: EAAHNIKH AHMOKPATIA
A " NANENIETHMIO KPHTHE

2uocTiRuaTta Alaxeipiong
Baoswv Asdopévwy

®povrioThplo 7: Tutorial on Query
Optimization

Anuntpeng NAegoucakng
Tunua Emotiung YtroAoyiotwy

TUTORIAL ON QUERY
OPTIMIZATION

T
C

”‘-—-___________--”

8% CSD Univ. of Crete

Fall 2014

DB Logical Architecture

< queries >

\ 4

Query
Execution

engine

Access Plan P
Executor arser
Operator Evaluator Optimizer

Concurrency
control

Transaction

Lock

Manager

\ 4

Access Methods

A
\ 4

\ 4

Recovery

Buffer Manager

A
\ 4

Manager

\ 4

Disk Manager

A
\ 4

"} CSD Univ. of Crete Fall 2014
Y /;

Relational Operators

Table A Table A
\
M
Selection \\
Projection \\\\\

rable A rable B Set difference

- Table X
Join

Union Table Y

/9 CSD Univ. of Crete Fall 2014

Measures of Query Cost

e Cost is generally measured as total elapsed time for answering query

¢ Many factors contribute to time cost: disk accesses, CPU, or even
network communication

e Typically disk access is the predominant cost, and is also relatively easy
to estimate

¢ Measured by taking into account
e Number of blocks read * average-block-read-cost
e Number of blocks written * average-block-write-cost
¢ Cost to write a block is greater than cost to read a block

e data is read back after being written to ensure that the write was
successful

CSD Univ. of Crete Fall 2014

Measures of Query Cost

e For simplicity we just use number of block transfers from disk as the cost
measure

¢We ignore the difference in cost between sequential and random 1/O
for simplicity
¢We also ignore CPU costs for simplicity

¢We do not include cost to writing output to disk in our cost
formula

e Costs depends on the size of the buffer in main memory
¢Having more memory reduces need for disk access

¢ Amount of real memory available to buffer depends on other
concurrent OS processes, and hard to determine ahead of actual
execution

¢We often use worst case estimates, assuming only the minimum
amount of memory needed for the operation is available

e Real systems take CPU cost into account, differentiate between
sequential and random 1I/O, and take buffer size into account °

"9 CSD Univ. of Crete Fall 2014

Nested-Loop Join

e Read in outer relation R block by block

¢ Then, for each tuples in R, we scan the entire inner relation S (read
In S block by block)

® Nk : no. of record for R foreach tuple r in R do
® b, : no. of block for R
® b : no. of block for S

foreach tuple in S do

if r1 == sj then add <r,s> to result

e Worst Cost: by + ng * bg
e Best Cost: by + bg (if smaller relation can fit in memory)

e Use small relation as outer relation

e Buffer: 3 pages (1 for R, 1 for S, 1 for output) 6

L "3 CSD Univ. of Crete

Nested Loops Join

Table R

Table S

DB Server

Fall 2014

Table RPJS

91 CSD Univ. of Crete

Fall 2014

Exercise

e Relations: S(A,B,C) and
R(C,D,E)

e S has 20,000 tuples
® R has 45,000 tuples

e 25 tuples of S fit on one block
(blocking factor)

e 30 tuples of R fit on one block
S JOIN R

e S need 800 blocks (20000/25)
e R need 1500 blocks (45000/30)
e Assume M pages in memory

e IfM > 800, cost=b, + b=
1500 + 800 = 2300 1/0s

e Consider only M <=800,

cost = bg + ng * by
e Using S as outer relation

¢Cost: 800 +20000*1500
= 30000800 1/0s

cost = by + ng * bg
e |f R as outer relation

¢Cost: 1500 + 45000*800
= 36001500 1/0s

"% CSD Univ. of Crete Fall 2014

Block Nested Loop Join

foreach block of M — 2 pages of R do
foreach page of S do

for all matching in-memory tuples r in R-block and s in S-page

add <r,s> to result

e If M buffer pages available
¢Cost: by, +[by /[(M-2) I be
¢ M buffer pages (1 for inner S, 1 for output and all remaining M-2
pages to hold “block” of outer R

e If S is outer

¢Cost =| 800 /(M-2) |* 1500 + 800 1/Os
e If R Is outer

¢Cost = | 1500 /(M-2) | * 800 + 1500 1/Os

| e iv.
. @ CSD Univ. of Crete

Index Nested-Loop Join

Table R

DB Server
Table S

Fall 2014

Table RD><S

10

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

| Index Nested-Loop Join

e Primary B+tree index on the join attribute of R:
ob. + no.(xz + 1)
where:
* Ng (Ng) Is the number of S (R) tuples
* X IS the height of the B+-tree index on the join attribute

