
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Συστήματα Διαχείρισης
Βάσεων Δεδομένων

Φροντιστήριο 8: Query Optimization and
Tuning in Oracle

Δημήτρης Πλεξουσάκης

Τμήμα Επιστήμης Υπολογιστών

CSD Univ. of Crete Fall 2014

QUERY OPTIMIZATION & TUNING IN
ORACLE DATABASES

CSD Univ. of Crete Fall 2014

Part I:
Query Optimization & Tuning Hints

CSD Univ. of Crete Fall 2014

Query Tuning Hints

 Avoid redundant DISTINCT

 Avoid HAVING when WHERE is enough

 Avoid using intermediate relations (tables)

 Optimize set difference queries

 Change nested queries (subqueries) to joins

 Avoid complicated correlation subqueries

 Join on clustering and integer attributes

 Avoid views (pseudotables) with unnecessary joins

 Maintain frequently used aggregates

 Avoid external loops

 Avoid cursors

 Retrieve needed columns only

 Use direct path for bulk loading

CSD Univ. of Crete Fall 2014

Avoid Redundant DISTINCT

where <expression> == ssnum or ssnum1, ssnum2, …

 DISTINCT usually entails a sort operation*

Slows down query optimization because one more “interesting” order to consider.

 Remove if you know the result has no duplicates (or duplicates are acceptable) or if
answer contains a (primary or foreign) key.

 Intuitively, when multiple expressions are provided in the DISTINCT clause then the
query will retrieve all unique combinations for the expressions listed.
*Depends on many factors (i.e. database version, query expression etc).

Newer versions (>= Oracle DB 10g) use hash instead of sorting.

SELECT DISTINCT <expression>
FROM Employee
WHERE dept = ‘information systems’

CSD Univ. of Crete Fall 2014

SELECT MIN(E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno = 102

SELECT MIN(E.age)
FROM Employee E
WHERE E.dno = 102
GROUP BY E.dno

The WHERE clause will filter or limit rows as they are selected from the table,
but before grouping is done. The HAVING clause will filter rows after the grouping.

HINT: Consider DBMS’s use of index when writing arithmetic expressions:
E.age = 2*D.age will benefit from index on E.age, but might not benefit from index on
D.age!

Avoid HAVING when WHERE is enough

CSD Univ. of Crete Fall 2014

SELECT * INTO Temp
FROM Emp E, Dept D
WHERE E.dno = D.dno

AND D.mgrname = ‘Joe’

SELECT T.dno, AVG(T.sal)
FROM Temp T
GROUP BY T.dno

vs.

SELECT E.dno, AVG(E.sal)
FROM Emp E, Dept D
WHERE E.dno = D.dno

AND D.mgrname = ‘Joe’
GROUP BY E.dno

and

Avoid Using Intermediate Relations (Tables) - I

CSD Univ. of Crete Fall 2014

 Creating the Temp table causes frequent updates to catalog (i.e. database).

 The columns of the newly created table inherit the column names, their data
types, whether columns can contain null values or not, and any associated
IDENTITY property from the source table. However, the SELECT INTO
clause does have some restrictions: it will not copy any constraints, indexes, or
triggers from the source table*.

 Materialization of the intermediate relation Temp consumes resources (even if it
takes place in-memory).

*[Source: Beginning C# 2008 Databases: From Novice to Professional By Vidya Vrat
Agarwal, James Huddleston, Ranga Raghuram]

Avoid Using Intermediate Relations (Tables) - II

CSD Univ. of Crete Fall 2014

Suppose you have to select all of the employee’s that are not account representatives:

Table1 (s_emp)

Table2 (s_account_rep)

The above query is slow because the minus has to select distinct values from both tables.

Optimizing Set Difference Queries (I)

soc_number last_name first_name region

soc_number last_name first_name salary

SELECT soc_number FROM s_emp

MINUS

SELECT soc_number FROM s_account_rep;

CSD Univ. of Crete Fall 2014

Optimizing Set Difference Queries (II)

SELECT soc_number

FROM s_emp

WHERE soc_number NOT IN

(SELECT soc_number

FROM s_account_rep);

The above query is faster but we are not joining and are not taking advantage of
indexes.

CSD Univ. of Crete Fall 2014

Optimizing Set Difference Queries (III)

Regardless of indexes, the above query is generally preferred when having to choose
between [NOT] IN and [NOT] EXISTS since [NOT] EXISTS does not take into
account any null values present.

Challenge time: Make it faster!!!

More challenge time: If both NOT IN and NOT EXISTS produce same execution
plans which one will you prefer and why, why, WHY???

SELECT /*+ index(t1) */ soc_number
FROM s_emp t1
WHERE NOT EXISTS

(SELECT /*+ index(t1) index(t2) */ *
FROM s_account_rep t2
WHERE t1.soc_number = t2.soc_number);

CSD Univ. of Crete Fall 2014

Optimizing Set Difference Queries (IV)

We should always default to NOT EXISTS.

The execution plans may be the same at the moment but if either column

is altered in the future to allow NULLs the NOT IN version will need to

do more work (even if no NULLs are actually present in the data) and the

semantics of NOT IN if NULLs are present are unlikely to be the ones

you want anyway.

SELECT /*+ index(t1) */ soc_number
FROM s_emp t1
LEFT OUTER JOIN s_account_rep t2

ON t1.soc_number = t2.soc_number
WHERE t2.soc number IS NULL

CSD Univ. of Crete Fall 2014

Change Nested Queries (subqueries) to Joins

An index may or may not be
applied on E.dept.

SELECT ssnum
FROM Employee E
WHERE E.dept IN

(SELECT E.dept FROM Techdept)

SELECT [DISTINCT] ssnum
FROM Employee E, Techdept TD
WHERE E.dept = TD.dept

In most cases JOINs are faster
than sub-queries and it is very rare
for a sub-query to be faster.

Tradeoff: Readability vs Speed!

CSD Univ. of Crete Fall 2014

Avoid Complicated Correlation Subqueries (I)

The subquery references the dept in the outer query. The value of the dept changes by
row of the outer query, so the DB must rerun the subquery for each row comparison.
This has a significant performance impact on the execution time of the query, and for
that reason, correlated subqueries should be avoided if possible.

SELECT ssnum
FROM Employee e1
WHERE salary =

(SELECT MAX(salary)
FROM Employee e2
WHERE e2.dept = e1.dept

CSD Univ. of Crete Fall 2014

Avoid Complicated Correlation Subqueries (II)

Nowadays, most RDBMS makes this efficient although legacy ones made it expensive to
use it (i.e. most DBs used the naive implementation of nested loops between query blocks
whereas MS SQL 2000 used hashed joins)*.

*[Source: Orthogonal Optimization of Subqueries and Aggregates” by C.Galindo-
Legaria and M.Joshi, SIGMOD 2001]

SELECT MAX(salary) AS bigsalary, dept
INTO Temp FROM Employee
GROUP BY dept

SELECT ssnum FROM Employee E, Temp T
WHERE salary = bigsalary
AND E.dept = T.dept

CSD Univ. of Crete Fall 2014

Join on Clustering and Integer Attributes

Table Employee is clustered on ssnum where ssnum is an integer.

SELECT Employee.ssnum
FROM Employee E,

Student S
WHERE E.name = S.name

SELECT Employee.ssnum
FROM Employee E,

Student S
WHERE E.ssnum = S.ssnum

CSD Univ. of Crete Fall 2014

Avoid Views (pseudotables) with Unnecessary Joins

Join with Techdept is unnecessary.

CREATE VIEW Techlocation AS
(SELECT ssnum, Techdept.dept,

location
FROM Employee E, Techdept TD
WHERE E.dept = TD.dept)

SELECT dept FROM Techlocation TD
WHERE ssnum = 4444

SELECT dept
FROM Employee E
WHERE E.ssnum = 4444

CSD Univ. of Crete Fall 2014

Maintain frequently used Aggregates

Useful if the aggregate is needed frequently.

