recovery

Manager

Transaction

Manager

Lock

Manager

Concurrency
control

DB Logical Architecture

3

CSD Univ. of Crete Fall 2014

Selection

Join

Projection

Union

Table A

Table A

Table A

Table B
Table X

Table Y

Relational Operators

Table S

Table T

Set-difference

4

CSD Univ. of Crete Fall 2014

Measures of Query Cost

● Cost is generally measured as total elapsed time for answering query

Many factors contribute to time cost: disk accesses, CPU, or even

network communication

● Typically disk access is the predominant cost, and is also relatively easy

to estimate

Measured by taking into account

Number of blocks read * average-block-read-cost

Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block

 data is read back after being written to ensure that the write was

successful

5

CSD Univ. of Crete Fall 2014

Measures of Query Cost

● For simplicity we just use number of block transfers from disk as the cost
measure

We ignore the difference in cost between sequential and random I/O
for simplicity

We also ignore CPU costs for simplicity

We do not include cost to writing output to disk in our cost
formula

● Costs depends on the size of the buffer in main memory

Having more memory reduces need for disk access

Amount of real memory available to buffer depends on other
concurrent OS processes, and hard to determine ahead of actual
execution

We often use worst case estimates, assuming only the minimum
amount of memory needed for the operation is available

● Real systems take CPU cost into account, differentiate between
sequential and random I/O, and take buffer size into account

6

CSD Univ. of Crete Fall 2014

● Read in outer relation R block by block

Then, for each tuples in R, we scan the entire inner relation S (read
in S block by block)

● nR : no. of record for R

● bR : no. of block for R

● bS : no. of block for S

● Worst Cost: bR + nR * bS

● Best Cost: bR + bS (if smaller relation can fit in memory)

● Use small relation as outer relation

● Buffer: 3 pages (1 for R, 1 for S, 1 for output)

Nested-Loop Join

foreach tuple r in R do

foreach tuple in S do

if ri == sj then add <r,s> to result

7

CSD Univ. of Crete Fall 2014

Table R

Table S

Table R S

DB Server

Nested Loops Join

8

CSD Univ. of Crete Fall 2014

Exercise

● Relations: S(A,B,C) and

R(C,D,E)

● S has 20,000 tuples

● R has 45,000 tuples

● 25 tuples of S fit on one block

(blocking factor)

● 30 tuples of R fit on one block

● S JOIN R

● S need 800 blocks (20000/25)

● R need 1500 blocks (45000/30)

● Assume M pages in memory

● If M > 800, cost = bR + bS =

1500 + 800 = 2300 I/Os

● Consider only M <=800,

cost = bS + nS * bR

● Using S as outer relation

Cost: 800 +20000*1500

= 30000800 I/Os

cost = bR + nR * bS

● If R as outer relation

Cost: 1500 + 45000*800

= 36001500 I/Os

9

CSD Univ. of Crete Fall 2014

● If M buffer pages available

Cost: bR + bR /(M-2) * bS

M buffer pages (1 for inner S, 1 for output and all remaining M-2
pages to hold “block” of outer R

● If S is outer

Cost = 800 /(M-2) * 1500 + 800 I/Os

● If R is outer

Cost = 1500 /(M-2) * 800 + 1500 I/Os

Block Nested Loop Join

foreach block of M – 2 pages of R do

foreach page of S do

for all matching in-memory tuples r in R-block and s in S-page

add <r,s> to result

10

CSD Univ. of Crete Fall 2014

Table R

Table S

Table R S

DB Server

key

Index Nested-Loop Join

11

CSD Univ. of Crete Fall 2014

Index Nested-Loop Join

● Primary B+tree index on the join attribute of R:

bS + nS*(xR + 1)

where:

 nS (nR) is the number of S (R) tuples

 xR is the height of the B+-tree index on the join attribute

 nS*(xR + 1) is the cost of using B+-tree index to find matching tuple

in R

● Secondary B+tree index on the join attribute of R:

bS + nR*(xR + 1)

where nR * (xR + 1) is the cost of using B+-tree index to find matching

tuple in R

12

CSD Univ. of Crete Fall 2014

Index Nested loop join

● Hash index on the join attribute of R:

bS + nS * H

Where H is the average number of page accesses necessary to

retrieve a tuple from R with a given key

● We use:

H = 1.2 for a primary hash index and

H = 2.2 for a secondary hash index

13

CSD Univ. of Crete Fall 2014

● File has bR pages

● M : number of main memory page buffers

● No. of runs in the first pass R = bR /M

● No. of passes to sort file completely

P = log M-1 (bR /M) + 1

= log M-1 R + 1

● Total cost for sorting

= bR* (2* log M-1 R + 1)

= bR* 2* log M-1 R + bR

External Sorting

15

CSD Univ. of Crete Fall 2014

Merge Join

● Assuming S and R are not initially sorted on the join key

● Cost = Sorting + bR + bs

● Sorting = 1500 * (2 * log M-1 (1500/M) + 1) + 800 * (2 * log M-1

(800/M) + 1)

16

CSD Univ. of Crete Fall 2014

Merge Join

● Assuming that there is a secondary B+tree on Rx

● Cost = C R1 + C R2

● where CRx = (nRx*ps)/(0.69*bs)+ bRx for the R which has the index on

the join attribute

ps : the size of the tuple reference (tuple identifier, rid)

bs : the size of the block

● i.e.: the leaf nodes of the index tree (assumed to be 69% full) have to be

scanned for pointers to the tuples of the relation and the blocks

containing the tuples itself must be read at least once

17

CSD Univ. of Crete Fall 2014

● Hash both relations on the join attribute using the same hash function

● Since S is smaller, we use it as the build relation and R as probe relation

● Assume no overflow occurs

● If M >= 800, no need for recursive partitioning, cost = 3(1500 + 800) =
6900 disk access = 3(bR + bs)

● Else, cost = 2(1500 + 800) log M-1 (800) - 1 + 1500 + 800 disk access

= 2(bR + bs) log M-1 (bs) - 1 + bR + bs

Hash join

18

CSD Univ. of Crete Fall 2014

Why Optimize?

● Given a query and a database of size m, how big can the output of
applying the query to the database be?

● Example: R(A) with 2 rows. One row has value 0. One row has value 1.

How many rows are in R x R?

How many in R x R x R?

Size of output as a function of input: O(?)

● Usually, queries are small

Therefore, it is usually assumed that queries are of a fixed size

Use term data complexity when we analyze time, assuming that
query is constant

● What is the size of the output in this case?

19

CSD Univ. of Crete Fall 2014

Optimizer Architecture

Algebraic Space

Method-Structure
Space

Cost Model

Size-Distribution
Estimator

Planner

Rewriter

20

CSD Univ. of Crete Fall 2014

Optimizer Architecture

● Rewriter: Finds equivalent queries that, perhaps can be computed more
efficiently; all such queries are passed on to the Planner

Examples of Equivalent queries: Join orderings

● Planner: Examines all possible execution plans and chooses the
cheapest one, i.e., fastest one

Uses other modules to find best plan

● Algebraic Space: Determines which types of queries will be examined

Example: Try to avoid Cartesian Products

● Method-Structure Space: Determines what types of indexes are available
and what types of algorithms for algebraic operations can be used

Example: Which types of join algorithms can be used

● Cost Model: Estimates the cost of execution plans

Uses Size-Distribution Estimator for this

● Size-Distribution Estimator: Estimates size of tables, intermediate results,
frequency distribution of attributes and size of indexes

21

CSD Univ. of Crete Fall 2014

Algebraic Space

● We consider queries that consist of select, project and join (Cartesian

product is a special case of join)

● Such queries can be represented by a tree.

● Example: emp(name, age, sal, dno)

dept(dno, dname, floor, mgr, ano)

act(ano, type, balance, bno)

bank(bno, bname, address)

select name, floor

from emp, dept

where emp.dno=dept.dno and sal > 100K

22

CSD Univ. of Crete Fall 2014

3 Trees

name,

floor

 dno=dno

sal>100K

EMP

DEPT

name,

floor

 dno=dno

sal>100K

EMP DEPT

name,

floor

 dno=dno

sal>100K

EMP

DEPT

dno,floor

name,sal,dno

dno, name

T1 T2 T3

23

CSD Univ. of Crete Fall 2014

● Algebraic space may contain many equivalent queries

● Important to restrict space

● Restriction (heuristic) 1: Only allow queries for which selection and

projection:

are processed as early as possible

are processed on the fly

● Which trees in our example conform to Restriction 1?