* No.(Xg + 1) Is the cost of using B+-tree index to find matching tuple
In R

e Secondary B+tree index on the join attribute of R:
ob. + np. (X, + 1)

¢where ny . (X + 1) is the cost of using B+-tree index to find matching
tuple in R

11

| ﬁ@ {1 CSD Univ. of Crete Fall 2014

| Index Nested loop join

e Hash index on the join attribute of R:
¢b, +ng*H
¢®Where H is the average number of page accesses necessary to
retrieve a tuple from R with a given key

® \We use:

¢H = 1.2 for a primary hash index and
¢H = 2.2 for a secondary hash index

12

| ﬁ@ {1 CSD Univ. of Crete Fall 2014

External Sorting

e File has by pages
e M : number of main memory page buffers
e No. of runs in the first pass R = by /M

e No. of passes to sort file completely
P=[log ., (bs /M) 1+1
=[log,,RI+1

e Total cost for sorting
= bg* (24 log ., R1+ 1)
= b* 2% log ., R |+ by

13

s ‘?@ i1 CSD Univ. of Crete Fall 2014

Merge Join
e Assuming S and R are not initially sorted on the join key
e Cost = Sorting + by + b,

e Sorting = 1500 * (2 *[log ,,, (1500/M) |+ 1)+ 800 * (2 * | log .,
(800/M) | + 1)

15

CSD Univ. of Crete Fall 2014

Merge Join

e Assuming that there is a secondary B+tree on Rx
® Cost=CR1+CR2

® where Crx = (ng,*ps)/(0.69*bs)+ by, for the R which has the index on
the join attribute

¢ps : the size of the tuple reference (tuple identifier, rid)
¢bs : the size of the block

e |.e.: the leaf nodes of the index tree (assumed to be 69% full) have to be
scanned for pointers to the tuples of the relation and the blocks
containing the tuples itself must be read at least once

16

/9 CSD Univ. of Crete Fall 2014

Hash join
e Hash both relations on the join attribute using the same hash function
® Since S is smaller, we use it as the build relation and R as probe relation
e Assume no overflow occurs

e If M >= 800, no need for recursive partitioning, cost = 3(1500 + 800) =
6900 disk access = 3(bi + b,)

e Else, cost = 2(1500 + 800) | log ,,, (800) - 1| + 1500 + 800 disk access
= 2(bg + bg) [10g 4 (bs) - 11+ by + by

17

CSD Univ. of Crete Fall 2014

Why Optimize?

e Given a query and a database of size m, how big can the output of
applying the gquery to the database be?

e Example: R(A) with 2 rows. One row has value 0. One row has value 1.
¢How many rows are in R X R?
¢How many in R X R x R?

=» Size of output as a function of input: O(?)

e Usually, queries are small
¢ Therefore, it is usually assumed that queries are of a fixed size

¢ Use term data complexity when we analyze time, assuming that
guery is constant

e \What is the size of the output in this case?

18

91 CSD Univ. of Crete Fall 2014

Optimizer Architecture

Rewriter
Algebraic Space | Cost Model
\ /
Planner
Method-Structure / Size-Distribution
Space Estimator

19

Optimizer Architecture

e Rewriter: Finds equivalent queries that, perhaps can be computed more
efficiently; all such queries are passed on to the Planner

¢ Examples of Equivalent queries: Join orderings

e Planner: Examines all possible execution plans and chooses the
cheapest one, i.e., fastest one

¢ Uses other modules to find best plan
e Algebraic Space: Determines which types of queries will be examined
¢Example: Try to avoid Cartesian Products