CREATE OR REPLACE TRIGGER updateVendorOutstanding
[BEFORE|AFTER INSERT|UPDATE|DELETE AND/OR [I|U|P]]
ON orders [FOR EACH ROW] [DECLARE <vars>] [WHERE <cond>]
BEGIN

UPDATE vendorOutstanding
SET :NEW.amount =

SELECT :OLD.amount+SUM(INS.quantity*IT.price)
FROM inserted INS, item IT
WHERE INS.itemnum = IT.itemnum

WHERE vendor = (SELECT vendor FROM inserted);
END

CSD Univ. of Crete Fall 2014

Avoid External Loops (I)

No loop:

sqlStmt = “select * from lineitem where l_partkey <= 200;”

odbc->prepareStmt(sqlStmt);

odbc->execPrepared(sqlStmt);

Loop:

sqlStmt=“select * from lineitem where l_partkey = ?;”

odbc->prepareStmt(sqlStmt);

for (int i=1; i<200; i++) {

odbc->bindParameter(1, SQL_INTEGER, i);

odbc->execPrepared(sqlStmt);

}

CSD Univ. of Crete Fall 2014

Avoid External Loops (II)

0

100

200

300

400

500

600

loop no loop

th
ro

u
g

h
p

u
t

(r
e

c
o

rd
s

/s
e

c
)

Let the DBMS optimize set operations since crossing the application interface has a
significant impact on performance.

Graphical impact of loops vs no-loops in MS
SQL Server 2000 on Windows 2000

CSD Univ. of Crete Fall 2014

Avoid Cursors*

No cursor
SELECT * FROM employees;

Cursor
DECLARE

v_emp employees%ROWTYPE;
CURSOR crs IS
SELECT * FROM
employees;

BEGIN
OPEN crs;
LOOP
FETCH crs INTO v_emp;
EXIT WHEN crs%NOTFOUND;

END LOOP;
CLOSE crs;

END;

0

1000

2000

3000

4000

5000

cursor SQL
T

h
ro

u
g

h
p

u
t

(r
e
c

o
rd

s
/s

e
c
)

Graphical response time of cursor vs no-cursor in
MS SQL Server 2000 on Windows 2000 (>1h vs

some seconds)

*A cursor is a pointer to a private SQL area that stores information
about the processing of a SELECT or data manipulation language
(DML) statement (INSERT, UPDATE, DELETE, or MERGE).
Cursor management of DML statements is handled by Oracle
Database, but PL/SQL offers several ways to define and manipulate
cursors to execute SELECT statements.

CSD Univ. of Crete Fall 2014

Retrieve Needed Columns Only

All

SELECT * FROM lineitem;

Covered subset

SELECT l_orderkey,

l_partkey,

l_suppkey,

l_shipdate,

l_commitdate

FROM lineitem;

*An index covers the query if all the
columns specified in the query are part of
the index.

Avoid transferring unnecessary data

Use of a covering index* may enhance
performance.

0

0,25

0,5

0,75

1

1,25

1,5

1,75

no index index

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/m

s
e

c
)

all covered subset

CSD Univ. of Crete Fall 2014

Use Direct Path for Bulk Loading (I)

sqlldr -> Oracle Bulk Loader

directpath=true ------------------>

control=load_lineitem.ctl ---------

--------------> see next slide ;)

log= -> <log file>

bad= -> <bad file>

If no log file and/or bad file are specified the sqlldr

will use the name of the control file with the .log

and .bad extensions, respectively.

.log -> Relevant information about the bulk load

operation, such as the number of tuples loaded, and

a description of errors that may have occurred.

.bad -> Bad tuples (load fails) are recorded (if any).

CSD Univ. of Crete Fall 2014

Use Direct Path for Bulk Loading (II)

LOAD DATA

INFILE "lineitem.tbl“ -> <datafile>

APPEND INTO TABLE lineitem-> <tableName>

FIEDLS TERMINATED BY '|' -> <separator>

(

L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER, L_QUANTITY,
L_EXTENDEDPRICE, L_DISCOUNT, L_TAX, L_RETURNFLAG,
L_LINESTATUS, L_SHIPDATE DATE "YYYY-MM-DD", L_COMMITDATE DATE
"YYYY-MM-DD", L_RECEIPTDATE DATE "YYYY-MM-DD", L_SHIPINSTRUCT,
L_SHIPMODE, L_COMMENT

) -> (<list of attribute names to load>)

CSD Univ. of Crete Fall 2014

Use Direct Path for Bulk Loading (III)

Direct path loading bypasses the query engine and the storage manager. As such, it is
orders of magnitude faster than for conventional bulk load (commit every 100 records)
and inserts (commit for each record).

65

0

10000

20000

30000

40000

50000

conventional direct path insert

T
h

ro
u

g
h

p
u

t
(r

e
c
/s

e
c
)

Graphical illustration of

conventional path load vs direct path load vs common insert methods.

CSD Univ. of Crete Fall 2014

Part II:
Rule-based & Cost-based Optimization

Techniques

CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (I)

Oracle supports two approaches for query optimization: Rule-based* and Cost-based,
which was introduced in Oracle 7i in order to improve query optimization.

 Rule-based: The optimizer ignores statistics.

 Cost-based: Three different goals.

All_Rows: The optimizer optimizes with a goal of best throughput (minimum
resource use to complete the entire statement.

First_Rows_n: The optimizer optimizes with a goal of best response time to
return the first n number of rows; n can equal 1, 10, 100 or 1000.

First_Rows: The optimizer uses a mix of cost and heuristics to find a best plan
for fast delivery of the first few rows.

*Deprecated as of Oracle 10g but still honored when used in Oracle 11g (if applicable)

CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (II)

The CHOOSE mode states that:

The optimizer chooses between a cost-based approach and a rule-based approach,
depending on whether statistics are available. This is the default value.

 If the data dictionary (i.e. DBA_, USER_ & ALL_ views) contains statistics for
at least one of the accessed tables, then the optimizer uses a cost-based approach
and optimizes with a goal of best throughput.

 If the data dictionary contains only some statistics, then the cost-based approach is
still used, but the optimizer must guess the statistics for the subjects without any
statistics. This can result in suboptimal execution plans.

CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (III)

To specify the optimizer’s goal for an entire session, use the following statement:

alter session set optimizer_mode = <MODE_VALUE> where

MODE_VALUE = {rule, choose, all_rows,

first_rows, first_rows_n}

For a specific statement the goal to be used by the optimizer can be stated using a hint.

For RBO & CBO, a hint is nothing more than a comment with a specific format inside a
SQL statement (/*+ <HINT>(<param> */). Hints come with their own set of problems. A
hint looks just like a comment (more in the idiosyncrasies section)!

SELECT /*+ INDEX(EMP_IDX) */ LASTNAME, FIRSTNAME, PHONE
FROM EMP

CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (IV)

Hints can be categorized as follows:

 Optimizer SQL hints for changing the query optimizer goal.

 Full table scan hints.

 Index unique scan hints.

 Index range scan descending hints.

 Fast full index scan hints.

 Join hints, including index joins, nested loop joins, hash joins, sort merge joins,

Cartesian joins, and join order.

 Other optimizer hints, including access paths, query transformations, and

parallel execution.

CSD Univ. of Crete Fall 2014

Rule-Based Approach (I)

When ignoring statistics & heuristics, there should be a way to choose between possible
access paths suggested by different execution plans.

Thus, 15 rules were ranked in order of efficiency. An access path for a table is chosen if
the statement contains a predicate or other construct that makes that access path
available.

Score assigned to each execution strategy (plan) using these rankings and strategy with
best (lowest) score selected.

When two strategies produce the same score, the “tie-break” rule is used by making a
decision based on order in which tables occur in the SQL statement.

Challenge time: Does this rule impact query optimization???

CSD Univ. of Crete Fall 2014

Rule-Based Approach (II)

CSD Univ. of Crete Fall 2014

Understanding the RBO : An Example (I)

Suppose there is a table “PropertyForRent” with indexed attributes: propertyNo, rooms
and city. Consider the query:

 Single-column access path using index on city from WHERE condition (city =
‘Sydney’): rank 9

 Unbounded range scan using index on rooms from WHERE condition (rooms > 7):
rank 11.