Restriction 1 of Algebraic Space

24

CSD Univ. of Crete Fall 2014

Performing Selection and Projection "On the Fly"

● Selection and projection are performed as part of other actions

● Projection and selection that appear one after another are performed one

immediately after another

Projection and Selection do not require writing to the disk

● Selection is performed while reading relations for the first time

● Projection is performed while computing answers from previous action

25

CSD Univ. of Crete Fall 2014

Processing Selection/Projection as Early as

Possible

● The three trees differ in the way that selection and projection are

performed

● In T3, there is "maximal pushing of selection and projection"

Rewriter finds such expressions

26

CSD Univ. of Crete Fall 2014

● Since the order of selection and projection is determined, we can

write trees only with joins

● Restriction (heuristic) 2: Cross/Cartesian products are never formed,

unless the query asks for them

● Why this restriction?

● Example:

select name, floor, balance

from emp, dept, acnt

where emp.dno=dept.dno and

dept.ano = acnt.ano

Restriction 2 of Algebraic Space

27

CSD Univ. of Crete Fall 2014

3 Trees

 ano=ano

EMP DEPT

T1 T2 T3

 dno=dno ACNT

 ano=ano,

dno=dno

EMP ACNT

 DEPT

 dno=dno

ACNT DEPT

 ano=ano EMP

Which trees have

cross products?

28

CSD Univ. of Crete Fall 2014

● The left relation is called the outer relation in a join and the right relation

is the inner relation (as in terminology of nested loops algorithms)

● Restriction (heuristic) 3: The inner operand of each join is a database

relation, not an intermediate result (left-deep plans)

● Example:

select name, floor, balance

from emp, dept, acnt, bank

where emp.dno=dept.dno and dept.ano=acnt.ano

and acnt.bno = bank.bno

Restriction 3 of Algebraic Space

29

CSD Univ. of Crete Fall 2014

3 Trees

 ano=ano

EMP DEPT

T1 T2 T3

 dno=dno ACNT

 ano=ano

EMP DEPT

 dno=dno

ACNT

Which trees follow

restriction 3? bno=bno

BANK

BANK

 bno=bno

 ano=ano

EMPDEPT

 dno=dno

ACNT

 bno=bno

BANK

30

CSD Univ. of Crete Fall 2014

Pipelining Joins

● Consider computing: (Emp Dept) Acnt. In principle, we should

compute Emp Dept, write the result to the disk

then read it from the disk to join it with Acnt

● When using block and index nested loops join, we can avoid the step of

writing to the disk

● We allow plans that

Perform selection and projection early and on the fly

Do not create cross products

Use database relations as inner relations (also called left – deep trees)

31

CSD Univ. of Crete Fall 2014

Pipelining Joins - Example

Read block
from Emp

Find
matching
Dept tuples
using index

Find
matching
Acnt tuples
using index

Write
final
output

1

2 3

4

Emp
blocks

Dept
blocks

Acnt
blocks

Output
blocks

Buffer

32

CSD Univ. of Crete Fall 2014

● Dynamic programming algorithm to find best plan for performing join of N

relations

● Intuition:

Find all ways to access a single relation

Estimate costs and choose best access plan(s)

For each pair of relations, consider all ways to compute joins using all

access plans from previous step

Choose best plan(s)...

For each i-1 relations joined, find best option to extend to i relations

being joined...

Given all plans to compute join of n relations, output the best

Planner

33

CSD Univ. of Crete Fall 2014

● To find an optimal plan for joining S, R, R3, R4, choose the best among:

Optimal plan for joining R, R3, R4 + for reading S + optimal join of S

with result of previous joins

Optimal plan for joining S, R3, R4 + for reading R + optimal join of R

with result of previous joins

Optimal plan for joining S, R, R4 + for reading R3 + optimal join of R3

with result of previous joins

Optimal plan for joining S, R, R3 + for reading R4 + optimal join of R4

with result of previous joins

Reminder: Dynamic Programming

34

CSD Univ. of Crete Fall 2014

Not Good Enough: Interesting Orders

● Example, suppose we are computing (R(A,B) S(B,C)) T(B,D)

Maybe merge-sort join of R and S is not the most efficient, but the

result is sorted on B

If T is sorted on B, the performing a sort-merge join of R and S, and

then of the result with T, maybe the cheapest total plan

● For some joins, such as sort-merge join, the cost is cheaper if relations

are ordered

Therefore, it is of interest to create plans where attributes that

participate in a join are ordered on attributes in joins later on

● For each interesting order, save the best plan

We save plans for non interesting order if it better than all interesting

order costs

35

CSD Univ. of Crete Fall 2014

● We want to compute the query:

● Available Indexes: B+tree index on emp.sal, B+tree index on emp.dno,

hashing index on dept.floor

● Join Methods: nested loops and sort-merge

● In the example, all cost estimations are fictional

select name, mgr

from emp, dept

where emp.dno=dept.dno and sal>30K and floor = 2

Example

36

CSD Univ. of Crete Fall 2014

Relation Interesting

Order

Plan Cost

emp emp.dno Access through B+tree on emp.dno 700

Access through B+tree on emp.sal

Sequential scan

200

600

dept Access through hashing on dept.floor
Sequential scan

50

200

Step 1 – Accessing Single Relations

● Which do we save for the next step?

37

CSD Univ. of Crete Fall 2014

Join

Method

Outer/Inner Plan Cost

nested

loops

emp/dept ●For each emp tuple obtained through

B+Tree on emp.sal, scan dept through

hashing index on dept.floor to find

tuples matching on dno

1800

●For each emp tuple obtained through

B+Tree on emp.dno and satisfying

selection, scan dept through hashing

index on dept.floor to find tuples

matching on dno

3000

Step 2 – Joining 2 Relations

38

CSD Univ. of Crete Fall 2014

Join

Method

Outer/Inner Plan Cost

nested

loops

dept/emp ●For each dept tuple obtained through

hashing index on dept.floor, scan emp
through B+Tree on emp.sal to find tuples

matching on dno

2500

●For each dept tuple obtained through

hashing index on dept.floor, scan emp
through B+Tree on emp.dno to find tuples

satisfying the selection on emp.sal

1500

Step 2 – Joining 2 Relations

39

CSD Univ. of Crete Fall 2014

Join

Method

Outer/

Inner

Plan Cost

sort

merge

●Sort the emp tuples resulting from accessing

the B+Tree on emp.sal into L1

●Sort the dept tuples resulting from accessing

the hashing index on dept.floor into L2

●Merge L1 and L2

2300

●Sort the dept tuples resulting from accessing

the hashing index on dept.floor into L2

●Merge L2 and the emp tuples resulting from

accessing the B+Tree on emp.dno and

satisfying the selection on emp.sal

2000

Step 2 – Joining 2 Relations

● Which plan will be chosen?

40

CSD Univ. of Crete Fall 2014

Picking a Query Plan

● Suppose we want to find the natural join

of: Reserves, Sailors, Boats

● The 2 options that appear the best are

(ignoring the order within a single join):

(Sailors Reserves) Boats

Sailors(Reserves Boats)

● We would like intermediate results to be

as small as possible

Which is better?

--> Generating and comparing

plans

Query

Generate Plans

Pruning

x x

Estimate Cost

Cost

Select
Pick Min

41

CSD Univ. of Crete Fall 2014

Analyzing Result Sizes

● In order to answer the question in the previous slide, we must be able to
estimate the size of (SailorsReserves) and (ReservesBoats)

● The DBMS stores statistics about the relations and indexes

Cardinality: Num of tuples NTuples(R) in each relation R

Size: Num of pages NPages(R) in each relation R

Index Cardinality: Num of distinct key values NKeys(I) for each index I

Index Size: Num of pages INPages(I) in each index I

Index Height: Num of non-leaf levels IHeight(I) in each B+ Tree index I

Index Range: The minimum ILow(I) and maximum value IHigh(I) for

each index I

● They are updated periodically (not every time the underlying relations are
modified)