CSD Univ. of Crete Fall 2014

e Method-Structure Space: Determines what types of indexes are available

and what types of algorithms for algebraic operations can be used
¢ Example: Which types of join algorithms can be used
e Cost Model: Estimates the cost of execution plans
¢ Uses Size-Distribution Estimator for this

e Size-Distribution Estimator: Estimates size of tables, intermediate results,

frequency distribution of attributes and size of indexes

20

7% CSD Univ. of Crete Fall 2014

e \We consi

Algebraic Space

der queries that consist of select, project and join (Cartesian

product is a special case of join)
® Such queries can be represented by a tree.

e Example:

emp(name, age, sal, dno)
dept(dno, dname, floor, mgr, ano)
act(ano, type, balance, bno)
bank(bno, bname, address)

select name, floor
from emp, dept
where emp.dno=dept.dno and sal > 100K

21

I3 CSD Univ. of Crete

Fall 2014

3 Trees
Tcname,
e “name, floo
floo floo
> >< dno=dno
/ dno=dno Osal>100k / \
\ > < dno=dno
— - -
Os5al>100K DEPT / \ dno, name dno, floor
/ EMP DEPT Gsal>100k

EMP

O

O

DEPT

7tname,sa1 ,dno

\
EMP @

22

3 @‘fa CSD Univ. of Crete Fall 2014

Restriction 1 of Algebraic Space

e Algebraic space may contain many equivalent queries
e Important to restrict space

e Restriction (heuristic) 1: Only allow queries for which selection and
projection:
¢ are processed as early as possible

¢are processed on the fly

e Which trees in our example conform to Restriction 1?

23

CSD Univ. of Crete Fall 2014

' Performing Selection and Projection "On the Fly"

e Selection and projection are performed as part of other actions

e Projection and selection that appear one after another are performed one
Immediately after another

¢ Projection and Selection do not require writing to the disk

e Selection is performed while reading relations for the first time

® Projection is performed while computing answers from previous action

24

| ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Processing Selection/Projection as Early as
Possibl

e The three trees differ in the way that selection and projection are
performed

e In T3, there is "maximal pushing of selection and projection”
¢ Rewriter finds such expressions

25

CSD Univ. of Crete Fall 2014

Restriction 2 of Algebraic Space

® Since the order of selection and projection is determined, we can
write trees only with joins

e Restriction (heuristic) 2: Cross/Cartesian products are never formed,
unless the query asks for them

e \Why this restriction?

e Example:

select name, floor, balance

from emp, dept, acnt

where emp.dno=dept.dno and
dept.ano = acnt.ano

26

\

. 89 CSD Univ. of Crete

Which trees have
cross products?

P <

/QO

< dno=dno ACNT

[N\

EMP DEPT

O

3 Trees

7 ani EMP

ACNT DEPT

@

Fall 2014

P <

ano=ano,

> < DEPT

AN

EMP ACNT

O

27

CSD Univ. of Crete Fall 2014

Restriction 3 of Algebraic Space

e The left relation is called the outer relation in a join and the right relation
IS the inner relation (as in terminology of nested loops algorithms)

e Restriction (heuristic) 3: The inner operand of each join is a database
relation, not an intermediate result (left-deep plans)

e Example:

select name, floor, balance

from emp, dept, acnt, bank

where emp.dno=dept.dno and dept.ano=acnt.ano
and acnt.bno = bank.bno

28

‘?@ i1 CSD Univ. of Crete Fall 2014

3 Trees

Which trees follow

; bno:b{ restriction 37
/M ano=ano b ¢
\\\\\\\ ano=ano
> < dno=dno ACNT b ¢ \
/ \ dno=dno
EMP DEPT / ;/IP

29

CSD Univ. of Crete Fall 2014

Pipelining Joins

e Consider computing: (Emp »< Dept) »< Acnt. In principle, we should
¢compute Emp »< Dept, write the result to the disk
¢then read it from the disk to join it with Acnt

e \When using block and index nested loops join, we can avoid the step of
writing to the disk

e \We allow plans that
¢ Perform selection and projection early and on the fly
¢ Do not create cross products
¢ Use database relations as inner relations (also called left — deep trees)

30

Fall 2014

N i1 CSD Univ. of Crete

Pipelining Joins - Example

Emp

Dept

blocks blocks

Y

Read block
from Emp

@

@
Find

matching
Dept tuples
using index

Acnt Ooutput
blocks blocks
4 ‘ Buffer
write
(::) final
output
Find
matching (::)

Acnt tuples
using index

31

CSD Univ. of Crete Fall 2014

Planner

e Dynamic programming algorithm to find best plan for performing join of N
relations

e Intuition:
¢Find all ways to access a single relation
e Estimate costs and choose best access plan(s)

¢ For each pair of relations, consider all ways to compute joins using all
access plans from previous step

e Choose best plan(s)...