 Full table scan: rank 15

 Although there is an index on propertyNo, the column does not appear in the
WHERE clause and so is not considered by the optimizer.

Based on these paths, rule-based optimizer will choose to use the index on the “city”
column.

SELECT propertyNo

FROM PropertyForRent

WHERE rooms > 7 AND city = ‘Sydney’

CSD Univ. of Crete Fall 2014

Understanding the RBO (II)

Disadvantages

1. Simplistic set of rules:

“In a complex database, a query can easily involve several tables, each
with several indexes and complex selection conditions and ordering. This
complexity means that there were a lot of options, and the simple set of rules used
by the rule-based optimizer might not differentiate the choices well enough to
make the best choice”.

Source: Oracle Essentials (4th edition)

CSD Univ. of Crete Fall 2014

Understanding the RBO (III)

2. Weak resolving policy in “tie-break” rule when choosing best strategy

CSD Univ. of Crete Fall 2014

Understanding the RBO (IV)

If you feel like crying, you may do so right now!

Still, the RBO may be useful in cases such as in recursive operations (i.e. nested
loops within nested loops in execution plans).

That's why it has been de-supported and its use is discouraged but it has not been
removed! ;)

CSD Univ. of Crete Fall 2014

Cost-Based Approach (I)

 Cost-based optimizer depends on statistics for all tables, clusters, and indexes
accessed by query. As such, it’s the user’s responsibility (yes you!) to generate statistics
and keep them up-to-date.

 Two ways for generating and managing statistics:

By using package DBMS_STATS, for example (strongly recommended):

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS(‘schema_name’);

By issuing the ANALYZE statement, for example (avoid if possible):
ANALYZE TABLE <table> COMPUTE/ESTIMATE STATISTICS;

ANALYZE TABLE <table> COMPUTE/ESTIMATE STATISTICS FOR
TABLE;

ANALYZE TABLE <table> COMPUTE/ESTIMATE STATISTICS FOR
ALL INDEXES;

CSD Univ. of Crete Fall 2014

Cost-Based Approach (II)

Do not use the COMPUTE and ESTIMATE clauses of ANALYZE to collect optimizer
statistics. These clauses are supported for backward compatibility. Instead, use
the DBMS_STATS package, which lets you collect statistics in parallel, collect global
statistics for partitioned objects, and fine tune your statistics collection in other ways. The
cost-based optimizer, which depends upon statistics, will eventually use only statistics
that have been collected by DBMS_STATS. See Oracle Database PL/SQL Packages and
Types Reference for more information on the DBMS_STATS package.

You must use the ANALYZE statement (rather than DBMS_STATS) for statistics
collection not related to the cost-based optimizer, such as:

 To use the VALIDATE or LIST CHAINED ROWS clauses (more on this later).

 To collect information on freelist blocks (structure where Oracle maintains a list of
all free available blocks – critical for INSERT performance – more on this later).

https://docs.oracle.com/cd/B28359_01/appdev.111/b28419/d_stats.htm#ARPLS059

CSD Univ. of Crete Fall 2014

Cost-Based Approach (III)

Data Dictionary views

CSD Univ. of Crete Fall 2014

Understanding the CBO (I)

1) Functionality

I. Parse the statement.

II. Generate a list of all potential execution plans.

III. Calculate (estimate) the cost of each execution plan using internal rules and
exploiting already known parameters (see below) about the relevant tables.

IV. Select the plan with the lowest cost.

2) Parameters

I. Primary Key – Unique Index

II. Non – Unique Index

III. Range evaluation (with bind variables)

IV. Histograms

V. System Resource Usage (CPU & I/O – Data Dictionary tables)

VI. Current Stats

CSD Univ. of Crete Fall 2014

Understanding the CBO (II)

CSD Univ. of Crete Fall 2014

Understanding the CBO (III)

Unfortunately, since the CBO is using heuristics, it generates execution plans that
attempt to execute the query as efficiently as possible but for may reasons it will often
choose a sub-optimal plan! :/

In addition, Oracle 10g comes with Dynamic Sampling support which means that
even with the same parameter settings, an SQL query will not necessarily give the same
plan in two or more different parses (great :P)!!!

Still, it’s the future and when used properly & correctly it will give the best plans when
considerable effort has been put in place by the user (i.e. collecting statistics etc).

CSD Univ. of Crete Fall 2014

Using ORACLE Optimization Modes

1. When will the RBO be used?

I. OPTIMIZER_MODE = RULE.

II. =CHOOSE & statistics are not present for all tables in SQL statement.

III. Alter session has been issued.

IV. RULE hint is present.

2. When will the CBO be used?

I. OPTIMIZER_MODE = CHOOSE.

II. =CHOOSE & statistics are not present for any tables in SQL statement.

III. Alter session set optimizer_mode = (choose, first_rows or all_rows).

IV. CHOOSE, ALL_ROWS or FIRST_ROWS hint is present.

Make sure to see: https://blogs.oracle.com/optimizer/entry/why_was_the_rule_hint

CSD Univ. of Crete Fall 2014

Part III:
Access Paths of Indexes

CSD Univ. of Crete Fall 2014

Access Path “Criterion”

*Column selectivity is usually referred to, interchangeably, as column cardinality.

of Unique Values for the Column
Selective Columns

Rows in the Table
*

SELECT COUNT(DISTINCT ColumnName) FROM TableName) /
SELECT COUNT(*) FROM TableName

SQL DEFINITION:

DEFINITION:

CSD Univ. of Crete Fall 2014

B*–Tree Indexes (I)

1. Excellent performance for highly selective columns, thus perfect for OLTPs.

NOT effective for low selectivity columns.

Null values “break” performance.

2. Unique scan is most efficient when equality predicate on unique index is involved.

3. Range scan can be quite efficient but be careful of the size of the range specified.

4. Excellent for FIRST_ROWS access, particularly with queries returning a small
number of results.

Index access paths

INDEX UNIQUE SCAN/RANGE SCAN

INDEX FULL SCAN/FAST FULL SCAN

INDEX SKIP SCAN

INDEX JOIN SCAN

CSD Univ. of Crete Fall 2014

B*–Tree Indexes (II)

CREATE [UNIQUE] INDEX table_idx ON table(column_idx_key);

(Non-)Unique Index creation:

B*–Tree indexes are pairs of (key, rowid).

It can also be specified using INDEX(alias index_name), if not created, or INDEX.
However, the latter form allows the optimizer to freely choose any column as index of the
table or use multiple columns as index if that access path provides the lowest cost.

Providing multiple independent index hints is legal but it is recommended to use
INDEX_COMBINE for a combination of multiple indexes since it is more versatile
hint.

INDEX_DESC hint uses a descending index.

CSD Univ. of Crete Fall 2014

B*–Tree (non – unique) Index Structure - Example

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Paths (I)

I. INDEX UNIQUE SCAN

Equality predicate on unique or primary key column(s).

Generally considered most efficient access path.

Usually, no more than 3 – 4 buffer gets.

If table is “small”, FULL TABLE SCAN could be cheaper.

II. INDEX RANGE SCAN

Equality predicate on non-unique index, incompletely specified unique index, or
range predicate on unique index.

Be careful of the size of the range:

Large ranges could amount to huge # of buffer gets.

If so, consider a FAST FULL INDEX SCAN or FULL TABLE SCAN.

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Paths (II)

III. INDEX FULL SCAN

Will scan entire index by walking tree in index order.

Provides ordered output, can be used to avoid sorts for ORDER BY clauses that
specify index column order.

Slower than INDEX FAST FULL SCAN if there is no ORDER BY requirement.

IV. INDEX FAST FULL SCAN

Attempt to read index, in disk block order, and discard root and branch blocks.

Attempt a DB file scattered read*, reading db_file_multiblock_read_count blocks
at a time.

Equivalent to FULL TABLE SCAN for an index.

Fastest way to read entire contents of an index.

*In case of a “cold” buffer cache Oracle may choose to read ahead and thus opt to reading multiple physically
disk blocks adjacent to the cache (aka ‘db file scattered read’).

