: EAAHNIKH AHMOKPATIA
A " NANENIETHMIO KPHTHE

2uocTiRuaTta Alaxeipiong
Baoswv Asdopévwy

®povTioTnplo 8: Query Optimization and
Tuning in Oracle

Anuntpeng NAegoucakng
Tunua Emotiung YtroAoyiotwy

7% CSD Univ. of Crete Fall 2014

QUERY OPTIMIZATION & TUNING IN
ORACLE DATABASES

T
C

”‘-—-___________--”

) %7 CSD Univ. of Crete Fall 2014

Part I:
Query Optimization & Tuning Hints

"% CSD Univ. of Crete Fall 2014

Query Tuning Hints

» Avoid redundant DISTINCT

» Avoid HAVING when WHERE is enough
» Avoid using intermediate relations (tables)
» Optimize set difference queries

» Change nested queries (subqueries) to joins
» Avoid complicated correlation subqueries
> Join on clustering and integer attributes

» Avoid views (pseudotables) with unnecessary joins
» Maintain frequently used aggregates

> Avoid external loops

» Avoid cursors

> Retrieve needed columns only

» Use direct path for bulk loading

CSD Univ. of Crete Fall 2014

Avoid Redundant DISTINCT

SELECT DISTINCT <expression>
FROM Employee
WHERE dept = ‘information systems’

where <expression> == ssnum or ssnuml, ssnum?2, ...
® DISTINCT usually entails a sort operation’
& Slows down query optimization because one more “interesting” order to consider.

® Remove if you know the result has no duplicates (or duplicates are acceptable) or if
answer contains a (primary or foreign) key.

® [ntuitively, when multiple expressions are provided in the DISTINCT clause then the

query will retrieve all unique combinations for the expressions listed.
‘Depends on many factors (i.e. database version, query expression etc).

Newer versions (>= Oracle DB 10g) use hash instead of sorting.

CSD Univ. of Crete

Fall 2014

Awvoid HAVING when WHERE is enough

SELECT MIN(E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno = 102

=

SELECT MIN(E.age)
FROM Employee E
WHERE E.dno = 102
GROUP BY E.dno

The WHERE clause will filter or limit rows as they are selected from the table,
but before grouping is done. The HAVING clause will filter rows after the grouping.

HINT: Consider DBMSs wuse of index when writing arithmetic expressions:
E.age = 2*D.age will benefit from index on E.age, but might not benefit from index on

D.age!

%3 CSD Univ. of Crete Fall 2014

Awoid Using Intermediate Relations (Tables) - 1

SELECT * INTO Temp

FROM Emp E, Dept D

WHERE E.dno = D.dno
AND D.mgrname = €‘Joe’

SELECT T.dno, AVG(T.sal)
and |FROM Temp T
GROUP BY T.dno

SELECT E.dno, AVG(E.sal)
FROM Emp E, Dept D
vs. WHERE E.dno = D.dno

AND D.mgrname = ‘Joe’
GROUP BY E.dno

CSD Univ. of Crete Fall 2014

Awoid Using Intermediate Relations (Tables) - 11

> Creating the Temp table causes frequent updates to catalog (i.e. database).

2 The columns of the newly created table inherit the column names, their data
types, whether columns can contain null values or not, and any associated
IDENTITY property from the source table. However, the SELECT INTO

clause does have some restrictions: it will not copy any constraints, indexes, or
triggers from the source table".
> Materialization of the intermediate relation Temp consumes resources (even if it

takes place in-memory).

“[Source: Beginning C# 2008 Databases: From Novice to Professional By Vidya Vriat
Agarwal, James Huddleston, Ranga Raghuram]

CSD Univ. of Crete

Optimizing Set Difference Queries (1)

Suppose you have to select all of the employees that are not account representatives:

lablel (s_emp)

soc_number | last name | first name | salary
1able2 (s_account_rep)
soc_number |last name |first name region

MINUS

SELECT soc_number FROM s _emp

SELECT soc_number FROM s _account_rep;

Fall 2014

The above query is slow because the minus has to select distinct values from both tables.

CSD Univ. of Crete Fall 2014

Optimizing Set Difference Queries (11)

SELECT soc_number

FROM s_emp

WHERE soc_number NOT IN
(SELECT soc_number
FROM s_account_rep);

The above query is faster but we are not joining and are not taking advantage of
indexes.

%3 CSD Univ. of Crete Fall 2014

Optimizing Set Difference Queries (111)

SELECT /*+ index(tl) */ soc_number

FROM s _emp t1

WHERE NOT EXISTS
(SELECT /*+ index(tl) index(t2) */ *
FROM s account rep t2
WHERE tl1.soc_number = t2.soc_number);

Regardless of indexes, the above query is generally preferred when having to choose
between [NOT] IN and [NOT] EXISTS since [INOT] EXISTS does not take into

account any null values present.

Challenge time: Make it faster!!!

More challenge time: /f both NOT IN and NOT EXISTS produce same execution
plans which one will you prefer and why, why, WHY??? ©

%3 CSD Univ. of Crete Fall 2014

Optimizing Set Difference Queries (IV)

SELECT /*+ index(tl) */ soc_number

FROM s _emp t1

LEFT OUTER JOIN s _account _rep t2
ON tl.soc_number = t2.soc_number
WHERE t2.soc number IS NULL

We should always default to NOT EXISTS.

The execution plans may be the same at the moment but if either column
Is altered In the future to allow NULLSs the NOT IN version will need to
do more work (even if no NULLSs are actually present in the data) and the
semantics of NOT IN if NULLs are present are unlikely to be the ones
you want anyway.

CSD Univ. of Crete Fall 2014

Change Nested Queries (subqueries) to Joins

SELECT ssnum An index may or may not be
FROM Employee E applied on E.dept.
WHERE E.dept IN

(SELECT E.dept FROM Techdept)

$

SELECT [DISTINCT] ssnum In most cases JOINs are faster
FROM Employee E, Techdept TD than sub-queries and it is very rare
WHERE E.dept = TD.dept for a sub-query to be faster.

Tradeoft: Readability vs Speed!

CSD Univ. of Crete Fall 2014

Avoid Complicated Correlation Subqueries (1)

SELECT sshum
FROM Employee el
WHERE salary =

(SELECT MAX(salary)

FROM Employee e2

WHERE e2.dept = el.dept

The subquery references the dept in the outer query. The value of the dept changes by
row of the outer query, so the DB must rerun the subquery for each row comparison.
This has a significant performance impact on the execution time of the query, and for

that reason, correlated subqueries should be avoided if possible.

%3 CSD Univ. of Crete Fall 2014

Awvoid Complicated Correlation Subqueries (11)

SELECT MAX(salary) AS bigsalary, dept
INTO Temp FROM Employee
GROUP BY dept

SELECT ssnum FROM Employee E, Temp T
WHERE salary = bigsalary
AND E.dept = T.dept

Nowadays, most RDBMS makes this efficient although legacy ones made it expensive to

use it (i.e. most DBs used the naive implementation of nested loops between query blocks
whereas MS SQL 2000 used hashed joins)'.

‘[Source: Orthogonal Optimization of Subqueries and Aggregates” by C.Galindo-
Legaria and M. Joshi, SIGMOD 2001]

CSD Univ. of Crete Fall 2014

Join on Clustering and Integer Attributes

SELECT Employee.ssnum

FROM Employee E, FROM Employee E,
Student S Student S

WHERE E.name = S.name WHERE E.ssnum = S.sshum

SELECT Employee.ssnum

»

Table Employee is clustered on ssnum where ssnum is an integer.

CSD Univ. of Crete

Fall 2014

Awoid Views (pseudotables) with Unnecessary Joins

CREATE VIEW Techlocation AS
(SELECT ssnum, Techdept.dept,
location
FROM Employee E, Techdept TD
WHERE E.dept = TD.dept)

SELECT dept FROM Techlocation TD
WHERE ssnum = 4444

SELECT dept
FROM Employee E
WHERE E.ssnum = 4444

Join with Techdept is unnecessary.

%9 CSD Univ. of Crete Fall 2014

Maintain frequently used Aggregates

CREATE OR REPLACE TRIGGER updateVendorOutstanding
[BEFORE | AFTER INSERT|UPDATE|DELETE AND/OR [I|U|P]]
ON orders [FOR EACH ROW] [DECLARE <vars>] [WHERE <cond>]
BEGIN

UPDATE vendorOutstanding
SET :NEW.amount =
SELECT :0LD.amount+SUM(INS.quantity*IT.price)
FROM inserted INS, item IT
WHERE INS.itemnum = IT.itemnum
WHERE vendor = (SELECT vendor FROM inserted);
END

Useful if the aggregate is needed frequently.

CSD Univ. of Crete Fall 2014

Awoid External Loops (1)

No loop:

sqlStmt = “select * from lineitem where 1 partkey <= 200;”
odbc->prepareStmt(sqlStmt);
odbc->execPrepared(sqlStmt);

Loop:
sqlStmt=“select * from lineitem where 1 partkey = ?;”

odbc->prepareStmt(sqlStmt);

for (int i=1; 1i<200; i++) {
odbc->bindParameter(1l, SQL INTEGER, 1i);
odbc->execPrepared(sqlStmt);

}

|\ CSD Univ. of Crete
<

Awoid External Loops (1)

Graphical impact of loops vs no-loops in MS
SQL Server 2000 on Windows 2000

600

500
400

300 -

200 -
100 -

throughput (records/sec)

loop no loop

Fall 2014

Let the DBMS optimize set operations since crossing the application interface has a

significant impact on performance.

CSD Univ. of Crete Fall 2014

Avoid Cursors

No cursor Graphical response time of cursor vs no-cursor in
SELECT * FROM employees; MS SQL Server 2000 on Windows 2000 (>1h vs
some seconds)
Cursor
DECLARE 'g 5000
v_emp employees%ROWTYPE; g 4000
CURSOR c¢rs IS § 2000
SELECT * FROM =
S 2000
employees; 2
BEGIN 3 1000
OPEN crs; = 0 |
LOOP cursor SQL

FETCH crs INTO v_emp;

EXIT WHEN c PS%NOTFOUND; "A cursor is a pointer to a private SQL area that stores information

END LOOP; about the processing of a SELECT or data manipulation language

. (DML) statement (INSERT, UPDATE, DELETE, or MERGE).