¢For each i-1 relations joined, find best option to extend to I relations
being joined...

¢ Given all plans to compute join of n relations, output the best

32

Reminder: Dynamic Programming

e To find an optimal plan for joining S, R, R;, R,, choose the best among:
¢ Optimal plan for joining R, R;, R, + for reading S + optimal join of S
with result of previous joins
¢ Optimal plan for joining S, R3, R, + for reading R + optimal join of R
with result of previous joins
¢ Optimal plan for joining S, R, R, + for reading R; + optimal join of R,
with result of previous joins
¢ Optimal plan for joining S, R, R, + for reading R, + optimal join of R,
with result of previous joins

CSD Univ. of Crete Fall 2014

33

Not Good Enough: Interesting Orders

e Example, suppose we are computing (R(A,B) »¢ S(B,C)) »< T(B,D)

¢ Maybe merge-sort join of R and S is not the most efficient, but the
result is sorted on B

¢If T is sorted on B, the performing a sort-merge join of R and S, and
then of the result with T, maybe the cheapest total plan

e For some joins, such as sort-merge join, the cost is cheaper if relations
are ordered

¢ Therefore, it is of interest to create plans where attributes that
participate in a join are ordered on attributes in joins later on

e For each interesting order, save the best plan

¢We save plans for non interesting order if it better than all interesting
order costs

CSD Univ. of Crete Fall 2014

34

CSD Univ. of Crete Fall 2014

Example

e \We want to compute the query:

select name, mgr
from emp, dept
where emp.dno=dept.dno and sal>30K and floor = 2

e Available Indexes: B+tree index on emp.sal, B+tree index on emp . dno,
hashing index on dept.floor

e Join Methods: nested loops and sort-merge

e In the example, all cost estimations are fictional

35

CSD Univ. of Crete

Step 1 — Accessing Single Relations

Fall 2014

Relation |Interesting | Plan Cost
Order
emp emp.dno | Access through B+tree on emp.dno 700
Access through B+tree on emp . sal 200
Seqguential scan 600
dept Access through hashing on dept.floor |50
Sequential scan 200

e Which do we save for the next step?

36

CSD Univ. of Crete

Step 2 — Joining 2 Relations

Fall 2014

Join Outer/Inner | Plan Cost
Method
nested |emp/dept eFor each emp tuple obtained through 1800
loops B+Tree on emp.sal, scan dept through
hashing index on dept.floor to find
tuples matching on dno
eFor each emp tuple obtained through 3000

B+Tree on emp . dno and satisfying
selection, scan dept through hashing
index on dept.floor to find tuples
matching on dno

37

CSD Univ. of Crete

Step 2 — Joining 2 Relations

Fall 2014

hashing index on dept.floor, scan emp
through B+Tree on emp. dno to find tuples
satisfying the selection on emp.sal

Join Outer/Inner | Plan Cost
Method
nested |dept/emp |eForeach dept tuple obtained through 2500
loops hashing index on dept.floor, scan emp
through B+Tree on emp.sal to find tuples
matching on dno
eFFor each dept tuple obtained through 1500

38

CSD Univ. of Crete

Step 2 — Joining 2 Relations

Fall 2014

Join
Method

Outer/
Inner

Plan

Cost

sort
merge

e Sort the emp tuples resulting from accessing
the B+Tree on emp.sal into L1

eSort the dept tuples resulting from accessing
the hashing index on dept.floor into L2

eMerge L1 and L2

2300

eSort the dept tuples resulting from accessing
the hashing index on dept.floor into L2

eMerge L2 and the emp tuples resulting from
accessing the B+Tree on emp.dno and
satisfying the selection on emp.sal

2000

e Which plan will be chosen?