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path (III)

V. INDEX SKIP SCAN

Allows some benefits of multi-column index even without specifying the leading
edge.

Oracle will “skip scan” starting with root block skipping through B*-tree
structure masking sections of tree that cannot have applicable data.

Could be costly, depending on size of index, distribution of data and bind
variable values.

VI. INDEX JOIN SCAN

INDEX JOIN SCAN = HASH JOIN (more on this later) followed by INDEX
RANGE + INDEX FAST FULL SCAN in the explain plan generation

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (I)

INDEX UNIQUE SCAN

SELECT * FROM products WHERE prod_id=19;

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (IIa)

INDEX RANGE SCAN

SELECT * FROM employees WHERE department_id = 20 AND salary > 1000;

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (IIb)

INDEX RANGE SCAN DESCENDING

SELECT * FROM employees

WHERE department_id < 20

ORDER BY department_id DESC;

No need for illustration here.

You can figure it out yourself considering the previous example! ;)

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (III)

INDEX FULL SCAN

SELECT dpt_id, dpt_name FROM departments ORDER BY dpt_id;

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (IVa)

INDEX FAST FULL SCAN

SELECT /*+ INDEX_FFS(departments dept_id_pk) */ COUNT(*)

FROM departments;

The DB uses multiblock I/O to read the root block, branch & leaf blocks by ignoring
the former two (root block & branch blocks) and reading directly the latter ones (the
leaf blocks). In essence, the index itself is used as the table!

Do note, that unlike an IFS, an IFFS cannot eliminate a sort operation because it does
not read the index in order.

Also, the hint IS mandatory for an IFFS to take place!

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (IVb)

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (Va)

INDEX SKIP SCAN

I. CREATE INDEX customers_idx ON customers (gender, email)*;

II. SELECT * FROM customers C

WHERE C.email = 'Abbey@company.example.com';

If below conditions are both met then an ISS occurs:

The leading column (i.e. gender) of the composite index is not part of the predicate
condition.

The leading column of the composite index has low selectivity but the following key
of the composite index has high selectivity.

*Composite key index

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (Vb)

Transformed query

(SELECT * FROM customers C

WHERE C.gender = 'F'

AND C.email = 'Abbey@company.com')

UNION ALL

(SELECT * FROM customers C

WHERE C.gender = 'M'

AND C.email = 'Abbey@company.com')

CSD Univ. of Crete Fall 2014

B*–Tree Index Access Path – Examples (VI)

INDEX JOIN SCAN

SELECT /*+ INDEX_JOIN(employees) */ last_name, email

FROM employees E

WHERE E.last_name like 'A%';

An index join involves scanning multiple indexes, and then using a hash join on the
ROWIDs obtained from these scans to return the rows. Table access is always avoided.
For example, the process for joining two indexes on a single table is as follows:

1. Scan the first index to retrieve ROWIDs.

2. Scan the second index to retrieve ROWIDs.

3. Perform a hash join by ROWID to obtain the rows.

CSD Univ. of Crete Fall 2014

Bitmap Indexes (I)

1. Most often implemented in a Data Warehouse environment (reporting and data
analysis aka OLAP) by using BITMAP INDEXES.

2. Useful for columns which:

have relatively low cardinality where B*-Tree indexes will fail to provide any
benefit.

Contain null values (does not affect performance).

are often specified along with other columns in WHERE clauses of SQL
statements, optimizer will BITMAP AND the results of many single column
bitmap indexes together.

3. Most efficient when doing COUNT(*) operations, where optimizer can utilize the
BITMAP CONVERSION COUNT access path.

Index Access Paths
BITMAP INDEX SINGLE VALUE
BITMAP INDEX RANGE SCAN/FULL SCAN
BITMAP AND/OR/NOT
BITMAP CONVERSION COUNT/TO ROWIDs
BITMAP MERGE

CSD Univ. of Crete Fall 2014

Bitmap Indexes (II)

CREATE BITMAP INDEX table_idx ON table(column_idx_key);

Bitmap Index creation:

Bitmap Join Index creation:

CREATE BITMAP INDEX table_idx ON table1(column_idx_key)

FROM table1 t1, table2 t2

WHERE t1.id [=, [!=|<>], <, <=, >, >=] t2.id;

A bitmap index is a quadruple of (key, low-rowid, high-rowid, series of 0 & 1)

CSD Univ. of Crete Fall 2014

Bitmap Index (Logical) Structure – Example

CSD Univ. of Crete Fall 2014

Bitmap Join Index – Example (I)

In a data warehouse, the join
condition is an equijoin
between the primary key
columns of the dimension
tables and the foreign key
columns in the fact table.
Bitmap join indexes are
sometimes much more
efficient in storage than
materialized join views, an
alternative for materializing
joins in advance.

CSD Univ. of Crete Fall 2014

Bitmap Join Index – Example (II)

In reality, Oracle DB uses a B-tree index structure to store bitmaps for each indexed key.
For example, if jobs.job_title is the key column of a bitmap index, then the index data
is stored in one B-tree. The individual bitmaps are stored in the leaf blocks.

A (conceptual) Bitmap Index leaf block:

CSD Univ. of Crete Fall 2014

Bitmap Index Access Paths

I. BITMAP INDEX SINGLE VALUE (BISV)

Used to satisfy equality predicate.

II. BITMAP INDEX RANGE SCAN (BIRS)

Used to satisfy range operations such as BETWEEN.

Unlike range scans on B*-Tree, BIRS is very efficient even for very large ranges.

III. BITMAP INDEX FULL SCAN (BIFS)

Used to satisfy NOT predicate.

Scan of entire index to identify rows NOT matching.

IV. BITMAP AND, OR, NOT

Used for bitwise combinations of multiple bitmap indexes.

A BITMAP MERGE takes place between conditions before bitwise operations.

CSD Univ. of Crete Fall 2014

Bitmap Conversions

V. BITMAP CONVERSION COUNT (BITCOC)

Used to evaluate COUNT(*) operation for queries whose where clause predicates
only specify columns having bitmap indexes.

Very fast & very efficient.

VI. BITMAP CONVERSION TO ROWIDS (BITCOROW)

Used in cases where row source produced by bitmap index operations needs to be
joined to other row sources, i.e., join to another table, group by operation, to satisfy
a TABLE ACCESS BY ROWID operation.

More resource intensive than BITMAP CONVERSION COUNT.

Can be quite expensive if number of ROWIDs is large.

CSD Univ. of Crete Fall 2014

Bitmap Index Access Path – Examples

BITMAP INDEX SINGLE VALUE

SELECT * FROM customers C WHERE C.maritalStatus = 'Widowed‘;

BITMAP INDEX RANGE SCAN (involves BITCOROW)

SELECT C.fname, C.lname FROM customers C WHERE C.yearOfBirth < 1918;

BITMAP AND

(with BITMAP MERGE for intermediate BISV, BIRS)

SELECT C.fname, C.lname FROM customers WHERE C.gender = 'F' AND
C.yearOfBirth < 1918;

BITMAP CONVERSION COUNT (involves BISV)

SELECT COUNT (*) FROM sales S, customers C WHERE C.cid = S.cid AND

C.city = 'Smithville';

CSD Univ. of Crete Fall 2014

Other Miscellaneous Access Paths (I)

I. UNION, UNION [ALL], MINUS, INTERSECTION

Directly correspond to the SQL set operators.

UNION ALL is the cheapest of all since no SORT (UNIQUE) is required.

II. TABLE FULL SCAN

Reads all blocks allocated to table.

Can be most efficient access path for “small” tables.

Can cause significant physical I/O, especially on larger tables.

Consider ALTER TABLE table_name CACHE (more on this later).

Consider putting table into KEEP buffer pool (more on this later).

CSD Univ. of Crete Fall 2014

Other Miscellaneous Access Paths (II)

III. TABLE ACCESS BY INDEX ROWID [BATCHED]

Generally used in conjunction with an index access path, where ROWID has
been identified, but Oracle needs access to a column not in the index.

Consider whether adding a column to an existing index will provide substantial
benefit.

Cost is directly proportional to number of ROWID lookups that are required.