CLOSE crs; Cursor management of DML statements is handled by Oracle

END; Database, but PL/SQL offers several ways to define and manipulate
cursors to execute SELECT statements.

”%%%,CSDumvomem Fall 2014
| Retrieve Needed Columns Only
All
SELECT * FROM lineitem; Awoid transferring unnecessary *a’dm
Use of a covering index may enhance

Covered subset
SELECT 1 orderkey,

performance.

1 partkey, 3 175

1 suppkey, g 15

1 shipdate, -g 1,25

. g 1

1 commitdate Z o

FROM lineitem; % 0,5

5 0,25

* E 0
An index covers the query if all the

columns specified in the query are part of

Ball Ocovered subset

I B

no index

index

the index.

CSD Univ. of Crete

Use Direct Path for Bulk Loading (1)

sqlldr -> Oracle Bulk Loader
directpath=true ------------------ >
control=load lineitem.ctl ---------
—————————————— > see next slide ;)
log= -> <log file>

bad= -> <bad file>

If no log file and/or bad file are specified the sqlldr
will use the name of the control file with the log
and bad extensions, respectively.

Jdog -> Relevant information about the bulk load
operation, such as the number of tuples loaded, and

a description of errors that may have occurred.

Jbad -> Bad tuples (load fails) are recorded (if any).

Fall 2014

S0l Loadar Sl Loadar Lkeer Processes
Write Databasn Generate 201 Ganerate S0L
Block Commands Commands
[
Direct Converntionsl [
Path Path 1
Oracle Server
SaL Command Processing
v
Space Managemeant
o m e m e m e m -
:| Gat new axtants : Find partial blocks
Adjust high-watar rmark | Fill partial bloc ks
' ! Y
Buffer Cache Management
- Manage queues
- Resolve contantion Buffer cache
Read Database I + Write Database
Blocks Bocks

1l

P

CSD Univ. of Crete Fall 2014

Use Direct Path for Bulk Loading (1I)

LOAD DATA

INFILE "lineitem.tbl” -> <datafile>
APPEND INTO TABLE lineitem-> <tableName>
FIEDLS TERMINATED BY '|' -> <separator>
(

L ORDERKEY, L_PARTKEY, L SUPPKEY, L _LINENUMBER, L QUANTITY,
L_EXTENDEDPRICE, L_DISCOUNT, L_TAX, L_RETURNFLAG,

L _LINESTATUS, L SHIPDATE DATE "YYYY-MM-DD", L _COMMITDATE DATE
"YYYY-MM-DD", L RECEIPTDATE DATE "YYYY-MM-DD", L SHIPINSTRUCT,
L _SHIPMODE, L_COMMENT

) -> (<1list of attribute names to load>)

"% CSD Univ. of Crete Fall 2014

Use Direct Path for Bulk Loading (II1)

Graphical illustration of

conventional path load vs direct path load vs common insert methods.

50000

40000

30000

20000

10000

Throughput (rec/sec)

65

0 ' '

conventional direct path insert

Direct path loading bypasses the query engine and the storage manager. As such, it is

orders of magnitude faster than for conventional bulk load (commit every 100 records)
and inserts (commit for each record).

L 7% CSD Univ. of Crete Fall 2014

Part 11
Rule-based & Cost-based Optimization
[echniques

CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (1)

Oracle supports two approaches for query optimization: Rule-based and Cost-based,
which was introduced in Oracle 7i in order to improve query optimization.

» Rule-based: The optimizer ignores statistics.

» Cost-based: Three different goals.

+All_Rows: The optimizer optimizes with a goal of best throughput (minimum
resource use to complete the entire statement.

«First_ Rows_n: The optimizer optimizes with a goal of best response time to
return the first n number of rows; n can equal 1, 10, 100 or 1000.

<« First_Rows: The optimizer uses a mix of cost and heuristics to find a best plan

for fast delivery of the first few rows.

'Deprecated as of Oracle 10g but still honored when used in Oracle 11g (if applicable)

CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (11)

The CHOOSE mode states that:

> The optimizer chooses between a cost-based approach and a rule-based approach,
depending on whether statistics are available. This is the default value.

> If the data dictionary (i.e. DBA_, USER_ & ALL_ views) contains statistics for
at least one of the accessed tables, then the optimizer uses a cost-based approach
and optimizes with a goal of best throughpust.

» If the data dictionary contains only some statistics, then the cost-based approach is
still used, but the optimizer must guess the statistics for the subjects without any
statistics. This can result in suboptimal execution plans.

CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (I111)

To specify the optimizer’s goal for an entire session, use the following statement:

alter session set optimizer_mode = <MODE VALUE> where
MODE_VALUE = {rule, choose, all rows,

first _rows, first rows n}
For a specific statement the goal to be used by the optimizer can be stated using a hint.

For RBO & CBO, a hint is nothing more than a comment with a specific format inside a
SQL statement (I*+ <HINT>(<param> */). Hints come with their own set of problems. A

hint looks just like a comment (more in the idiosyncrasies section)!

SELECT /*+ INDEX(EMP_IDX) */ LASTNAME, FIRSTNAME, PHONE
FROM EMP

"% CSD Univ. of Crete Fall 2014

ORACLE Query Optimization Approaches (IV)

Hints can be categorized as follows:

Optimizer SQL hints for changing the query optimizer goal.
Full table scan hints.

Index unique scan hints.

Index range scan descending hints.

Fast full index scan hints.

Join hints, including index joins, nested loop joins, hash joins, sort merge joins,

YV V. V VY VY V

Cartesian joins, and join order.
> Other optimizer hints, including access paths, query transformations, and

parallel execution.

CSD Univ. of Crete Fall 2014

Rule-Based Approach (1)

When ignoring statistics & heuristics, there should be a way to choose between possible
access paths suggested by different execution plans.

Thus, 15 rules were ranked in order of efficiency. An access path for a table is chosen if
the statement contains a predicate or other construct that makes that access path

available.

Score assigned to each execution strategy (plan) using these rankings and strategy with
best (lowest) score selected.

When two strategies produce the same score, the “tie-break” rule is used by making a
decision based on order in which tables occur in the SQL statement.

Challenge time: Does this rule impact query optimization???

Fall 2014

f? i1 CSD Univ. of Crete
<.

Rule-Based Approach (11)

Table 20.4 Rule-based optimization rankings.

Rank Access path
1 Single row by ROWID (row identifier)
2 Single row by cluster join
3 Single row by hash cluster key with unique or primary key
4 Single row by unique or primary key
5 Cluster join
6 Hash cluster key
7 Indexed cluster key
8 Composite key
9 Single-column indexes
10 Bounded range search on indexed columns
11 Unbounded range search on indexed columns
12 Sort—merge join
13 MAX or MIN of indexed column
14 ORDER BY on indexed columns

15 Full table scan

CSD Univ. of Crete Fall 2014

Understanding the RBO : An Example (1)

Suppose there is a table “PropertyForRent” with indexed attributes: propertylNo, rooms
and city. Consider the query:

SELECT propertyNo
FROM PropertyForRent
WHERE rooms > 7 AND city = ‘Sydney’

& Single-column access path using index on city from WHERE condition (city =
Sydney’): rank 9

& Unbounded range scan using index on rooms from WHERE condition (rooms > 7):
rank 11.

& Full table scan: rank 15

& Although there is an index on propertyNo, the column does not appear in the
WHERE clause and so is not considered by the optimizer.

Based on these paths, rule-based optimizer will choose to use the index on the “city”
column.

CSD Univ. of Crete Fall 2014

Understanding the RBO (1)

Disadvantages

1. Simplistic set of rules:

“In a complex database, a query can easily involve several tables, each
with several indexes and complex selection conditions and ordering. This
complexity means that there were a lot of options, and the simple set of rules used
by the rule-based optimizer might not differentiate the choices well enough to
marke the best choice”,

Source: Oracle Essentials (4" edition)

CSD Univ. of Crete Fall 2014

Understanding the RBO (111)

2. Weak resolving policy in “tie-break” rule when choosing best strategy

1 logical /0
per join Total
20 logical I/0s
10 logical I/0s
1 logical I/0
per join Total
20,000 logical I/0s

10,000 logical I/0s

"% CSD Univ. of Crete Fall 2014

Understanding the RBO (IV)

If you feel like crying, you may do so right now!

Still, the RBO may be useful in cases such as in recursive operations (i.e. nested
loops within nested loops in execution plans).

That's why it has been de-supported and its use is discouraged but it has not been
removed! ;)

CSD Univ. of Crete Fall 2014

Cost-Based Approach (1)

> Cost-based optimizer depends on statistics for all tables, clusters, and indexes
accessed by query. As such, it’s the user’s respomz'bilz'zy ()/es you/) to generate statistics
and keep them up-to-date.

> Two ways for generating and managing statistics:

0 By using package DBMS_STATS, for example (strongly recommended):
“EXECUTE DBMS_STATS.GATHER SCHEMA STATS(‘schema name’);

Q By issuing the ANALYZE statement, for example (avoid if possible):
**ANALYZE TABLE <table> COMPUTE/ESTIMATE STATISTICS;

<*ANALYZE TABLE <table> COMPUTE/ESTIMATE STATISTICS FOR
TABLE;

“*ANALYZE TABLE <table> COMPUTE/ESTIMATE STATISTICS FOR
ALL INDEXES;

CSD Univ. of Crete Fall 2014

Cost-Based Approach (1)

Do not use the COMPUTE and ESTIMATE clauses of ANALYZE to collect optimizer
statistics. These clauses are supported for backward compatibility. Instead, wuse
the DBMS STATS package, which lets you collect statistics in parallel, collect global
statistics for partitioned objects, and fine tune your statistics collection in other ways. The
cost-based optimizer, which depends upon statistics, will eventually use only statistics
that have been collected by DBMS_STATS. See Oracle Database PL/ISQL Packages and
Tiypes Reference for more information on the DBMS_STATS package.

You must use the ANALYZE statement (vather than DBMS_STATS) for statistics

collection not related to the cost-based optimizer, such as:
> 1o use the VALIDATE or LIST CHAINED ROWS clauses (more on this later).