39

CSD Univ. of Crete Fall 2014

Picking a Query Plan

® Suppose we want to find the natural join

of: Reserves, Sailors, Boats --> Generating and comparing

_ lans
e The 2 options that appear the best are P

. . .y . . uery
Ignoring the order within a single join): /Q
(g. J gle join) Generate / ‘ Plans
(SailorsP><] Reserves) ><] Boats _ o000 0
_ Pruning \
SailorsP><|(Reserves [><] Boats) o o .
X X
e \We would like intermediate results to be
as small as possible Estimate CosD,t . [
#Which is better? - Cost

Select _ _
Pick Min

40

CSD Univ. of Crete Fall 2014

Analyzing Result Sizes

® In order to answer the question in the previous slide, we must be able to
estimate the size of (SailorsP><]Reserves) and (Reserves><Boats)

e The DBMS stores statistics about the relations and indexes
¢ Cardinality: Num of tuples NTuples(R) in each relation R

¢Size: Num of pages NPages(R) in each relation R

¢ Index Cardinality: Num of distinct key values NKeys(l) for each index |
¢Index Size: Num of pages INPages(l) in each index |

¢Index Height: Num of non-leaf levels IHeight(l) in each B+ Tree index |

¢Index Range: The minimum ILow(l) and maximum value IHigh(l) for
each index |

e They are updated periodically (not every time the underlying relations are
modified) 41

CSD Univ. of Crete Fall 2014

Estimating Result Sizes

e Consider . .
SELECT attribute-]ist

FROM relation-1Jist
WHERE term; and ... and term,

e The maximum number of tuples is the product of the cardinalities of the
relations in the FROM clause

e The WHERE clause is associating a reduction factor with each term

¢column =value: 1/NKeys(l) if there is an index | on column. This
assumes a uniform distribution; otherwise, System R assumes 1/10

¢columnl = column2: 1/Max(NKeys(l11),NKeys(I2)) if there is an index
|1 on columnl and 12 on column2. If only one column has an index, we
use it to estimate the value; otherwise, use 1/10

¢column > value: (High(l)-value)/(High(l)-Low(l)) if there is an index |
on column

e Estimated result size is: maximum size times product of reduction factors’

%3 CSD Univ. of Crete

Example

SELECT *
FROM Reserves R, Sailors S
WHERE R.s1d = S.si1d and S.rating > 3

and R.agent = ‘Joe’
Cardinality(R) = 100,000
Cardinality(S) = 40,000
NKeys(Index on S.sid) = 40,000
NKeys(Index on R.agent) = 100
High(Index on Rating) = 10, Low =0
Maximum cardinality: 100,000 * 40,000
Reduction factor of R.sid = S.sid: 1/40,000
Reduction factor of S.rating > 3: (10-3)/(10-0) = 7/10
Reduction factor of R.agent = ‘Joe’: 1/100

Total Estimated size: (Maximum cardinality) * (Reduction factor of R.sid) *
(Reduction factor of S.rating) * (Reduction factor of R.agent = S.sid) =
100,000 * 40,000 * (1/40,000) * (7/10) * (1/200) = 700

Fall 2014

43

91 CSD Univ. of Crete

Second Example of Join Order Selection

e Consider the join of the four relations named R, S, T, U:

R(a,b), 1.000 |S(b,c),1.000 |T(c,d),1.000 |U(a,d),1.000
total tuples total tuples total tuples total tuples
V(R,a) = 100 V(U,a) = 50
V(R,b) =200 |V(S,b) =100
V(S,c) =500 |V(T,c)=20
V(T,d) =50 V(U,d) = 1000

Fall 2014

44

Notes

e V(R,a) : # of distinct values for attribute

e Cost {R,S} = (size of R x size of S) / max (V(R,), V(S,)), where is
the join attribute

e Cost {R,S,U} = (size of R x size of S x size of U) / (2 greater nums
from (V(R,_), V(S,_), V(U,)) , where _ is the join attribute

CSD Univ. of Crete Fall 2014

45

/911 CSD Univ. of Crete Fall 2014

Second Example of Join Order Selection

e For the singleton sets, the costs and best plans are given in the table

below
{R} {S} {T} {U}
Size 1.000 1.000 1.000 1.000
Cost 0 0 0 0
Best plan R S T U

e As the costs for all relations are the same, the dynamic programming
algorithm will consider them all.