IV. TABLE ACCESS HASH (TAH)

Ideal in situations where equality predicates prevail.

More efficient than indexed access (queried more, modified less).

Requires creation of hash cluster (same as index cluster but uses a hash) and they
impose administrative/maintenance overhead (tables require frequent FTS and
truncating).

CSD Univ. of Crete Fall 2014

Other Miscellaneous Access Paths (III)

V. TABLE ACCESS CLUSTER (TAC)

Improves I/Os & access times on joins of clustered tables.

Avoids data redundancy.

Requires creation of indexed cluster and they impose administrative/maintenance
overhead (same as in HAC).

CSD Univ. of Crete Fall 2014

Index/Hash Cluster (I)

A table cluster is a group of tables that share common columns and store related data
in the same blocks. When tables are clustered, a single data block can contain rows
from multiple tables. For example, a block can store rows from both
the employees and departments tables rather than from only a single table.

An index cluster is a table cluster that uses an index to locate data. The cluster index
is a B-tree index on the cluster key. A cluster scan retrieves all rows that have the same
cluster key value from a table stored in an indexed cluster.

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists. In a hash cluster, the data is the index. The
database uses a hash scan to locate rows in a hash cluster based on a hash value.

CSD Univ. of Crete Fall 2014

Index/Hash Cluster (II)

CREATE CLUSTER emp_depts_cluster

(dept_id NUMBER(4)) SIZE 512;

Index cluster creation:

Hash cluster creation:

CREATE CLUSTER emp_depts_cluster

(dept_id NUMBER(4)) SIZE 8192 HASHKEYS 100;

CREATE INDEX emp_depts_cluster_idx

ON CLUSTER emp_depts_cluster;

CSD Univ. of Crete Fall 2014

Index/Hash Cluster Access Paths – Example (I)

CREATE TABLE emp2 CLUSTER emp_depts_cluster (dept_id)

AS SELECT * FROM employees;

Consider these tables …

CREATE TABLE depts2 CLUSTER emp_depts_cluster (dept_id)

AS SELECT * FROM departments;

… and this query.

SELECT * FROM emp2 WHERE dept_id = 30;

CSD Univ. of Crete Fall 2014

Index/Hash Cluster Access Paths – Example (II)

Table Access Cluster (TAC) scenario:

To perform the scan, Oracle DB first obtains the ROWID of the row describing
department 30 by scanning the cluster index (IUS). Then, Oracle DB locates the rows
in employees using this ROWID (TAC)

Table Access Hash (TAH) scenario:

To perform a hash scan, Oracle DB first obtains the hash value by applying a hash
function to the key value 30 and then uses this hash value to scan the data blocks and
retrieve the rows (TAH).

CSD Univ. of Crete Fall 2014

Structure of Clustered vs Unclustered Tables – Example

CSD Univ. of Crete Fall 2014

Access Paths of Join Methods

1. Nested Loops
Generally geared towards FIRST_ROWS access.
Ideal for B*-Tree index driven access, small row sources.
When this is the case, always best for first row response time.
Can get very costly very quickly if no index path exists or index path is inefficient.

2. Sort Merge
Generally geared towards ALL_ROWS access.
Can be useful for joining small to medium size row sources, particularly if viable

index path is not available or if Cartesian join is desired.
Be wary of sort_area_size, if it’s too small, sorts will write to disk, performance will

plummet.
3. Hash Join

Most controversial (and misunderstood) join method.
Can be very powerful, when applied correctly.
Useful for joining small to medium sized to a large row source.
Can be sensitive to instance parameters such as hash_area_size,

hash_multiblock_io_count, db_block_size.

CSD Univ. of Crete Fall 2014

Part IV:
Tuning Tools

CSD Univ. of Crete Fall 2014

Tuning Tools

 A significant portion of SQL that performs poorly in production was

originally crafted against empty or nearly empty tables

 Make sure you establish a reasonable sub-set of production data that is

used during development and tuning of SQL

 In order to monitor execution plans and tune queries, Oracle 9i (and

higher) provides the following three tools:

Explain Plan command

TkProf trace file formatter

The SQLTrace (or AutoTrace) facility

 These tools, mainly, allow the user to the verify which access paths are

considered by an execution plan

Some of them provide, also, information about the number of buffers

used, physical reads from buffers, rows returned from each step, etc

CSD Univ. of Crete Fall 2014

Explain Plan

 The EXPLAIN PLAN reveals the execution plan for an SQL statement

The execution plan reveals the exact sequence of steps that the
Oracle optimizer has chosen to employ to process the SQL

 The execution plan is stored in an Oracle table called the PLAN_TABLE

Suitably formatted queries can be used to extract the execution plan
from the PLAN_TABLE

Create PLAN_TABLE command:
@$ORACLE_HOME/rdbms/admin/utlxplan.sql

Issue explain plan command:
Explain plan set statement_id = ‘MJB’ for

select * from dual;
Issue query to retrieve execution plan:
@$ORACLE_HOME/rdbms/admin/utlxpls.sql

 The more heavily indented an access path is, the earlier it is executed

If two steps are indented at the same level, the uppermost statement
is executed first

Some access paths are “joined” – such as an index access that is
followed by a table lookup

CSD Univ. of Crete Fall 2014

Plan_Table

create table PLAN_TABLE

(

statement_id varchar2(30),

timestamp date,

remarks varchar2(80),

operation varchar2(30),

options varchar2(30),

object_node varchar2(128),

object_owner varchar2(30),

object_name varchar2(30),

object_instance numeric,

object_type varchar2(30),

optimizer varchar2(255),

search_columns number,

id numeric,

parent_id numeric,

position numeric,

cost numeric,

cardinality numeric,

bytes numeric,

other_tag varchar2(255),

partition_start varchar2(255),

partition_stop varchar2(255),

partition_id numeric,

other long,

distribution varchar2(30)

);

CSD Univ. of Crete Fall 2014

Explain Plan

 Sample Query: Explain plan set statement_id = ‘MJB’ for

select doc_title

from documents doc, page_collections pc

where pc.pc_issue_date = ‘01-JAN-2002’

and pc.pc_id = doc.pc_id;

 Sample Explain plan output
--
| Operation | Object_Name | Rows | Bytes| Cardinality | Pstart| Pstop |
--
SELECT STATEMENT		61K	3M	328		
NESTED LOOPS		61K	3M	328		
TABLE ACCESS BY INDEX RO	PAGE_COLL	834	9K	78		
INDEX RANGE SCAN	PC_PC2_UK	834		6		
INDEX RANGE SCAN	DOC_DOC2_	86M	4G	3		
--

CSD Univ. of Crete Fall 2014

Viewing the Execution Plan of a Query in Oracle

Plan_Table – an SQL Table
Statement_id – plan identifier
Id – a number assigned to each step
Parent_id – id of next step which operates on output of this step
Operation – eg internal operation select, insert etc
Options – name of internal operation

CSD Univ. of Crete Fall 2014

A more complex EXPLAIN PLAN

CSD Univ. of Crete Fall 2014

TkProf

 More details provided than Autotrace or Explain Plan

 For more useful information:

alter session set timed_statistics = true;

 To enable tracing:

alter session set sql_trace = true;

 Trace file written to user_dump_dest

 Use:

tkprof <trace_file> <output_file>

CSD Univ. of Crete Fall 2014

TkProf Sample Output

**
count = number of times OCI procedure was executed
cpu = cpu time in seconds executing
elapsed = elapsed time in seconds executing
disk = number of physical reads of buffers from disk
query = number of buffers gotten for consistent read
current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call
**
<some text deleted>
select doc_title
from documents doc,

page_collections pc
where pc.pc_issue_date = '01-JAN-2002'
and pc.pc_id = doc.pc_id

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1415 0.07 0.09 0 1853 0 21206
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 1417 0.07 0.10 0 1853 0 21206

CSD Univ. of Crete Fall 2014

TkProf Sample Output

Rows Row Source Operation
------- ---
21206 NESTED LOOPS

31 TABLE ACCESS BY INDEX ROWID PAGE_COLLECTIONS
31 INDEX RANGE SCAN (object id 22993)

21206 INDEX RANGE SCAN (object id 22873)

Rows Execution Plan
------- ---

0 SELECT STATEMENT GOAL: CHOOSE
21206 NESTED LOOPS

31 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID) OF 'PAGE_COLLECTIONS'
31 INDEX GOAL: ANALYZED (RANGE SCAN) OF 'PC_PC2_UK' (UNIQUE)

21206 INDEX GOAL: ANALYZED (RANGE SCAN) OF 'DOC_DOC2_UK' (UNIQUE)

CSD Univ. of Crete Fall 2014

SQL_TRACE and tkprof

 ALTER SESSION SET SQL_TRACE TRUE causes a trace of SQL

execution to be generated

 The TKPROF utility formats the resulting output

 Tkprof output contains breakdown of execution statistics execution plan

and rows returned for each step

These stats are not available from any other source

 Tkprof is the most powerful tool, but requires a significant learning

curve

CSD Univ. of Crete Fall 2014

Tkprof output

CSD Univ. of Crete Fall 2014

Part V:
Practical Optimization/Tuning

CSD Univ. of Crete Fall 2014

Query Tuning – What to do?