» 10 collect information on freelist blocks (structure where Oracle maintains a list of
all free available blocks — critical for INSERT performance — more on this later).

https://docs.oracle.com/cd/B28359_01/appdev.111/b28419/d_stats.htm#ARPLS059

Data dictionary view

ALL TABLES
TABLES
TAB_COMMENTS
TAB_HISTOGRAMS
TAB_PARTITIOMNS

TAB__PRIVS™

TAB_COLUMMS
COL_COMMENTS
COL__PRIVS™*

LOBS

VIEWS

INDEXES

IND_ COLUMNS
IND_ PARTITIONS
PART_*
CONS_COLUMMS
COMNSTRAINTS
SEQUEMCES
SYNONY M5

TAB_COL_STATISTICS

TRIGGERS
TRIGGER_COLS

CSD Univ. of Crete

Fall 2014

Cost-Based Approach (111)

Data Dictionary views

Type of information

Information about the object and relational tables
Information about the relational tables

Comments about the table structures

Statistics about the use of tables

Information about the partitions in a partitioned table

Different views detailing all the privileges on a table, the privileges granted by the user, and the
privileges granted to the user

Information about the columns in tables and views
Comments about individual colurmns

Different wiews detailing all the privileges on a column, the privileges granted by the user, and the
privileges granted to the user

Information about large object (LOB) datatype columns
Information about views

Information about the indexes on tables

Information about the columns in each index
Information about each partition in a partitioned index
Different wiews detailing the composition and usage patterns for partitioned tables and indexes
Information about the columns in each constraint
Information about constraints on tables

Information about sequence objects

Information about synonyms

Statistics used by the cost-based analyzer

Information about the triggers on tables

Information about the columns in triggers

7% CSD Univ. of Crete Fall 2014

1)

2)

Understanding the CBO (1)

Functionality

I Parse the statement.

1. Generate a list of all potential execution plans.

1. Calculate (estimate) the cost of each execution plan using internal rules and
exploiting already known parameters (see below) about the relevant tables.

v, Select the plan with the lowest cost.

Parameters

.. Primary Key — Unique Index

1. Non — Unique Index

111 Range evaluation (with bind variables)

v, Histograms

v, System Resource Usage (CPU & I/O — Data Dictionary tables)

vi. Current Stats

‘?@ i1 CSD Univ. of Crete Fall 2014

Understanding the CBO (1)

Data structure Type of statistics

Table Number of rows
Number of blocks
Number of unused blocks
Average available free space per block
Number of chained rows
Average row length

Column Number of distinct values per column
Second-lowest column value
Second-highest column value
Column density factor

Index Depth of index B*-tree structure
Number of leaf blocks
Number of distinct values
Average number of leaf blocks per key
Average number of data blocks per key

(lusterinn fartor

"9 CSD Univ. of Crete Fall 2014

Understanding the CBO (1)

Unfortunately, since the CBO is using heuristics, it generates execution plans that
attempt to execute the query as efficiently as possible but for may reasons it will often
choose a sub-optimal plan! :/

In addition, Oracle 10g comes with Dynamic Sampling support which means that
even with the same parameter settings, an SQL query will not necessarily give the same
plan in two or more different parses (great :P)!!!

Still, it'’s the future and when used properly & correctly it will give the best plans when
considerable effort has been put in place by the user (i.e. collecting statistics etc).

CSD Univ. of Crete Fall 2014

Using ORACLE Optimization Modes

1. When will the RBO be used?
. OPTIMIZER MODE = RULE.
1. =CHOOSE & statistics are not present for all tables in SQL statement.
11, Alter session has been issued.

v, RULE hint is present.

2. When will the CBO be used?
. OPTIMIZER _MODE = CHOOSE.
1. =CHOOSE & statistics are not present for any tables in SQL statement.

1. Alter session set optimizer_mode = (choose, first_rows or all_rows).

v. CHOOSE, ALL_ROWS or FIRST _ROWS hint is present.

Make sure to see: hrzps://blogs.oracle.comloptimizer/entrylwhy was the rule hint

4% CSD Univ. of Crete Fall 2014

Part 111
Access Patbhs of Indexes

CSD Univ. of Crete Fall 2014

Access Path “Criterion”

DEFINITION:

of Unique Values for the Column
Rows In the Table

Selective Columns™ =

SQL DEFINITION:

SELECT COUNT(DISTINCT ColumnName) FROM TableName) /
SELECT COUNT(*) FROM TableName

"Column selectivity is usually referred to, interchangeably, as column cardinality.

CSD Univ. of Crete Fall 2014

B*Tree Indexes (1)

Excellent performance for highly selective columns, thus perfect for OLTPs.
ANOT effective for low selectivity columns.
O Null values “break” performance.

Unique scan is most efficient when equality predicate on unique index is involved.

Range scan can be quite efficient but be careful of the size of the range specified.
Excellent for FIRST _ROWS access, particularly with queries returning a small

number of results.

Index access paths

1 INDEX UNIQUE SCAN/RANGE SCAN
0 INDEX FULL SCAN/FAST FULL SCAN
1 INDEX SKIP SCAN
1 INDEX JOIN SCAN

CSD Univ. of Crete Fall 2014

B*Tree Indexes (11)

(Non-)Unique Index creation:

CREATE [UNIQUE] INDEX table_idx ON table(column_idx_key);

B*~Tree indexes are pairs of (key, rowid).

It can also be specified using INDEX (alias index_name), if not created, or INDEX.
However, the latter form allows the optimizer to freely choose any column as index of the
table or use multiple columns as index if that access path provides the lowest cost.

Providing multiple independent index hints is legal but it is recommended to use

INDEX COMBINE for a combination of multiple indexes since it is more versatile
hint.

INDEX DESC /int uses a descending index.

|\ CSD Univ. of Crete

Branch Blocks

B*Tree (non — unique) Index Structure - Example

UL IR CRS,

Fall 2014

Q.40
41..80
a1..120
200..250
hJ
0..10 41..48 200..209
11..19 49,53 210,220
20..25 54..65 221228
3240 78..80 546, 250
Leaf Blocks
0, rowid 11, rowid 221, rowid 246, rowid
0, rowid 11, rowid 222, rowid 248, rowid
12, rowid 223, rowid 248, rowid
10, rowid
19, rowid . 228, rowid . 250, rowid

CSD Univ. of Crete Fall 2014

B*Tree Index Access Paths (1)

I. INDEX UNIQUE SCAN
0 Equality predicate on unique or primary key column(s).
0 Generally considered most efficient access path.
0 Usually, no more than 3 — 4 buffer gets.
Qlf table is “small”, FULL TABLE SCAN could be cheaper.

II. INDEX RANGE SCAN

0 Equality predicate on non-unique index, incompletely specified unique index, or
range predicate on unique index.

0 Be careful of the size of the range:

“* Large ranges could amount to huge # of buffer gets.
“*If so, consider a FAST FULL INDEX SCAN or FULL TABLE SCAN.

CSD Univ. of Crete Fall 2014

B*Tree Index Access Paths (1)

111. INDEX FULL SCAN

0 Will scan entire index by walking tree in index order.
O Provides ordered output, can be used to avoid sorts for ORDER BY clauses that

specify index column order.

QSlower than INDEX FAST FULL SCAN if there is no ORDER BY requirement.

IV. INDEX FAST FULL SCAN
QO Attempt to read index, in disk block order, and discard root and branch blocks.

QAttempt a DB file scattered read’, reading db_file_ multiblock_read _count blocks
at a time.

0 Equivalent to FULL TABLE SCAN for an index.

O Fastest way to read entire contents of an index.

“In case of a “cold” buffer cache Oracle may choose to read ahead and thus opt to reading multiple physically
disk blocks adjacent to the cache (aka ‘db file scattered read).

CSD Univ. of Crete Fall 2014

B*Tree Index Access Path (I11)

V. INDEX SKIP SCAN
QAllows some benefits of multi-column index even without specifying the leading
edge.
0 Oracle will “skip scan” starting with root block skipping through B*-tree
structure masking sections of tree that cannot have applicable data.

0 Could be costly, depending on size of index, distribution of data and bind

variable values.

VI. INDEX JOIN SCAN
QINDEX JOIN SCAN = HASH JOIN (more on this later) followed by INDEX
RANGE + INDEX FAST FULL SCAN in the explain plan generation

f?@ CSD Univ. of Crete

INDEX UNIQUE SCAN

Branch Blocks

SELECT * FROM products WHERE prod_id=19;

B*~Tree Index Access Path — Examples (1)

0..40
4180
B1..120
200..250 1
0..10 f—‘—} 41 48 200..209
11..19=— 49,53 210,220
20..25 5465 221..228
3240 78..80 246..250
Leaf Blocks ‘
O, ronavid =11, rowid 221 rowid 248, rowid
1. rowvid 12 rowid 222 rowid 247 rowid
=13, rowid 223 rowid 2458 rowid
10, rowid =
| '9 r-:n'-.r|d| EEE!- rowid E‘ED rowid

U U

Fall 2014

f?@ CSD Univ. of Crete

B*~Tree Index Access Path — Examples (Ila)

Branch Blocks

INDEX RANGE SCAN

Leaf Blocks

0.10 —
11..2

v

_|

1.2 =
32..40 W
|

41,48
49..53
94..65

78..80

v v
O, rowid =11, rowid
0, rowid =11, rowid
=12, rowid

10, rowid '_ .
20 rowid

20, rowid

SELECT * FROM employees WHERE department_id = 20 AND salary > 1000;

0..40
41..80
81..120
éi:i-n__zs.o T
200,209
210..220
221..228
246..250
221, . rowid
222 rowid
223, rowid

228 ronwid

. U U T

.

246, rowid
248, rowid
248 rowid

250 rowid

Fall 2014

'@fz& CSD Univ. of Crete

B*~Tree Index Access Path — Examples (11b)

INDEX RANGE SCAN DESCENDING
SELECT * FROM employees
WHERE department_id < 20
ORDER BY department_id DESC;

No need for illustration here.

You can figure it out yourself considering the previous example! ;)

Fall 2014

|\ CSD Univ. of Crete
<

B*~Tree Index Access Path — Examples (I11)

SELECT dpt_id, dpt_name FROM departments ORDER BY dpt_id;

Branch Blocks

Leaf Blocks

INDEX FULL SCAN

41..458
49..53
54..65

78..80

= :I-ﬁ.rowld

Y

0..10

11..19 -

20..25

32..40

v

—F 0, rowid 171, rowid
—F 1.rowid 12, rowid
= 13, rowid

-‘II é-, rovwid

0..40

41..80

21..120

200..250 1
200..209
210,220
221,228
246,250

227, rowid

222, rowid

223, rowid

228 ronwid

S AU U U

.