42

CSD Univ. of Crete Fall 2014

● Consider

● The maximum number of tuples is the product of the cardinalities of the

relations in the FROM clause

● The WHERE clause is associating a reduction factor with each term

column = value: 1/NKeys(I) if there is an index I on column. This

assumes a uniform distribution; otherwise, System R assumes 1/10

column1 = column2: 1/Max(NKeys(I1),NKeys(I2)) if there is an index

I1 on column1 and I2 on column2. If only one column has an index, we

use it to estimate the value; otherwise, use 1/10

column > value: (High(I)-value)/(High(I)-Low(I)) if there is an index I

on column

● Estimated result size is: maximum size times product of reduction factors

SELECT attribute-list

FROM relation-list

WHERE term1 and ... and termn

Estimating Result Sizes

43

CSD Univ. of Crete Fall 2014

Example

● Cardinality(R) = 100,000

● Cardinality(S) = 40,000

● NKeys(Index on S.sid) = 40,000

● NKeys(Index on R.agent) = 100

● High(Index on Rating) = 10, Low = 0

● Maximum cardinality: 100,000 * 40,000

● Reduction factor of R.sid = S.sid: 1/40,000

● Reduction factor of S.rating > 3: (10–3)/(10-0) = 7/10

● Reduction factor of R.agent = ‘Joe’: 1/100

● Total Estimated size: (Maximum cardinality) * (Reduction factor of R.sid) *
(Reduction factor of S.rating) * (Reduction factor of R.agent = S.sid) =
100,000 * 40,000 * (1/40,000) * (7/10) * (1/100) = 700

SELECT *

FROM Reserves R, Sailors S

WHERE R.sid = S.sid and S.rating > 3

and R.agent = ‘Joe’

44

CSD Univ. of Crete Fall 2014

● Consider the join of the four relations named R, S, T, U:

R(a,b), 1.000

total tuples

S(b,c), 1.000

total tuples

T(c,d), 1.000

total tuples

U(a,d), 1.000

total tuples

V(R,a) = 100 V(U,a) = 50

V(R,b) = 200 V(S,b) = 100

V(S,c) = 500 V(T,c) = 20

V(T,d) = 50 V(U,d) = 1000

Second Example of Join Order Selection

45

CSD Univ. of Crete Fall 2014

Notes

● V(R,a) : # of distinct values for attribute

● Cost {R,S} = (size of R x size of S) / max (V(R,_), V(S,_)) , where _ is

the join attribute

● Cost {R,S,U} = (size of R x size of S x size of U) / (2 greater nums

from (V(R,_), V(S,_), V(U,_)) , where _ is the join attribute

46

CSD Univ. of Crete Fall 2014

● For the singleton sets, the costs and best plans are given in the table
below

● As the costs for all relations are the same, the dynamic programming
algorithm will consider them all.

{R} {S} {T} {U}

Size 1.000 1.000 1.000 1.000

Cost 0 0 0 0

Best plan R S T U

Second Example of Join Order Selection

47

CSD Univ. of Crete Fall 2014

● Now, we consider the pairs of relations

Again, the cost is 0 for each, as we do not have intermediate
results

● The dynamic programming algorithm again keeps them all for the
next run, as the costs are 0.

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Size 5.000 1.000.000 10.000 2.000 1.000.000 1.000

Cost 0 0 0 0 0 0

Best plan RxS RxT RxU SxT SxU TxU

Second Example of Join Order Selection

48

CSD Univ. of Crete Fall 2014

● Now, we consider the join of three out of these four relations:

● As you can see, the best plan is clearly “(TxU)xS”, with the least cost
and size.

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

Size 10.000 50.000 10.000 2.000

Cost 2.000 5.000 1.000 1.000

Best plan (SxT)xR (RxS)xU (TxU)xR (TxU)xS

Second Example of Join Order Selection

49

CSD Univ. of Crete Fall 2014

● Finally, we consider the join of all relations. We come to these four
final results (for dynamic programming):

Second Example of Join Order Selection

((SxT)xR)xU 12.000

((RxS)xU)xT 55.000

((TxU)xR)xS 11.000

((TxU)xS)xR 3.000

((TxU)x(RxS) 6.000

((RxT)x(SxU) 2.000.000

((SxT)x(RxU) 12.000

50

CSD Univ. of Crete Fall 2014

Selecting Algorithms for Plan Operators

● For each operator, select algorithms based on I/O cost estimation

● For selection operator, consider

Index-scan algorithms that use single attribute indexes, multiple

indexes, or multidimensional indexes

Table-scan algorithm using no index

● For join operator, consider

All types of join algorithms if enough statistics is available

If statistics is in sufficient, follow some simple ideas

Try one-pass algorithm or nested-loops

Use sort-join if one or both arguments are already sorted

 If index is available, use index-join

 If sort and index are not available and multi-pass join is necessary,

use a hash join

51

CSD Univ. of Crete Fall 2014

Pipelining Example

● Relations:

R(W,X), bR = 5000

S(X,Y), bS = 10000

U(Y,Z), bU = 10000

● Buffer: M = 101 blocks

● Both joins are hash join

● Size k is estimated, and used to

choose join algorithms

52

CSD Univ. of Crete Fall 2014

Case 1: k ≤49

● Can pipeline result of 1st join into 2nd join

● Two-pass hash join for R S:

Both R and S are hashed into 100 partitions, where each R partition
has 50 blocks

Join corresponding R & S partitions using 50 buffer blocks for R
partition, 1 block for S partition, and store the result in 49 blocks as a
hash table

● One-pass hash join for the 2nd join:

Use 1 buffer block for U (no need to partition U), join with the
intermediate result that is already in buffer

● Cost = 3(5000+10000) + 10000 = 55000

53

CSD Univ. of Crete Fall 2014

Case 2: 49 < k ≤5000

● Overlap the 1st join with the hash partitioning of the 2nd join

● Two-pass hash join for the 1st join:

Partition R & S into 100 partitions, so that each R partition contains 50
blocks

Join corresponding R & S partitions (using 51 buffer blocks)

During the join, hash the result into 50 partitions (using the remaining
50 buffer blocks) & write the partitions to disk

● Two-pass hash join for the 2nd join:

Partition U into 50 partitions

Join corresponding partitions of intermediate result & U, using
intermediate result partition as build relation (use 1 to 100 buffer blocks)

● Cost = 3(10000+5000) + k + 2(10000) + (k+10000) = 75000 + 2k

54

CSD Univ. of Crete Fall 2014

Case 3: k > 5000

● Cannot use pipelining

● Two-pass hash join for the 1st join:

Partition R & S into 51 partitions, so that each R partition has <100

blocks

Join corresponding R & S partitions, write results to disk

● Two-pass hash join for the 2nd join:

Partition intermediate result & U into more than 50 partitions

Join corresponding partitions of U & intermediate result, using the

smaller partition as the build relation

● Cost = 3(5000+10000) + k + 3(10000+k) = 75000 + 4k

55

CSD Univ. of Crete Fall 2014

● Pipelining: Apply next operator to the output of one stage, as the
output is generated.

● Materialization: Create a temporary relation as the output of a
stage, pass to next stage

Pipelining vs. Materialization

56

CSD Univ. of Crete Fall 2014

● Advantages of 64 bit processors

More main memory possible

And so, more pipelining operations possible without having to write
intermediate results to disk

Complex in-memory processing does not require intermediate results
being temporarily written to disk

Saves costly disk I/O’s and increases scalability

● Disadvantages of 64 bit processors

Application must be fully supporting 64 bit to make full use of the
speed advantages

Upgrading to a 32 bit system with (more) parallel processors (using
shared memory perhaps) might be cheaper to implement

● DBMS’s implementing 64 bit are e.g. Oracle 10g

Pipelining vs. Materialization

57

CSD Univ. of Crete Fall 2014

● Pre-order traversal ● Post-order traversal

Ordering of Physical Operations

58

CSD Univ. of Crete Fall 2014

Notation for Physical Query Plans

● Non-standard among DBMSs

● Typical physical plan operators

include

For leave nodes:

TableScan(R),
SortScan(R,AttrList),
IndexScan(R,A),
IndexScan(R, Aθc)

For selection nodes:

combination of

TableScan(R),
Filter(Cond),
SortScan(R, AttrList)

59

CSD Univ. of Crete Fall 2014

Points to Remember

● Step 1: Choose a logical plan

Involves choosing a query tree, which indicates the order in which
algebraic operations are applied

Heuristic: Pushed trees are good, but sometimes “nearly fully pushed”
trees are better due to indexing

So: Take the initial “master plan” tree and produce a fully pushed tree
plus several nearly fully pushed trees

● Step 2: Reduce search space

Deal with associativity of binary operators (join, union, …)

Choose a particular shape of a tree (left-deep trees)

Equals the number of ways to parenthesize N-way join – grows very
rapidly

Choose a particular permutation of the leaves

E.g., 4! permutations of the leaves A, B, C, D

● Step 3: Use a heuristic search to further reduce complexity

The choice of left-deep trees still leaves open too many options

A heuristic algorithm is used to get a ‘good’ plan

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:
–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο
–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο
–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Φροντιστήριο 7: Tutorial on Query
Optimization». Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη
δικτυακή διεύθυνση: http://www.csd.uoc.gr/~hy460/