 Problematic SQL statements usually have:

Excessive number of buffer gets

Excessive number of physical reads

 So, if we consume less resources, we save time

Reduce buffer gets (more efficient access paths)

Avoid (most) full table scans

Check selectivity of index access paths

Stay away from Nested Loop joins on large row sources

Avoid physical I/O

Avoid (most) full table scans

Try to avoid sorts that write to disk, such as order by, group by,

merge joins (set adequate sort_area_size)

Try to avoid hash joins writing to disk (hash_area_size)

CSD Univ. of Crete Fall 2014

Optimize Joins

 Pick the best join method

Nested loops joins are best for indexed joins of subsets

Hash joins are usually the best choice for “big” joins

Hash Join can only be used with equality

Merge joins work on inequality

If all index columns are in the where clause a merge join will be faster

 Pick the best join order

Pick the best “driving” table

Eliminate rows as early as possible in the join order

 Optimize “special” joins when appropriate

STAR joins for data-warehousing applications

STAR_TRANSFORMATION if you have bitmap indexes

ANTI-JOIN methods for NOT IN sub-queries

SEMI-JOIN methods for EXISTS sub-queries

CSD Univ. of Crete Fall 2014

Choosing a Driving Table

 The driving table is the table that is first used by Oracle in processing the

query

Choosing the correct driving table is critical

 Driving table should be the table that returns the smallest number of

rows and do the smallest number of buffer gets

Driving table should not necessarily be the table with the smallest

number of rows

 In the case of cost-based optimization, the driving table is first after the

FROM clause. Thus, place smallest table first after FROM, and list tables

from smallest to largest

The table order still makes a difference in execution time, even when

using the cost-based optimizer

CSD Univ. of Crete Fall 2014

Choosing a Driving Table

 Example:

select doc_title
from documents doc, page_collections pc
where pc.pc_issue_date = '01-JAN-2002‘

and pc.pc_id = doc.pc_id

 Which table should be driving?

DOCUMENTS has 110+ million rows

No filtering predicates in where clause, all rows will be in row

source

PAGE_COLLECTIONS has 1.4+ million rows

PC_ISSUE_DATE predicate will filter down to 30 rows

CSD Univ. of Crete Fall 2014

Using Hints

 Hints are used to convey your tuning suggestions to the optimizer

Misspelled or malformed hints are quietly ignored

 Commonly used hints include:
ORDERED
INDEX(table_alias index_name)
FULL(table_alias)
INDEX_FFS(table_alias index_name)
INDEX_COMBINE(table_alias index_name1 .. index_name_n)
And_EQUAL(table_alias index_name1 index_name2 .. Index_name5)
USE_NL(table_alias)
USE_MERGE(table_alias)
USE_HASH(table_alias)

 Hints should be specified as: /*+ hint */

Hints should immediately follow the ‘SELECT’ keyword

The space following the ‘+’can be significant inside of PL/SQL, due to
bug in Oracle parser (see bug #697121)

 Driving table will never have a join method hint, since there is no row
source to join it to

CSD Univ. of Crete Fall 2014

Simple Example of Tuning with Hints

 Initial SQL

select doc_id, doc_title, pc_issue_date
from documents doc, page_collections pc
where doc.pc_id = pc.pc_id and doc.doc_id = 9572422;

 Initial Execution Plan
Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2575 Card=50 Bytes=3600)
1 0 MERGE JOIN (Cost=2575 Card=50 Bytes=3600)
2 1 TABLE ACCESS (BY INDEX ROWID) OF 'PAGE_COLLECTIONS' (Cost=2571

Card=1442348)
3 2 INDEX (FULL SCAN) OF 'PC_PK' (UNIQUE) (Cost=3084 Card=1442348)
4 1 SORT (JOIN) (Cost=3 Card=1 Bytes=60)
5 4 TABLE ACCESS (BY INDEX ROWID) OF 'DOCUMENTS' (Cost=1 Card=1

Bytes=60)
6 5 INDEX (UNIQUE SCAN) OF 'DOC_PK' (UNIQUE) (Cost=2 Card=1)

 Initial number of buffer gets: 444

CSD Univ. of Crete Fall 2014

Simple Example of Tuning with Hints

 First Tuning attempt

select /*+ FULL(pc)*/ doc_id, doc_title, pc_issue_date
from documents doc, page_collections pc
where doc.pc_id = pc.pc_id and doc.doc_id = 9572422;

 Tuned Execution Plan
Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3281 Card=50 Bytes=3600)
1 0 HASH JOIN (Cost=3281 Card=50 Bytes=3600)
2 1 TABLE ACCESS (FULL) OF 'PAGE_COLLECTIONS' (Cost=1675 Card=1442348

Bytes=17308176)
3 1 TABLE ACCESS (BY INDEX ROWID) OF 'DOCUMENTS' (Cost=1 Card=1

Bytes=60)
4 3 INDEX (UNIQUE SCAN) OF 'DOC_PK' (UNIQUE) (Cost=2 Card=1)

 Number of buffer gets: 364

CSD Univ. of Crete Fall 2014

Simple Example of Tuning with Hints

 Second Tuning attempt

select /*+ ORDERED USE_NL(pc)*/ doc_id, doc_title,
pc_issue_date
from documents doc, page_collections pc
where doc.pc_id = pc.pc_id and doc.doc_id = 9572422;

 Second Tuned Execution Plan
Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=50 Bytes=3600)
1 0 NESTED LOOPS (Cost=2 Card=50 Bytes=3600)
2 1 TABLE ACCESS (BY INDEX ROWID) OF 'DOCUMENTS' (Cost=1 Card=1

Bytes=60)
3 2 INDEX (UNIQUE SCAN) OF 'DOC_PK' (UNIQUE) (Cost=2 Card=2)
4 1 TABLE ACCESS (BY INDEX ROWID) OF 'PAGE_COLLECTIONS' (Cost=1

Card=1442348)
5 4 INDEX (UNIQUE SCAN) OF 'PC_PK' (UNIQUE) (Cost=1 Card=1442348)

 Number of buffer gets: 7

CSD Univ. of Crete Fall 2014

Considerations and Cautions

 Fundamental changes to the query structure allow the optimizer different
options

 Using select in the select list allowed for a GROUP BY result without a
GROUP BY operation, thus avoiding costly BITMAP CONVERSION TO
ROWIDS

 Other places where re-writing query can have benefits:

Rewrite sub-select as join, allows optimizer more options

consider EXISTS/NOT EXISTS and IN/NOT IN operations

 Adding hints to a large number of your SQL statements?