246, rowid
247 rowid
248, rowid

é.-":'lrlj-,r-:rwid

.

Fall 2014

CSD Univ. of Crete Fall 2014

B*~Tree Index Access Path — Examples (IVa)

INDEX FAST FULL SCAN
SELECT I*+ INDEX_FFS(departments dept_id_pk) */ COUNT(*)
FROM departments;

The DB uses multiblock 1/O o read the root block, branch & leaf blocks by ignoring
the former two (root block & branch blocks) and reading directly the latter ones (the
leaf blocks). In essence, the index itself is used as the table’

Do note, that unlike an IFS, an IFFS cannot eliminate a sort operation because it does

not read the index in order.

Also, the hint IS mandatory for an IFFS to take place!

w il CSD Univ. of Crete Fall 2014

B*~Tree Index Access Path — Examples (IVb)

Database Buffer Database Buffer
Cache Cache
SGA Buffaer Cache SGA Bulter Cache
— -

©

D

—— e N

DB File DB File
Sequential Read Scattered Read

CSD Univ. of Crete Fall 2014

B*~Tree Index Access Path — Examples (Va)

INDEX SKIP SCAN
I, CREATE INDEX customers_idx ON customers (gender, email) ;

11, SELECT * FROM customers C
WHERE C.email = '"Abbey@company.example.com';

If below conditions are both met then an ISS occurs:
< The leading column (i.e. gender) of the composite index is not part of the predicate

condition.
< The leading column of the composite index has low selectivity but the following key

of the composite index has high selectivity.

‘Composite key index

CSD Univ. of Crete Fall 2014

B*~Tree Index Access Path — Examples (Vb)

Transformed query

(SELECT * FROM customers C

WHERE C.gender = 'F'

AND C.email = '"Abbey@company.com')
UNION ALL
(SELECT * FROM customers C

WHERE C.gender = 'M'

AND C.email = '"Abbey@company.com')

CSD Univ. of Crete Fall 2014

B*~Tree Index Access Path — Examples (V)

INDEX JOIN SCAN
SELECT I*+ INDEX_JOIN(employees) */ last_name, email
FROM employees E
WHERE E.last name like 'A% '

An index join involves scanning multiple indexes, and then using a hash join on the
ROWID:s obtained from these scans to return the rows. Table access is always avoided.
For example, the process for joining two indexes on a single table is as follows:

1. Scan the first index to retrieve ROWIDs:.
2. Scan the second index to retrieve ROWID:.
5. Perform a hash join by ROWID to obtain the rows.

CSD Univ. of Crete Fall 2014

Bitmap Indexes (1)

Most often implemented in a Data Warehouse environment (reporting and data
analysis aka OLAP) by using BITMAP INDEXES.

Useful for columns which:

0 have relatively low cardinality where B*-Tree indexes will fail to provide any
benefit.

0 Contain null values (does not affect performance).

Qare often specified along with other columns in WHERE clauses of SQL
statements, optimizer will BITMAP AND the results of many single column
bitmap indexes together.

Most efficient when doing COUNT(*) operations, where optimizer can utilize the
BITMAP CONVERSION COUNT access path.

Index Access Paths
QBITMAP INDEX SINGLE VALUE
QBITMAP INDEX RANGE SCAN/FULL SCAN
QBITMAP AND/OR/NOT
ABITMAP CONVERSION COUNT/TO ROWIDs
QBITMAP MERGE

87 CSD Univ. of Crete Fall 2014

Bitmap Indexes (11)

Bitmap Index creation:

CREATE BITMAP INDEX table idx ON table(column_idx_key);

Bitmap Join Index creation:

CREATE BITMAP INDEX table idx ON tablel(column_idx_key)
FROM tablel t1, table2 t2
WHERE ti1.id [=, [!=|<>], <, <=, >, >=] t2.id;

A bitmap index is a quadruple of (key, low-rowid, high-rowid, series of 0 & 1)

L 7% CSD Univ. of Crete

Bitmap Index (Logical) Structure — Example

PARTS table

partno

color

size weight

Bitmap index on 'color’'

color= 'BLUE' 000100...
color= 'RED' 011010 ...
color= 'GREEN' 2 0000 1 ...

Partnumber 1 2 3 4 5 6

Fall 2014

), i1 CSD Univ. of Crete

Fall 2014

Bitmap Join Index — Example (1)

Indexed table is employess —

OH

FROM
WHERE

Index key is jobs.job title
CREATE BITMAF INDEX employees bm idx /_|
semployees (jobs.job title)s——

enployees, jobs
employees.job id = jobs.job id

employees
employee_id last_name | job_id manager_id | hire_date salary department_id
203 marvis hr_rep 101 O07—Jun-84 6500 40
204 baer pr_rep 101 07—=Jun-94 10000 70
205 higgins ac_rep 101 07=Jun-94 12004 110
206 gletz ac_account | 205 O7—Jun—-84 B300 110

jobs

job_id job_title min_salary | max_salary

MK_REP | Marketing Representative 4000 8000

HR_REF | Human Hesources Hepresentative | 4000 2000

FR_REF | Public Relations Reprasentative 4500 10500

SA_REP | Sales Representative 6000 12008

In a data warehouse, the join
condition is an equijoin
between the primary key
columns of the dimension
tables and the foreign key
columns in the fact table.

Bitmap join indexes are
sometimes — much — more
efficient in storage than

materialized join views, an
alternative for materializing
joins in advance.

"% CSD Univ. of Crete Fall 2014

Bitmap Join Index — Example (11)

In reality, Oracle DB uses a B-tree index structure to store bitmaps for each indexed key.
For example, if jobs.job_title is the key column of a bitmap index, then the index data
is stored in one B-tree. The individual bitmaps are stored in the leaf blocks.

A (conceptual) Bitmap Index leaf block:

Shipping Clerk, ARAPzRAAFARAABSABQ,ARLFz
Shipping Clerk, AAAPzRAAFAAAABSABa, AAAPZzRAAFAAANBSABL, 010010
Stock Clerk, AAAPzRAAFAAAABSANa, AAAPzRAAFAAALNBSAAC, 1001001100
Stock Clerk, AAAPzRAAFAAAABSAAG, AAAPZzRAAFAAANBSAAL, 0101001001

Stock Clerk,LLLFPZ

CSD Univ. of Crete Fall 2014

Bitmap Index Access Paths

I. BITMAP INDEX SINGLE VALUE (BISV)
0 Used to satisfy equality predicate.

II. BITMAP INDEX RANGE SCAN (BIRS)
0 Used to satisfy range operations such as BETWEEN.
O Unlike range scans on B*-Tree, BIRS is very efficient even for very large ranges.

I1I. BITMAP INDEX FULL SCAN (BIFS)
0 Used to satisfy NOT predicate.
0 Scan of entire index to identify rows NOT matching.

IV. BITMAP AND, OR, NOT
0 Used for bitwise combinations of multiple bitmap indexes.
0 A BITMAP MERGE takes place between conditions before bitwise operations.

CSD Univ. of Crete Fall 2014

Bitmap Conversions

V. BITMAP CONVERSION COUNT (BITCOC)

0 Used to evaluate COUNT(™) operation for queries whose where clause predicates
only specify columns having bitmap indexes.

Q Very fast & very efficient.

VI. BITMAP CONVERSION TO ROWIDS (BITCOROW)

0 Used in cases where row source produced by bitmap index operations needs to be
joined to other row sources, i.e., join to another table, group by operation, to satisfy

a TABLE ACCESS BY ROWID operation.
O More resource intensive than BITMAP CONVERSION COUNT.

0 Can be quite expensive if number of ROWIDs is large.

CSD Univ. of Crete Fall 2014

Bitmap Index Access Path — Examples

BITMAP INDEX SINGLE VALUE
SELECT * FROM customers C WHERE C.maritalStatus = "Widowed*;

BITMAP INDEX RANGE SCAN (involves BITCOROW)
SELECT C.fname, C.lname FROM customers C WHERE C.yearOfBirth < 1918;

BITMAP AND
(with BITMAP MERGE for intermediate BISV, BIRS)

SELECT C.fname, C.lname FROM customers WHERE C.gender = 'F' AND
C.yearOfBirth < 1918;

BITMAP CONVERSION COUNT (involves BISYV)
SELECT COUNT (*) FROM sales S, customers C WHERE C.cid = S.cid AND
C.city = 'Smithville';

CSD Univ. of Crete Fall 2014

Other Miscellaneous Access Paths (1)

I. UNION, UNION [ALL], MINUS, INTERSECTION

0 Directly correspond to the SQL set operators.
QUNION ALL is the cheapest of all since no SORT (UNIQUE) is required.

II. TABLE FULL SCAN
0 Reads all blocks allocated to table.
0 Can be most efficient access path for “small” tables.
0 Can cause significant physical I/O, especially on larger tables.
** Consider ALTER TABLE table name CACHE (more on this later).
* Consider putting table into KEEP buffer pool (more on this later).

CSD Univ. of Crete Fall 2014

Other Miscellaneous Access Paths (11)

I1I. TABLE ACCESS BY INDEX ROWID [BATCHED]

0 Generally used in conjunction with an index access path, where ROWID has
been identified, but Oracle needs access to a column not in the index.

0 Consider whether adding a column to an existing index will provide substantial

benefit.
0 Cost is directly proportional to number of ROWID lookups that are required.

IvV. TABLE ACCESS HASH (TAH)
O 1deal in situations where equality predicates prevail.
0 More efficient than indexed access (queried more, modified less).

0 Requires creation of hash cluster (same as index cluster but uses a hash) and they
impose administrative/maintenance overhead (tables require frequent FTS and
truncating).

Fall 2014

f? i1 CSD Univ. of Crete
<.

Other Miscellaneous Access Paths (111)

V. TABLE ACCESS CLUSTER (TAC)

O Improves 1/Os & access times on joins of clustered tables.

0 Avoids data redundancy.
0 Requires creation of indexed cluster and they impose administrative/maintenance

overhead (same as in HAC).