46

91 CSD Univ. of Crete Fall 2014

Second Example of Join Order Selection

e Now, we consider the pairs of relations

¢Again, the cost is 0 for each, as we do not have intermediate
results

RS} RT} RUj 0] U] (LU}

Size 5000 1.000.000 10.000 2000 1.000.000 1.000
Cost 0 0 0 0 0 0
Best plan RxS RxT RxU SXT SxU XU

e The dynamic programming algorithm again keeps them all for the
next run, as the costs are 0.

47

/911 CSD Univ. of Crete Fall 2014

Second Example of Join Order Selection

e Now, we consider the join of three out of these four relations:

{R,S,T} {R,S,U} {R, T,U} {S,T,U}
Size 10.000 50.000 10.000 2.000
Cost 2.000 5.000 1.000 1.000
Best plan (SXT)XR (RxS)xU (TxU)XR (TxU)XS

e As you can see, the best plan is clearly “(TxU)xS", with the least cost
and size.

48

"9 CSD Univ. of Crete

Second Example of Join Order Selection

e Finally, we consider the join of all relations. We come to these four
final results (for dynamic programming):

((SXT)xR)xU 12.000
((RxS)xU)XT 55.000
((TXU)XR)XS 11.000
((TxU)XS)xR 3.000
((TXU)X(RXS) 6.000
((RXT)x(SxU) 2.000.000
((SXT)x(RxU) 12.000

Fall 2014

49

CSD Univ. of Crete Fall 2014

Selecting Algorithms for Plan Operators

e For each operator, select algorithms based on 1/O cost estimation
e For selection operator, consider

¢ Index-scan algorithms that use single attribute indexes, multiple
Indexes, or multidimensional indexes

¢ Table-scan algorithm using no index
e [For join operator, consider
¢ All types of join algorithms if enough statistics is available
¢ If statistics is in sufficient, follow some simple ideas
e Try one-pass algorithm or nested-loops
e Use sort-join if one or both arguments are already sorted
e If index is available, use index-join

e If sort and index are not available and multi-pass join is necessary,

use a hash join
50

1 ﬁ@ CSD Univ. of Crete

e Relations:
R(W,X), b = 5000
S(X,Y), b, = 10000
ucy,z), b, = 10000

e Buffer: M = 101 blocks

e Both joins are hash join

® Size k Is estimated, and used to
choose join algorithms

Pipelining Example

Fall 2014

blmks / \
10000
/ \ blocks

5000

blocks

10000

blocks

o1

CSD Univ. of Crete Fall 2014

Case 1: k €49

e Can pipeline result of 1st join into 2nd join

e Two-pass hash join for R[>< S:

¢Both R and S are hashed into 100 partitions, where each R partition
has 50 blocks

¢ Join corresponding R & S partitions using 50 buffer blocks for R
partition, 1 block for S partition, and store the result in 49 blocks as a
hash table

® One-pass hash join for the 2nd join:

¢ Use 1 buffer block for U (no need to partition U), join with the
Intermediate result that is already in buffer

e Cost = 3(5000+10000) + 10000 = 55000

52

CSD Univ. of Crete Fall 2014

Case 2: 49 < k <5000

e Overlap the 1st join with the hash partitioning of the 2nd join

e® Two-pass hash join for the 1st join:

¢Partition R & S into 100 partitions, so that each R partition contains 50
blocks

¢ Join corresponding R & S partitions (using 51 buffer blocks)

¢ During the join, hash the result into 50 partitions (using the remaining
50 buffer blocks) & write the partitions to disk

® Two-pass hash join for the 2nd join:
¢ Partition U into 50 partitions

¢ Join corresponding partitions of intermediate result & U, using
Intermediate result partition as build relation (use 1 to 100 buffer blocks)

e Cost = 3(10000+5000) + k + 2(10000) + (k+10000) = 75000 + 2k s

CSD Univ. of Crete Fall 2014

Case 3: k> 5000

e Cannot use pipelining

e® Two-pass hash join for the 1st join:

¢Partition R & S into 51 partitions, so that each R partition has <100
blocks

¢ Join corresponding R & S partitions, write results to disk

® Two-pass hash join for the 2nd join:
¢ Partition intermediate result & U into more than 50 partitions

¢ Join corresponding partitions of U & intermediate result, using the
smaller partition as the build relation

e Cost = 3(5000+10000) + k + 3(10000+k) = 75000 + 4k

54

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Pipelining vs. Materialization

e Pipelining: Apply next operator to the output of one stage, as the
output is generated.

e Materialization: Create a temporary relation as the output of a
stage, pass to next stage

55

CSD Univ. of Crete Fall 2014

Pipelining vs. Materialization

e Advantages of 64 bit processors
¢ More main memory possible

e And so, more pipelining operations possible without having to write
Intermediate results to disk

¢ Complex in-memory processing does not require intermediate results
being temporarily written to disk

e Saves costly disk I/0O’s and increases scalability

e Disadvantages of 64 bit processors

¢ Application must be fully supporting 64 bit to make full use of the
speed advantages

¢ Upgrading to a 32 bit system with (more) parallel processors (using
shared memory perhaps) might be cheaper to implement

e DBMS’s implementing 64 bit are e.g. Oracle 10g

56

f? i1 CSD Univ. of Crete
<.

Ordering of Physical Operations

e Pre-order traversal e Post-order traversal

Fall 2014

57

ff;,, CSD Univ. of Crete

Notation for Physical Query Plans

e Non-standard among DBMSs

e Typical physical plan operators
include

¢ For leave nodes:
TableScan(R),
SortScan(R,AttrList),
IndexScan(R,A),
IndexScan(R, ABc)

¢ For selection nodes:
combination of
TableScan(R),
Filter(Cond),
SortScan(R, AttrList)

Two-pass
hash join
101 buffers

2

Two-pass
hash join
101 buffers

Fall 2014

TableScan(U)

N

TableScan(R)

TableScan(S)

58

CSD Univ. of Crete Fall 2014

Points to Remember

e Step 1: Choose a logical plan

¢Involves choosing a query tree, which indicates the order in which
algebraic operations are applled

¢ Heuristic: Pushed trees are good, but sometimes “nearly fully pushed”
trees are better due to indexing

¢ So: Take the initial “master plan” tree and produce a fully pushed tree
plus several nearly fully pushed trees

® Step 2: Reduce search space
¢ Deal with associativity of binary operators (join, union, ...)
¢ Choose a particular shape of a tree (left-deep trees)
o qugtlls the number of ways to parenthesize N-way join — grows very
rapidly
¢ Choose a particular permutation of the leaves
e E.g., 4! permutations of the leaves A, B, C, D
e Step 3: Use a heuristic search to further reduce complexity
¢ The choice of left-deep trees still leaves open too many options
¢ A heuristic algorithm is used to get a ‘good’ plan 59

TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong

XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong

2NUEIWMUATO

2NUEIWMUATO

2nNUEiwpa adglodoTnong

*To TTapdv UAIKOG diaTiBeTal pe Toug Opoucg TnS adelag xpriong Creative Commons
Avagopd, Mn Eptropikr) Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] R peTayavaspn Aigbvnc
EK600n E&oupouvmu TQ GUTOTEZ)\r] Epya Tplva X PWTOYPAPIEC, 6|0(yp0(ppona K.A.TT.,
TA OTTOIA EUTTEPIEXOVTAI OE AUTO KAl T OTToia ava@EpovTal padi ue Toug OPOUC XProng
TOUG OTO «2Znueiwpa Xpriong Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.

2NUEIWNA Ava@popac

Copyright MNavemotiuio Kpntng, Anuntpng NAecouocdkng. «ZUCTAMATA
Alaxeipiong Baoewv Asdopévwy. PpovtioTipio 7: Tutorial on Query
Optimization». 'Ekdoon: 1.0. HpakAeio/P€Bupvo 2015. AiaBEoiyo atrd mn
dIKTUOKN dlevBuvon: http://www.csd.uoc.gr/~hy460/