Take a step back, consider whether you need to tune your CBO params

Hand tuning a majority of SQL in an application will complicate code,
and add a lot of time to development effort

As new access paths are introduced in Oracle, statements that use
hints will not utilize them, and continue using the old access paths

 When individual statement tuning is necessary, a solid understanding of
access paths, join order and join methods is the key to success

CSD Univ. of Crete Fall 2014

Considerations and Cautions

 Use hints sparingly

If you have the opportunity, tune via CBO parameters first

Don’t over-specify hints

SQL Tuning is as important as ever:

Need to understand the access paths, join orders, and join

methods, even if only to evaluate what the CBO is doing

CBO gets better with each release, but it will never know as much

about the application and data model as a well-trained developer

CSD Univ. of Crete Fall 2014

Myths

 SQL tuned for RBO will run well in the CBO

 SQL developers do not need to be retrained to write SQL for the CBO

 10g, 11g & 12c do not support the RBO

 You can’t run RULE and COST together

 Oracle says the CBO is unreliable and you should use RULE

 Hints can’t be used in RULE

CSD Univ. of Crete Fall 2014

Top 9 Oracle SQL Tuning Tips

1. Design and develop with performance in mind

2. Index wisely

3. Reduce parsing

4. Take advantage of Cost Based Optimizer

5. Avoid accidental table scans

6. Optimize necessary table scans

7. Optimize joins

8. Use array processing

9. Consider PL/SQL for “tricky” SQL

CSD Univ. of Crete Fall 2014

Design and Develop with Performance in Mind

 Explicitly identify performance targets

 Focus on critical transactions

Test the SQL for these transactions against simulations of

production data

 Measure performance as early as possible

 Consider prototyping critical portions of the applications

 Consider de-normalization and other performance by design features

early on

CSD Univ. of Crete Fall 2014

De-Normalization

 If normalizing your OLTP database forces you to create queries with

many multiple joins (4 or more)

 De-normalization is the process of selectively taking normalized

tables and re-combining the data in them in order to reduce the

number of joins needed them to produce the necessary query results

 Sometimes the addition of a single column of redundant data to a

table from another table can reduce a 4-way join into a 2-way join,

significantly boosting performance by reducing the time it takes to

perform the join

CSD Univ. of Crete Fall 2014

De-Normalization

 Example: We have the following schema:

Similarities: Averages:

 Similarities table contains the similarity measure for all the possible pairs

of users and Averages table the average ratings of all users in Database

 In order to update all similarity measures we need the average value for

each user

 Suppose we have over 1.000.000 users stored in our Database (about

500 billions of user-pairs!)

 To avoid joining we should consider of the following schema:

Similarities:

user1 user2 similarity user average

user1 user2 similarity average1 average2

CSD Univ. of Crete Fall 2014

De-Normalization

 While de-normalization can boost join performance, it can also have

negative effects. For example, by adding redundant data to tables, you

risk the following problems:

More data means reading more data pages than otherwise needed,

hurting performance

Redundant data can lead to data anomalies and bad data

In many cases, extra code will have to be written to keep redundant

data in separate tables in synch, which adds to database overhead

As you consider whether to de-normalize a database to speed joins,

be sure you first consider if you have the proper indexes on the tables

to be joined

 It is possible that your join performance problem is more of a

problem with a lack of appropriate indexes than it is of joining too

many tables

CSD Univ. of Crete Fall 2014

Index Wisely

 Index to support selective WHERE clauses and join conditions

 Use concatenated indexes where appropriate

 Consider over-indexing to avoid table lookups

 Consider advanced indexing options

Hash Clusters

 When a table is queried frequently with equality queries

 You can avoid using the ORDER BY clause, as well as sort

operations

 More administrative overhead

Bit mapped indexes

Can use large amounts of memory

Use sparingly

Index only tables

CSD Univ. of Crete Fall 2014

 Do not index columns that are modified frequently

UPDATE statements that modify indexed columns and INSERT and

DELETE statements that modify indexed tables take longer than if

there were no index

must modify data in indexes as well as data in tables

 Do not index keys that appear only with functions or operators

A WHERE clause that uses a function (other than MIN or MAX) or an

operator with an indexed key does not make available the access path

that uses the index (except with function-based indexes)

 When choosing to index a key, consider whether the performance gain

for queries is worth the performance loss for INSERTs, UPDATEs, and

DELETEs and the use of the space required to store the index

You might want to experiment by comparing the processing times of

the SQL statements with and without indexes

You can measure processing time with the SQL trace facility

Index Wisely

CSD Univ. of Crete Fall 2014

Reduce Parsing

 Use Bind variables

Bind variables are key to application scalability

If necessary set cursor CURSOR_SHARING to FORCE

 Reuse cursors in your application code

How to do this depends on your development languages

 Use a cursor cache

Setting SESSION_CACHED_CURSORS can help applications

that are not re-using cursors

CSD Univ. of Crete Fall 2014

Bind Values

 Use bind variables rather than literals in SQL statements whenever

possible

 For example, the following two statements cannot use the same shared

area because they do not match character for character:

 By replacing the literals with a bind variable, only one SQL statement

would result, which could be executed twice:

SELECT employee_id FROM employees

WHERE department_id = 10;

SELECT employee_id FROM employees

WHERE department_id = 20;

SELECT employee_id FROM employees

WHERE department_id = :dept_id;

CSD Univ. of Crete Fall 2014

Bind Values

 In SQL*Plus you can use bind variables as follows:

 What we've done to the SELECT statement now is take the literal

value out of it, and replace it with a placeholder (our bind variable),

with SQL*Plus passing the value of the bind variable to Oracle when

the statement is processed.

SQL> variable dept_id number
SQL> exec :dept_id := 10

SQL> SELECT employee_id FROM employees

WHERE department_id = :dept_id;

CSD Univ. of Crete Fall 2014

Cursors

Instead of:

Declare a cursor for the count: Or if just checking for existence

And then do the fetch from this cursor:

cursor cnt_emp_cur(v_emp_id number) is

select count(*) emp_total from s_emp

emp_id = v_emp_id;

cnt_emp_rec cnt_emp%rowtype;

cursor cnt_emp_cur(v_emp_id
number) is

select emp_id from s_emp where
where

emp_id= v_emp_id and rownum = 1;

select count(*) into tot from s_emp

where emp_id = v_emp_id;

…

open cnt_emp(v_emp_id);

fetch cnt_emp into cnt_emp_rec;

…

close cnt_emp;

CSD Univ. of Crete Fall 2014

Take Advantage of the Cost Based Optimizer

 The older rule based optimizer is inferior in almost every respect to the

modern cost based optimizer; basic RBO problems

Incorrect driving table 40%

Incorrect index 40%

Incorrect driving index 10%

 Using the cost based optimizer effectively involves:

Regular collection of table statistics using the ANALYZE or

DBMS_STATS command

Understand hints and how they can be used to influence SQL

statement execution

Choose the appropriate optimizer mode;

FIRST_ROWS is best for OLTP applications

ALL_ROWS suits reporting and OLAP jobs

CSD Univ. of Crete Fall 2014

Analyze – Wrong Data

 Tables were analyzed with incorrect data volumes

 When does this occur?

Table rebuilt

Index added

Migrate schema to production

Analyze before a bulk load

 Missing Stats:

Oracle will estimate the stats for you

These stats are for this execution only

Stats on Indexes

CSD Univ. of Crete Fall 2014

Avoid Accidental Table Scans

 Table scans that occur unintentionally are a major source of poorly

performing SQL

 Causes include:

Missing Index

Using “!=“ , “<>” or NOT

Use inclusive range conditions or IN lists

Looking for values that are NULL

Use NOT NULL values with a default value

Using function on indexed columns

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

1) Using a function on the left side

Solution:

SELECT * FROM s_emp

WHERE substr(title,1,3) = ‘Man’;

SELECT * FROM s_emp

WHERE
trunc(hire_date)=trunc(sysdate);

Use ‘like’ :

SELECT * FROM s_emp

WHERE title LIKE ‘Man%’;

Use >, < :

SELECT * FROM s_emp

WHERE hire_date >= sysdate

AND hire_date < sysdate + 1;

Since there is a function

around this column the index

will not be used. This includes

Oracle functions to_char,

to_number, ltrim, rtrim, instr,

trunc, rpad , lpad.