Fall 2014

CSD Univ. of Crete

Index/Hash Cluster (1)

A table cluster is a group of tables that share common columns and store related data
in the same blocks. When tables are clustered, a single data block can contain rows
from multiple tables. For example, a block can store rows from both
the employees and departments tables rather than from only a single table.

An index cluster is a table cluster that uses an index to locate data. The cluster index
is a B-tree index on the cluster key. A cluster scan retrieves all rows that have the same

cluster key value from a table stored in an indexed cluster.

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists. In a hash cluster, the data is the index. The
database uses a hash scan to locate rows in a hash cluster based on a hash value.

CSD Univ. of Crete Fall 2014

Index/Hash Cluster (I1)

Index cluster creation:

CREATE CLUSTER emp depts cluster
(dept_id NUMBER(4)) SIZE 512;

CREATE INDEX emp depts cluster_ idx
ON CLUSTER emp depts cluster;

Hash cluster creation:

CREATE CLUSTER emp depts cluster
(dept _id NUMBER(4)) SIZE 8192 HASHKEYS 100;

87 CSD Univ. of Crete Fall 2014

Index/Hash Cluster Access Paths — Example (1)

Consider these tables . ..

CREATE TABLE emp2 CLUSTER emp depts cluster (dept id)
AS SELECT * FROM employees;

CREATE TABLE depts2 CLUSTER emp_depts cluster (dept id)
AS SELECT * FROM departments;

... and this query.

SELECT * FROM emp2 WHERE dept_id = 30;

CSD Univ. of Crete Fall 2014

Index/Hash Cluster Access Paths — Example (11)

Table Access Cluster (TAC) scenario:

To perform the scan, Oracle DB first obtains the ROWID of the row describing

department 30 by scanning the cluster index (YUS). Then, Oracle DB locates the rows
in employees using this ROWID (TAC)

Table Access Hash (TAH) scenario:

To perform a hash scan, Oracle DB first obtains the hash value by applying a hash

function to the key value 30 and then uses this hash value to scan the data blocks and
retrieve the rows (TAH).

CSD Univ. of Crete

Fall 2014

Structure of Clustered vs Unclustered Tables — Example

departrment_id

20
20
40
T
110

110

department_id | cl-aparlmsnr_narnal locaton_id

aemployeeas departmeants_cluster employeas
emploves id last_namea
20 departmamni_namea location_id 201 Hartstain
] 202 Fay
marketing 1800 203 Mavris
204 Baer
_ 205 Higains
Cluster Key is employee_id last_name | 206 C—-iggm
e
department_id 201 Hartstein
202 Fay
' departments
110 departmeant_namea location_id v
accounting 1700 ',
| 20
" 110
employaea id last _nams |
205 Higgins .
206 Gietz oL ~.

mfﬂf#ﬂ__

-
-
-

1 - -
. .
-

Marketing
Accountimg

- I ‘-" ! b} 3
Tables Table Table

\.—-"—l—__

__-—'-"""'-'-'-'-’J

1800
1700

CSD Univ. of Crete Fall 2014

Access Paths of Join Methods

1. Nested Loops
0 Generally geared towards FIRST _ROWS access.
O ldeal for B*-Tree index driven access, small row sources.
0 When this is the case, always best for first row response time.

0 Can get very costly very quickly if no index path exists or index path is inefficient.
2. Sort Merge

O Generally geared towards ALL_ROWS access.

QO Can be useful for join nzg small to medium size row sources, particularly if viable
index path is not available or if Cartesian join is desired.

0 Be wary of sort_area_size, if it’s too small, sorts will write to disk, performance will
plummet.

3. Hash Join
0 Most controversial (and misunderstood) join method.
0 Can be very powerful, when applied correctly.
O Useful for joining small to medium sized to a large row source.

QCan be senmsitive to instance kpdmmeters such as hash_area_size,
hash multiblock io count, db_block size.

» %1 CSD Univ. of Crete Fall 2014

Part [V
Tuning Tools

CSD Univ. of Crete Fall 2014

uning Tools

® A significant portion of SQL that performs poorly in production was
originally crafted against empty or nearly empty tables

® Make sure you establish a reasonable sub-set of production data that is
used during development and tuning of SQL

® |n order to monitor execution plans and tune queries, Oracle 9i (and
higher) provides the following three tools:
eExplain Plan command
oTkProf trace file formatter
¢The SQLTrace (or AutoTrace) facility

® These tools, mainly, allow the user to the verify which access paths are
considered by an execution plan

+Some of them provide, also, information about the number of buffers
used, physical reads from buffers, rows returned from each step, etc

CSD Univ. of Crete Fall 2014

Explain Plan

® The EXPLAIN PLAN reveals the execution plan for an SQL statement

+The execution plan reveals the exact sequence of steps that the
Oracle optimizer has chosen to employ to process the SQL

® The execution plan is stored in an Oracle table called the PLAN_TABLE

¢ Suitably formatted queries can be used to extract the execution plan
from the PLAN_TABLE

oCreate PLAN_TABLE command:
@$ORACLE_HOME/rdbms/admin/utlxplan.sql

e¢lIssue explain plan command:

Explain plan set statement_id = ‘MJB’ for
select * from dual;

eIssue query to retrieve execution plan:

@$ORACLE_HOME/rdbms/admin/utlxpls.sql
® The more heavily indented an access path is, the earlier it is executed

+|f two steps are indented at the same level, the uppermost statement
IS executed first

+3Some access paths are “joined” — such as an index access that is
followed by a table lookup

CSD Univ. of Crete

Fall 2014

Plan_Table

create table PLAN_TABLE search_columns number,

(id humeric,
statement_id varchar2(30), parent_id humeric,
timestamp date, position numeric,
remarks varchar2(80), cost humeric,
operation varchar2(30), cardinality humeric,
options varchar2(30), bytes humeric,
object_node varchar2(128), other_tag varchar2(255),
object_owner varchar2(30), partition_start varchar2(255),
object_name varchar2(30), partition_stop varchar2(255),
object_instance humeric, partition_id humeric,
object_type varchar2(30), other Tong,
optimizer varchar2(255), distribution varchar2(30)

ﬁ;} CSD Univ. of Crete Fall 2014

Explain Plan

® Sample Query: Explain plan set statement_id = ‘MJB’ for
select doc_title
from documents doc, page_collections pc
where pc.pc_issue_date = ‘01-JAN-2002’
and pc.pc_1d = doc.pc_1d;

® Sample Explain plan output

Operation	Object_Name	Rows	Bytes	cCardinality	Pstart	Pstop
SELECT STATEMENT		61K	3M	328		
NESTED LOOPS		61K	3M	328		
TABLE ACCESS BY INDEX RO	PAGE_COLL	834	oK	78		
INDEX RANGE SCAN	PC_PC2_UK	834		6		
INDEX RANGE SCAN	DOC_DOC2_	86M	4G	3		

f? i1 CSD Univ. of Crete

Viewing the Execution Plan of a Query in Oracle

SOL= EXPLAIN PLAN
2 SET STATEMENT_ID = "PB'
3 FOR SELECT b.branchMo, b.city, propertyMo
4 FROM Branch b, PropertyForRent p
5% WHERE b.branchMo = p.branchMNo
6 ORDER BY b.city,

Explained.

SQL= SELECT ID||* "||IPARENT_ID|® ‘'JLPAD{" *, ZYLEVEL — 1))||QPERATION||" "||OPTIONS]|
2 ' OBJECT_NMAME "Query Plan"
3 FROM Flan_Table
4 START WITH 1D = 0 AND STATEMENT_ID = 'PB°
5 COMKNECT BY PRIOR ID = PARENT_ID AMD STATEMENT_ID = 'PB";

CGuery Plan
0 SELECT STATEMENT
SORT ORDER BY
MESTED LOOPS
TABLE ACCESS FULL PROPERTYFORREMNT
TABLE ACCESS BY INDEX ROWID BRAMCH
INDEX UNIQUE SCAN SYS_CO00T455

EN NS =

rows salacted.

Fall 2014

Plan_Table — an SQL 1able

Statement_id — plan identifier

ld — a number assigned to each step

Parent_id — id of next step which operates on output of this step
Operation — eg internal operation select, insert etc

Options — name of internal operation

CSD Univ. of Crete Fall 2014

A more complex EXPLAIN PLAN

S aracle SOL*Fluas
Fil= Edik S=arch CookEion= He=l
NUERY FLAaH

=ELELCT =TraTEHMEHT
=0ORT AaEEREGGATE
THREBL E RARCCESS F L L DEFPFT
HE=TED L=
HESTED L=
HESTED Lok =s
THREBELE RACCESS FLL L S=S0DA SHIFHMFMEHRHNT DETHAIL
THREBLE ARcCCESS B %" I HDxE X ROWT D =0D A
I HDxE M LIFHI QU E SR S0DeA T H
THREBLE ACCESS B % I HDE X HROWIT D S0DAa SHIFPFHFMEHNTS
~EHDxE X HHHICQUE =SCcChAaHd SHIFHMEHRHT PR
THREBEBL E ARCCESS B %" I HDxEM ROWIT D BEEUERAGE DISTRIEBUTOR
I HDE X HIFHI U E SR DISTRIEBUTOR . TD IFHE
TrEBELE AcCCoCE S S | = X HDxE RO IY D» =D SEHIFPFHEHRT=
I HDE X NI QUE SR SHIFPFHMEHNHT P H
HESTED L=
HE=TED L=
HESTED L=
HESTED L=
TrAaEBLE AacCCE=SS FLULL ==0Drm SHIFHMEHT_ _DETOAIL
THREBLE ARcCCESS B %" I HDxE X ROWT D =0D A
I HDE X HFHIQUE SR S0DfA_ T HE
TrAEBELE AaCcCCESS B % XIHDE RO Y D SoDpnma EHIFPFHMEHHTS
~EHDxE X HHHICQUE =SCcChAaHd SHIFHMEHRHT PR
THREBEBL E ARCCESS B %" I HDxEM ROWIT D BEEUERAGE DISTRIEBUTOR
TITHDE HHIOgUE SChAaHd DISTRIBUTOR I HHE
THREBLE ACCESS | = I HDxE HRIOWFY D» =E0DFA SHIFPFHFMEHRHTS
I HDE X NI QUE SR SHIFPFHMEHNHT P H
==S0ORT OoORDER | =
THREBL E ARCCESS F L L DDEFPFT
HESTED L=
HESTED L=
HESTED Lok =
THREBLE RACCESS FLL L S=S0DA SHIFPFHMMEHHT DETHAIL
THREBLE ARCCESS B %" I HDEM ROWT D S=0DnfA
X HDxE HFHI pUE = SE0Dfaa R
THREBLE ACCESS B % I HDE HRIOWTI D» S0DrAa SHIFPFHMEHNTS
~EHHDE X HHHIOQUE SR S HIFFMEMHT_ FFH
TrAaEBELE AacCCE=SS [S IHDE HRiAiFTY > BEUEFHRAGCGE DIS=TRIBUTOR
I HDxE LFHHIE UE S DISTRIBUTOR S TD IR
THREBLE ACCESS | = I HDE X HRIOWI D S=S0DFA SHIFPFHFMEHRMHT S
I HHDE IHFHIIIE =CAaHd SHIFKMEHHT FE
HESTED L=
HESTED L=

HE=S=TED L=
I T W e

"9 CSD Univ. of Crete Fall 2014

TkProf

® More details provided than Autotrace or Explain Plan

® For more useful information:
alter session set timed_statistics = true;

® To enable tracing:
alter session set sql_trace = true;

® Trace file written to user_dump_dest

® Use:
tkprof <trace_file> <output_file>

CSD Univ. of Crete

kProf Sample Output

P Yl s Yl Tl Y v . D Yl T Yl T Y s Yl Y Yl .
’ ARANRANR AR AN AN AN LS AP L A AP Ay A 4

Toale ala ale oo afo ol alo ol alo ol alo afe ale afo ale alo afa oo afa
WHW W WHWR KWW ZARRAY

I o o T o st o
AR IR AR AN A S A S A A A S S A i A S T TP 1Y

0

s
”n

Sk

ala ot
RANRAY

S

ala Wla
RAYRAY

i
3

e Wla Wt
"o N

<
oL
<
oL
<
oL
<
v
<
?

v
<
oL
<
oL
3

v
3

oL
o

o

3

o

3

<
v
<
oL
*”«
v
<
oL
<
<
o

3

o

<
oL
*”
oL
*”

count = number of times OCI procedure was executed

cpu = cpu time 1n seconds executing

elapsed = elapsed time in seconds executing

disk = number of physical reads of buffers from disk

query = number of buffers gotten for consistent read

current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call

e Yo e e T e e YoM e Y de

e ala ala als als als als oo Wls . ala ala Wls ! .
AR A SR S A A A A A A A A A A A R R R IR A A A A e A e A e A e A i A e i A i T i L i T i A A e R A R A IR IR AR AN A A A A e e A S L i A i L i L i L i L i L A A A R AR AR AR A S A G A S A i Ay A6 w N

WHHRWATRWRIRIE

s
”
s
”

<some text deleted>
select doc_title
from documents doc,
page_collections pc
where pc.pc_issue_date = '01-JAN-2002'
and pc.pc_id = doc.pc_id

call count cpu elapsed disk query current rows
Parse 1 0.00 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1415 0.07 0.09 0 1853 0 21206

total 1417 0.07 0.10 0 1853 0 21206

Fall 2014

i1 CSD Univ. of Crete

Fall 2014

kProf Sample Output

Row Source Operation

NESTED LOOPS

TABLE ACCESS BY INDEX ROWID PAGE_COLLECTIONS
INDEX RANGE SCAN (object id 22993)

INDEX RANGE SCAN (object 1id 22873)

Execution Plan
SELECT STATEMENT GOAL: CHOOSE
NESTED LOOPS
TABLE ACCESS
INDEX
INDEX

GOAL: ANALYZED (BY INDEX ROWID) OF 'PAGE_COLLECTIONS'
GOAL: ANALYZED (RANGE SCAN) OF 'PC_PC2_UK' (UNIQUE)
GOAL: ANALYZED (RANGE SCAN) OF 'DOC_DOC2_UK' (UNIQUE)

CSD Univ. of Crete Fall 2014

SQL_TRACE and tkprof

® ALTER SESSION SET SQL_TRACE TRUE causes a trace of SQL
execution to be generated

® The TKPROF utility formats the resulting output

e Tkprof output contains breakdown of execution statistics execution plan
and rows returned for each step

¢ These stats are not available from any other source

e Tkprof is the most powerful tool, but requires a significant learning
curve

Fall 2014

L "3 CSD Univ. of Crete

Tkprof output
TePROF-TwinoScenarie___________

call count cpu elapsed disk qUery Ccurrent rows
Parze 1 0.01 0.01 0 0 0 0
Execute 1 0. 00 0. 00 0 0 0 0
Fetch 57 0.22 0.22 0 20 & 549
total L= 0.23 0.23 0 20 & 549

Mizses in library cache during parse: 1
Optimi=zer goal: CHOOSE
Parsing user id: 5 [3¥3TEM)

0 RJELECT STATEMENT FOaL: CHOOSE
349 MEEGE JOIN
2l13 AO0RT [JOIN)
2l13 TABELE ACCESS (FULL) 0OF 'TEP EXAMPLEZ'

2 7% CSD Univ. of Crete Fall 2014

Part V:
Practical Optimization/Tuning

CSD Univ. of Crete Fall 2014

Query Tuning — What to do?

® Problematic SQL statements usually have:
¢ EXxcessive number of buffer gets
¢ EXxcessive number of physical reads
® So, if we consume less resources, we save time
¢Reduce buffer gets (more efficient access paths)
e Avoid (most) full table scans
e Check selectivity of index access paths
e Stay away from Nested Loop joins on large row sources
¢Avoid physical I/0O
e Avoid (most) full table scans

e Try to avoid sorts that write to disk, such as order by, group by,
merge joins (set adequate sort_area_size)

e Try to avoid hash joins writing to disk (hash_area_size)

CSD Univ. of Crete Fall 2014

Optimize Joins

® Pick the best join method
+Nested loops joins are best for indexed joins of subsets
+Hash joins are usually the best choice for “big” joins
+Hash Join can only be used with equality
+Merge joins work on inequality
«If all index columns are in the where clause a merge join will be faster
® Pick the best join order
+Pick the best “driving” table
+Eliminate rows as early as possible in the join order
® Optimize “special” joins when appropriate
#STAR joins for data-warehousing applications
+STAR_TRANSFORMATION if you have bitmap indexes
¢ANTI-JOIN methods for NOT IN sub-queries
+SEMI-JOIN methods for EXISTS sub-queries

CSD Univ. of Crete Fall 2014

Choosing a Driving Table

® The driving table is the table that is first used by Oracle in processing the
query
+Choosing the correct driving table is critical

® Driving table should be the table that returns the smallest number of
rows and do the smallest number of buffer gets

+Driving table should not necessarily be the table with the smallest
number of rows

® In the case of cost-based optimization, the driving table is first after the
FROM clause. Thus, place smallest table first after FROM, and list tables
from smallest to largest

¢ The table order still makes a difference in execution time, even when
using the cost-based optimizer

CSD Univ. of Crete

Choosing a Driving Table

® Example:
select doc_title
from documents doc, page_collections pc
where pc.pc_issue_date = '"01-JAN-2002°
and pc.pc_id = doc.pc_1d

® \Which table should be driving?
¢DOCUMENTS has 110+ million rows

e No filtering predicates in where clause, all rows will be in row
source

¢PAGE_COLLECTIONS has 1.4+ million rows
e PC_ISSUE_DATE predicate will filter down to 30 rows

Fall 2014

CSD Univ. of Crete Fall 2014

Using Hints

® Hints are used to convey your tuning suggestions to the optimizer
+Misspelled or malformed hints are quietly ignored

® Commonly used hints include:
¢ORDERED
+INDEX(table alias index_name)
+FULL(table_alias)
¢INDEX_FFS(table_alias index_name)
+INDEX_ COMBINE(table alias index _namel .. index_name _n)
oAnd_EQUAL(table alias index_namel index_ name?Z.. Index_nameb)
#USE_NL(table_alias)
¢USE_MERGE(table alias)
¢USE HASH(table alias)

e Hints should be specified as: /*+ hAint */
+Hints should immediately follow the ‘SELECT" keyword

¢ The space following the ‘+’can be significant inside of PL/SQL, due to
bug in Oracle parser (see bug #697121)

® Driving table will never have a join method hint, since there is no row
source to join it to

CSD Univ. of Crete Fall 2014

Simple Example of Tuning with Hints

® Initial SQL

select doc_1d, doc_title, pc_issue_date
from documents doc, page_collections pc
where doc.pc_1d = pc.pc_1d and doc.doc_i1d = 9572422;

® |nitial Execution Plan
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2575 Card=50 Bytes=3600)
1 0 MERGE JOIN (Cost=2575 Card=50 Bytes=3600)
1 TABLE ACCESS (BY INDEX ROWID) OF 'PAGE_COLLECTIONS' (Cost=2571
Card=1442348)

3 2 INDEX (FULL SCAN) OF 'PC_PK' (UNIQUE) (Cost=3084 card=1442348)

4 1 SORT (JOIN) (Cost=3 Card=1 Bytes=60)

5 4 TABLE ACCESS (BY INDEX ROWID) OF 'DOCUMENTS' (Cost=1l Card=1
Bytes=60)

6 5 INDEX (UNIQUE SCAN) OF 'DOC_PK' (UNIQUE) (Cost=2 Card=1)

® [nitial number of buffer gets: 444

f’;z, CSD Univ. of Crete Fall 2014

Simple Example of Tuning with Hints

® First Tuning attempt
select /*+ FULL(pc)*/ doc_1d, doc_title, pc_issue_date
from documents doc, page_collections pc
where doc.pc_1d = pc.pc_1d and doc.doc_i1d = 9572422;

® Tuned Execution Plan
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3281 Card=50 Bytes=3600)
1 0O HASH JOIN (Cost=3281 Card=50 Bytes=3600)
2

1 TABLE ACCESS (FULL) OF 'PAGE_COLLECTIONS' (Cost=1675 Card=1442348
Bytes=17308176)
3 1 TABLE ACCESS (BY INDEX ROWID) OF 'DOCUMENTS' (Cost=1 Card=1
Bytes=60)
4 3 INDEX (UNIQUE SCAN) OF 'DOC_PK' (UNIQUE) (Cost=2 Card=1l)