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

2) Comparing incompatible data types

Solution:

SELECT * FROM s_emp

WHERE employee_number = ‘3’;

SELECT * FROM s_emp

WHERE hire_date = ’12-jan-01’;

SELECT * FROM s_emp

WHERE employee_number = 3;

SELECT * FROM s_emp

WHERE hire_date = to_date(’12-jan-01’);

There will be an implicit

to_char conversion used

 There will be an implicit

to_date conversion used

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

3) Using null and not null

Solution:

SELECT * FROM s_emp

WHERE title IS NOT NULL;

SELECT * FROM s_emp

WHERE title IS NULL;

SELECT * FROM s_emp

WHERE title >= ‘ ‘;

Use an Oracle hint:

SELECT /*+ index (s_emp) */ *

FROM s_emp WHERE title IS NULL;

 Since the column title has

null values, and is compared

to a null value, the index can

not be used

Oracle hints are always

enclosed in /*+ */ and must

come directly after the select

clause

The index hint causes indexes

to be used

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

4) Adding additional criteria in the where clause for a column name that is

of a different index

Solution:

SELECT * FROM s_emp

WHERE title= ‘Manager’

AND salary = 100000;

(Use an Oracle hint)

SELECT /*+ index (s_emp) */

FROM s_emp

WHERE title= ‘Manager’

AND salary = 100000;

 Column title and salary

have separate indexes on

these columns

 Oracle hints are always

enclosed in /*+ */ and must

come directly after the select

clause

The index hint causes indexes

to be used

S_EMP is the Oracle table

CSD Univ. of Crete Fall 2014

SELECT COUNT(*) FROM vehicle

WHERE

assembly_location_code = 'AP24A'

AND production_date = '06-apr-01';

COUNT(*)

787

Elapsed: 00:00:10.00

 This does not use an

index

Make sure most Restrictive Indexes are being

Used by using Oracle hints

Notice it is 10
seconds

CSD Univ. of Crete Fall 2014

SELECT

/*+ index (vehicle FKI_VEHICLE_1)
/ COUNT()

FROM vehicle

WHERE

assembly_location_code = 'AP24A'

AND production_date = '06-apr-01';

COUNT(*)

787

Elapsed: 00:00:00.88

 This does use an

index

 Notice it is less than

1 second. USE THE

MOST SELECTIVE

INDEX that will return

the fewest records

Make sure most Restrictive Indexes are being

Used by using Oracle hints

CSD Univ. of Crete Fall 2014

Some Idiosyncrasies

 Condition Order:

The order of your where clause will effect the performance

 OR may stop the index being used

break the query and use UNION

CSD Univ. of Crete Fall 2014

OR

CSD Univ. of Crete Fall 2014

Optimize Necessary Table scans

 There are many occasions where a table scan is the only option, If so:

Consider parallel query option

 Try to reduce size of the table

Adjust PCTFREE and PCTUSED

Relocate infrequently used long columns

 Improve the caching of the table

Use the CACHE hint or table property

Implement KEEP and RECYCLE pools

 Partition the table

 Consider the fast full index scan

CSD Univ. of Crete Fall 2014

IN Lists

 Rewritten as:

SELECT empno FROM emp WHERE
deptno IN (10,20,30)

SELECT empno FROM emp

WHERE deptno = 10

UNION ALL

SELECT empno FROM emp

WHERE deptno = 20

UNION ALL

SELECT empno FROM emp

WHERE deptno = 30

CSD Univ. of Crete Fall 2014

Data Partitioning

 If you are designing a database that potentially could be very large,
holding millions or billions of rows, consider the option of horizontally
partitioning your large tables

Horizontal partitioning divides what would typically be a single table
into multiple tables, creating many smaller tables instead of a single,
large table

The advantage of this is that is generally is much faster to query a
single small table than a single large table

 For example, if you expect to add 10 million rows a year to a transaction
table, after five years it will contain 50 million rows

In most cases, you may find that most queries (although not all)
queries on the table will be for data from a single year

If this is the case, if you partition the table into a separate table for
each year of transactions, then you can significantly reduce the
overhead of the most common of queries

CSD Univ. of Crete Fall 2014

When Joining…

 Make sure everything that can be joined is joined (for 3 or more tables)

Instead of:

add:

 Make sure smaller table is first in the from clause

SELECT * FROM t1, t2, t3

WHERE t1.emp_id = t2.emp_id

AND t2.emp_id = t3.emp_id

SELECT * FROM t1, t2, t3

WHERE t1.emp_id = t2.emp_id

AND t2.emp_id = t3.emp_id

AND t1.emp_id = t3.temp_id;

CSD Univ. of Crete Fall 2014

Joining too Many Tables

 The more tables the more work for the optimizer

 Best plan may not be achievable

Tables Permutations

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

Tables Permutations

10 3628800

11 39916800

12 479001600

13 6226020800

14 87178291200

15 1307674368000

CSD Univ. of Crete Fall 2014

Use ARRAY Processing

 Retrieve or insert rows in batches, rather than one at a time

 Methods of doing this are language specific

 Suppose that a new user registers in our Database

 We have to create an entry in Similarities table for each pair of new

user and the existing users

 Instead of selecting all the existing users and make the insertion

individually we should use the following statement:

insert into

similarities (user1, user2, similarity)

‘new_user_id’ as user1,

select user_id from users as user2,

0 as similarity;

CSD Univ. of Crete Fall 2014

Consider PL/SQL for “Tricky” SQL

 With SQL you specify the data you want, not how to get it

Sometime you need to specifically dictate your retrieval algorithms

 For example:

Getting the second highest value

Correlated updates

SQL with multiple complex correlated subqueries

SQL that seems to hard to optimize unless it is broken into multiple
queries linked in PL/SQL

 Using explicit instead of implicit cursors

Implicit cursors always take longer than explicit cursors because
they are doing an extra to make sure that there is no more data

 Eliminating cursors where ever possible

CSD Univ. of Crete Fall 2014

When your SQL is Tuned, Look to your Oracle

Configuration

 When SQL is inefficient there is limited benefit in investing in Oracle server

or operating system tuning

 However, once SQL is tuned, the limiting factor for performance will be

Oracle and operating system configuration

 In particular, check for internal Oracle contention that typically shows up as

latch contention or unusual wait conditions (buffer busy, free buffer, etc)

CSD Univ. of Crete Fall 2014

Other Parameters

 OPTIMIZER_MAX_PERMUTATIONS

 Remember the too many joins?

 Default is 80,000

 Can lead to large Parse times

 Altering can lead to non optimal plan selection

 OPTIMIZER_INDEX_CACHING

 Represents # of blocks that can be found in the cache

 Range 0 - 99

 Default is 0 – implies that index access will require a physical read

 Should be set to 90

CSD Univ. of Crete Fall 2014

Other Parameters

 OPTIMIZER_INDEX_COST_ADJ

 Represents cost of index access to full table scans

 Range 1 – 10000

 Default is 100 – Means index access is as costly as Full Table Scan

 Should be between 10 – 50 for OLTP and approx 50 for DSS

 DB_FILE_MULTIBLOCK_READ_COUNT

 Setting too high can cause Full Table Scans

 Can adjust for this by setting OPTIMIZER_INDEX_COST_ADJ

 DB_KEEP_CACHE_SIZE

 DB_RECYCLE_CACHE_SIZE

 DB_BLOCK_HASH_BUCKETS

CSD Univ. of Crete Fall 2014

References

 Dennis Shasha and Phillipe Bonnet Database Tuning : Principles

Experiments and Troubleshooting Techniques, Morgan Kaufmann

Publishers 2002.

 Mark Levis Common tuning pitfalls of Oracle’s optimizers, Compuware

 Duane Spencer TOP tips for ORACLE SQL tuning, Quest Software, Inc.

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημειώματα

Σημείωμα αδειοδότησης
•Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής
Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,
τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης
τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:
–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο
–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο
–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Δημήτρης Πλεξουσάκης. «Συστήματα
Διαχείρισης Βάσεων Δεδομένων. Φροντιστήριο 8: Query Optimization
and Tuning in Oracle». Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από
τη δικτυακή διεύθυνση: http://www.csd.uoc.gr/~hy460/