® Number of buffer gets: 364

f’;z, CSD Univ. of Crete Fall 2014

Simple Example of Tuning with Hints

® Second Tuning attempt

select /*+ ORDERED USE_NL(pc)*/ doc_id, doc_title,
pc_1ssue_date

from documents doc, page_collections pc

where doc.pc_1d = pc.pc_1d and doc.doc_i1d = 9572422;

® Second Tuned Execution Plan
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=50 Bytes=3600)
1 O NESTED LOOPS (Cost=2 Card=50 Bytes=3600)
1 TABLE ACCESS (BY INDEX ROWID) OF 'DOCUMENTS' (Cost=1 Card=1
Bytes=60)

3 2 INDEX (UNIQUE SCAN) OF 'DOC_PK' (UNIQUE) (Cost=2 Card=2)

4 1 TABLE ACCESS (BY INDEX ROWID) OF 'PAGE_COLLECTIONS' (Cost=1
Card=1442348)

5 4 INDEX (UNIQUE SCAN) OF 'PC_PK' (UNIQUE) (Cost=1l Card=1442348)

® Number of buffer gets: 7

%3 CSD Univ. of Crete Fall 2014

Considerations and Cautions

® Fundamental changes to the query structure allow the optimizer different
options
® Using select in the select list allowed for a GROUP BY result without a

GROUP BY operation, thus avoiding costly BITMAP CONVERSION TO
ROWIDS

® Other places where re-writing query can have benefits:
+Rewrite sub-select as join, allows optimizer more options
econsider EXISTS/NOT EXISTS and IN/NOT IN operations
® Adding hints to a large number of your SQL statements?
¢ Take a step back, consider whether you need to tune your CBO params

+Hand tuning a majority of SQL in an application will complicate code,
and add a lot of time to development effort

#As new access paths are introduced in Oracle, statements that use
hints will not utilize them, and continue using the old access paths

® When individual statement tuning is necessary, a solid understanding of
access paths, join order and join methods is the key to success

CSD Univ. of Crete Fall 2014

Considerations and Cautions

® Use hints sparingly
+If you have the opportunity, tune via CBO parameters first
+Don’t over-specify hints
+SQL Tuning Is as important as ever:

e Need to understand the access paths, join orders, and join
methods, even if only to evaluate what the CBO is doing

e CBO gets better with each release, but it will never know as much
about the application and data model as a well-trained developer

CSD Univ. of Crete Fall 2014

Myths

® SQL tuned for RBO will run well in the CBO

® SQL developers do not need to be retrained to write SQL for the CBO

® 10g, 11g & 12c do not support the RBO

® You can’t run RULE and COST together

® Oracle says the CBO is unreliable and you should use RULE

® Hints can’t be used in RULE

"9 CSD Univ. of Crete

Top 9 Oracle SQL Tuning

Design and develop with performance in mind
Index wisely

Reduce parsing

Take advantage of Cost Based Optimizer
Avoid accidental table scans

Optimize necessary table scans

Optimize joins

Use array processing

Consider PL/SQL for “tricky” SQL

© © N o O bh bR

IpS

Fall 2014

CSD Univ. of Crete Fall 2014

Design and Develop with Performance in Mind

® Explicitly identify performance targets

® Focus on critical transactions

¢ Test the SQL for these transactions against simulations of
production data

® Measure performance as early as possible

® Consider prototyping critical portions of the applications

® Consider de-normalization and other performance by design features
early on

CSD Univ. of Crete Fall 2014

De-Normalization

® |f normalizing your OLTP database forces you to create queries with
many multiple joins (4 or more)

® De-normalization is the process of selectively taking normalized
tables and re-combining the data in them in order to reduce the
number of joins needed them to produce the necessary query results

® Sometimes the addition of a single column of redundant data to a
table from another table can reduce a 4-way join into a 2-way join,
significantly boosting performance by reducing the time it takes to
perform the join

CSD Univ. of Crete

De-Normalization

® Example: We have the following schema:
Similarities:

userl

user2

similarity

Averages:

user

average

Fall 2014

® Similarities table contains the similarity measure for all the possible pairs
of users and Averages table the average ratings of all users in Database

® |n order to update all similarity measures we need the average value for

each user

® Suppose we have over 1.000.000 users stored in our Database (about
500 bhillions of user-pairs!)

® To avoid joining we should consider of the following schema:

Similarities:

userl

user2

similarity

averagel

average?2

CSD Univ. of Crete Fall 2014

De-Normalization

® While de-normalization can boost join performance, it can also have
negative effects. For example, by adding redundant data to tables, you
risk the following problems:

+More data means reading more data pages than otherwise needed,
hurting performance

¢Redundant data can lead to data anomalies and bad data

+In many cases, extra code will have to be written to keep redundant
data in separate tables in synch, which adds to database overhead

#As you consider whether to de-normalize a database to speed joins,
be sure you first consider if you have the proper indexes on the tables
to be joined

e It is possible that your join performance problem is more of a
problem with a lack of appropriate indexes than it is of joining too
many tables

CSD Univ. of Crete Fall 2014

Index Wisely

® |Index to support selective WHERE clauses and join conditions
® Use concatenated indexes where appropriate
® Consider over-indexing to avoid table lookups
® Consider advanced indexing options
oHash Clusters
e When a table is queried frequently with equality queries

e You can avoid using the ORDER BY clause, as well as sort
operations

e More administrative overhead
+Bit mapped indexes
e Can use large amounts of memory
e Use sparingly
¢Index only tables

CSD Univ. of Crete Fall 2014

Index Wisely

® Do not index columns that are modified frequently

¢UPDATE statements that modify indexed columns and INSERT and
DELETE statements that modify indexed tables take longer than if
there were no index

e must modify data in indexes as well as data in tables
® Do not index keys that appear only with functions or operators

+A WHERE clause that uses a function (other than MIN or MAX) or an
operator with an indexed key does not make available the access path
that uses the index (except with function-based indexes)

® When choosing to index a key, consider whether the performance gain
for queries is worth the performance loss for INSERTs, UPDATES, and
DELETESs and the use of the space required to store the index

+You might want to experiment by comparing the processing times of
the SQL statements with and without indexes

e YOUu can measure processing time with the SQL trace facility

CSD Univ. of Crete Fall 2014

Reduce Parsing

® Use Bind variables
+Bind variables are key to application scalability
¢If necessary set cursor CURSOR_SHARING to FORCE

® Reuse cursors in your application code
+How to do this depends on your development languages

® Use a cursor cache

¢ Setting SESSION_CACHED_CURSORS can help applications
that are not re-using cursors

87 CSD Univ. of Crete Fall 2014

Bind Values

® Use bind variables rather than literals in SQL statements whenever
possible

® For example, the following two statements cannot use the same shared
area because they do not match character for character:

SELECT employee_id FROM employees
WHERE department_id = 10;
SELECT employee_id FROM employees
WHERE department_id = 20;

® By replacing the literals with a bind variable, only one SQL statement
would result, which could be executed twice:

SELECT employee_1d FROM employees
WHERE department_id = :dept_id;

CSD Univ. of Crete Fall 2014

Bind Values

® |In SQL*PIlus you can use bind variables as follows:

SQL> variable dept_id number
SQL> exec :dept_id := 10

SQL> SELECT employee_id FROM employees
WHERE department_id = :dept_id;

® What we've done to the SELECT statement now is take the literal
value out of it, and replace it with a placeholder (our bind variable),
with SQL*Plus passing the value of the bind variable to Oracle when
the statement Is processed.

87 CSD Univ. of Crete

cursors

Fall 2014

Instead of:

select count(*) into tot from s_emp
where emp_id =v_emp _id;
Declare a cursor for the count:

Or if just checking for existence

cursor cnt_emp_cur(v_emp_id number) is
select count(*) emp_total from s_emp
emp_id =v_emp id;

cnt_emp_rec cnt_emp%r owtype;

And then do the fetch from this cursor:

open cnt_emp(v_emp_id);
fetch cnt_emp into cnt_emp_rec;

close cnt_emp;

cursor cnt_emp_cur(v_emp _id
number) is

select emp_id from s_emp where

where

emp_id=v_emp_id and rownum = 1;

"% CSD Univ. of Crete Fall 2014

Take Advantage of the Cost Based Optimizer

® The older rule based optimizer is inferior in almost every respect to the
modern cost based optimizer; basic RBO problems

e¢lIncorrect driving table 40%
e¢Incorrect index 40%
e¢Incorrect driving index 10%
® Using the cost based optimizer effectively involves:

+Regular collection of table statistics using the ANALYZE or
DBMS STATS command

sUnderstand hints and how they can be used to influence SQL
statement execution

+Choose the appropriate optimizer mode;
e FIRST_ROWS is best for OLTP applications
e ALL_ ROWS suits reporting and OLAP jobs

I ﬁ@ ¥ CSD Univ. of Crete Fall 2014

Analyze — Wrong Data
® Tables were analyzed with incorrect data volumes

® When does this occur?
o Table rebuilt
¢Index added
+Migrate schema to production
+Analyze before a bulk load

® Missing Stats:
+Oracle will estimate the stats for you
¢ These stats are for this execution only
o Stats on Indexes

CSD Univ. of Crete Fall 2014

Avoid Accidental Table Scans

® Table scans that occur unintentionally are a major source of poorly
performing SQL

® Causes include:
+Missing Index
oUsing “1=" | “<>" or NOT
e Use inclusive range conditions or IN lists
¢ Looking for values that are NULL
e Use NOT NULL values with a default value
+Using function on indexed columns

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

1) Using a function on the left side

SELECT * FROM s_emp - Since there is a function

WHERE substr(title,1,3) = ‘Man’: around this column the index
, will not be used. This includes

SELECT * FROM s_emp Oracle functions to_char,

WHERE to_number, Itrim, rtrim, instr,

truncChire_date)=trunc(sysdate); ||[trunc, rpad, Ipad.

Solution:

Use ‘Tlike’

SELECT * FROM s_emp
WHERE title LIKE ‘Man%’;
Use >, < :
SELECT * FROM s_emp
WHERE hire_date >= sysdate
AND hire_date < sysdate + 1;

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

2) Comparing incompatible data types

SELECT * FROM s_emp - There will be an implicit

WHERE employee_number = ‘37 to_char conversion used

SELECT * FROM s_emp > There will be an implicit

WHERE hire_date = ’12-jan-01’; to_date conversion used
Solution:

SELECT * FROM s_emp

WHERE employee_number = 3;

SELECT * FROM s_emp

WHERE hire_date = to_date(’12-jan-01");

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

3) Using null and not null

SELECT FROM 's_emp - Since the column title has
WHERE title IS NOT NULL; null values, and is compared
SELECT * FROM s_emp to a null value, the index can
WHERE title IS NULL; not be used

Solution:
SELECT * FROM s_emp > Oracle hints are always
WHERE title >= * °; enclosed in /*+ */ and must
Use an Oracle hint: come directly after the select
clause

SELECT /*+ index (s_emp) */ * The index hint causes indexes
FROM s_emp WHERE title IS NULL; ||tobe used

CSD Univ. of Crete Fall 2014

Factors that can Cause an Index not to be Used

4) Adding additional criteria in the where clause for a column name that is
of a different index

SELECT FROM s_emp = Column title and salary
WHERE title= ‘Manager’ have separate indexes on
AND salary = 100000; these columns
Solution:

. -=> Oracle hints are always
(Use an Oracle h_'nt) enclosed in /*+ */ and must
SELECT /*+ index (s_emp) */ come directly after the select
FROM s_emp clause

.) , The index hint causes indexes
WHERE title= ‘Manager 0 be used

AND salary = 100000; S_EMP is the Oracle table

Fall 2014

=4 Make sure most Restrictive Indexes are being

Used by using Oracle hints

SELECT COUNT(*) FROM vehicle -> This does not use an
WHERE index
assembly_location_code = 'AP24A’

AND production_date = '06-apr-01';

—->Notice itis 10
COUNT (%) seconds

787
Elapsed: 00:00:10.00

= Make sure most Restrictive Indexes are being
Used by using Oracle hints

Fall 2014

SELECT - This does use an
/*+ index (vehicle FKI_VEHICLE_1) Index

/ COUNT()

FROM vehicle

WHERE

assembly_location_code = 'AP24A’ - Notice it is less than

AND production_date = '06-apr-01'; ||1second. USE THE
MOST SELECTIVE

INDEX that will return
the fewest records

Elapsed: 00:00:00.88

| ﬁ@ ¥ CSD Univ. of Crete Fall 2014
©

Some Idiosyncrasies

® Condition Order:

+The order of your where clause will effect the performance
® OR may stop the index being used

ebreak the query and use UNION

SELECT =4 CHOOSE #*.

I

FEOM emp
WHEFE ename = ‘=mith’
OFE deptno = 1
FlanSteps
-4 Plans

= 1 # SELECT STATEMEMNT [Dptimizer: CHOOSE)
- (I TABLE ACCESS FULL SCOTT.EMP

,

I ﬁ@ CSD Univ. of Crete Fall 2014
SELECT ~%*4+ INDEX(emp. I_EMP DEPSUG) INDEX(emp, I_EMP EHAME) -
*
FROM emp

WHEEE ename = 's=mith'
0K deptno =

Flansteps

EIE Flanz
= [+ &£ SELECT STATEMEMT [Optimizer; CHOOSE)

- [XIF TAELE ACCESS FULL SCOTT.EMP

SELECT =
FEOM emnp
WHEEE ename = 'smith'

OF deptno = 1

FlanSteps

-9 Plans
=[] £ SELECT STATEMEMT [Optimizer: RLLE]
- [# COMCATEMATION
= WA TAELE ACCESS BY INDEX ROWID SCOTT.EMP
VI INDEX RANGE SCAN SCOTT._EMP_DEPSUG MON-UNIGQUE
= I TABLE ACCESS BY INDEX ROWID SCOTT.EMP
- VI IMDEX RAMGE SCAMN SCOTT._EMP_EMAME MOM-UMIQUE

CSD Univ. of Crete Fall 2014

Optimize Necessary Table scans

® There are many occasions where a table scan is the only option, If so:
+Consider parallel query option

® Try to reduce size of the table
¢Adjust PCTFREE and PCTUSED
¢Relocate infrequently used long columns
® Improve the caching of the table
eUse the CACHE hint or table property
¢Implement KEEP and RECYCLE pools

® Partition the table

® Consider the fast full index scan

CSD Univ. of Crete Fall 2014

IN Lists

SELECT empno FROM emp WHERE
deptno IN (10,20,30)

® Rewritten as:

SELECT empno FROM emp
WHERE deptno = 10
UNION ALL

SELECT empno FROM emp
WHERE deptno = 20
UNION ALL

SELECT empno FROM emp
WHERE deptno = 30

%3 CSD Univ. of Crete Fall 2014

Data Partitioning

® |f you are designing a database that potentially could be very large,
holding millions or billions of rows, consider the option of horizontally
partitioning your large tables

eHorizontal partitioning divides what would typically be a single table
Into multiple tables, creating many smaller tables instead of a single,
large table

¢ The advantage of this is that is generally is much faster to query a
single small table than a single large table

® For example, if you expect to add 10 million rows a year to a transaction
table, after five years it will contain 50 million rows

+In most cases, you may find that most queries (although not all)
gueries on the table will be for data from a single year

+If this is the case, If you partition the table into a separate table for
each year of transactions, then you can significantly reduce the
overhead of the most common of queries

%3 CSD Univ. of Crete Fall 2014

When Joining...

® Make sure everything that can be joined is joined (for 3 or more tables)
Instead of:

SELECT * FROM tl1l, t2, t3
WHERE tl.emp_id = t2.emp_id
AND t2.emp_id = t3.emp_1id

add:

SELECT * FROM tl1l, t2, t3
WHERE tl.emp_id = t2.emp_1d
AND t2.emp_id = t3.emp_id
AND tl.emp_id = t3.temp_id;

® Make sure smaller table is first in the from clause

%1 CSD Univ. of Crete Fall 2014

Joining too Many Tables

® The more tables the more work for the optimizer
® Best plan may not be achievable

Tables Permutations Tables Permutations
1 1 10 3628800
2 2 11 39916800
3 6 12 479001600
4 24 13 6226020800
5 120

- 250 14 87178291200
7 5040 15 1307674368000
8 40320

9 362880

CSD Univ. of Crete Fall 2014

Use ARRAY Processing

® Retrieve or insert rows in batches, rather than one at a time
® Methods of doing this are language specific
® Suppose that a new user registers in our Database

® \We have to create an entry in Similarities table for each pair of new
user and the existing users

® Instead of selecting all the existing users and make the insertion
iIndividually we should use the following statement:

insert 1nto

similarities (userl, user2, similarity)
‘new_user_1d’ as userl,

select user_id from users as user?2,

0 as similarity;

CSD Univ. of Crete Fall 2014

Consider PL/SQL for “Tricky” SQL

® With SQL you specify the data you want, not how to get it
+Sometime you need to specifically dictate your retrieval algorithms

® For example:
¢ Getting the second highest value
¢ Correlated updates
+SQL with multiple complex correlated subqueries

+SQL that seems to hard to optimize unless it is broken into multiple
gueries linked in PL/SQL

® Using explicit instead of implicit cursors

+Implicit cursors always take longer than explicit cursors because
they are doing an extra to make sure that there is no more data

® Eliminating cursors where ever possible

CSD Uniy. of Crete Fall 2014

When your SQL is Tuned, Look to your Oracle
nfiguration

® When SQL is inefficient there is limited benefit in investing in Oracle server
or operating system tuning

® However, once SQL is tuned, the limiting factor for performance will be
Oracle and operating system configuration

® |n particular, check for internal Oracle contention that typically shows up as
latch contention or unusual wait conditions (buffer busy, free buffer, etc)

"% CSD Univ. of Crete Fall 2014

Other Parameters

® OPTIMIZER_MAX_ PERMUTATIONS
¢ Remember the too many joins?
¢ Default is 80,000
¢ Can lead to large Parse times
+ Altering can lead to non optimal plan selection

® OPTIMIZER _INDEX CACHING
¢ Represents # of blocks that can be found in the cache
¢ Range 0 - 99
¢ Default is O — implies that index access will require a physical read
¢ Should be set to 90

"% CSD Univ. of Crete Fall 2014

Other Parameters

® OPTIMIZER INDEX COST _ADJ
¢ Represents cost of index access to full table scans
¢ Range 1 — 10000
¢ Default is 100 — Means index access Is as costly as Full Table Scan
¢ Should be between 10 — 50 for OLTP and approx 50 for DSS

e DB FILE_ MULTIBLOCK READ COUNT
¢ Setting too high can cause Full Table Scans
¢ Can adjust for this by setting OPTIMIZER_INDEX_COST_ADJ

e DB KEEP CACHE_SIZE
e DB RECYCLE_CACHE_SIZE
e DB BLOCK HASH BUCKETS

CSD Univ. of Crete Fall 2014

References

® Dennis Shasha and Phillipe Bonnet Database Tuning : Principles
Experiments and Troubleshooting Techniques, Morgan Kaufmann
Publishers 2002.

® Mark Levis Common tuning pitfalls of Oracle’s optimizers, Compuware
® Duane Spencer TOP tips for ORACLE SQL tuning, Quest Software, Inc.

TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong

XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong

2NUEIWMUATO

2NUEIWMUATO

2nNUEiwpa adglodoTnong

*To TTapdv UAIKOG diaTiBeTal pe Toug Opoucg TnS adelag xpriong Creative Commons
Avagopd, Mn Eptropikr) Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] R peTayavaspn Aigbvnc
EK600n E&oupouvmu TQ GUTOTEZ)\r] Epya Tplva X PWTOYPAPIEC, 6|0(yp0(ppona K.A.TT.,
TA OTTOIA EUTTEPIEXOVTAI OE AUTO KAl T OTToia ava@EpovTal padi ue Toug OPOUC XProng
TOUG OTO «2Znueiwpa Xpriong Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.

2NUEIWNA Ava@popac

Copyright MNavemotiuio Kpntng, Anuntpng NAecouocdkng. «ZUCTAMATA
Alaxeipiong Baoewv Asdopévwy. PpovtioTiipio 8: Query Optimization
and Tuning in Oracle». 'Ekdoon: 1.0. HpakAgio/P€Bupvo 2015. AlaBEoiuo atrd
TN dIkTUAKN OI1EVBUvON: http://www.csd.uoc.gr/~hy460/

