: EAAHNIKH AHMOKPATIA
A " NANENIETHMIO KPHTHE

2uocTiRuaTta Alaxeipiong
Baoswv Asdopévwy
PpovTioTAplo 9: Transactions - part 1

AnunTpng lNAegouoakng
Tunua Emotiung YtroAoyiotwy

~ Univ. of Crete

=<

Tutorial on Undo, Redo and Undo/Redo
Logging

Univ. of Crete

CS460 Fall 2012

Quick Review: Undo vs. Redo Logging

® General Idea: In case of failure
B Undo: cancels incomplete, ignores complete transactions

B Redo: ignores incomplete, re-executes complete transactions
® Methodology: Undo

X:value - --

memory

o= oo
e

s X
copy of log

&

~~-
—
-
—
—

g ey
SN

+<T, X, value>

3.
<COMMIT T>

log

Univ. of Crete

CS460 Fall 2012

Quick Review: Undo vs. Redo Logging

® General Idea: In case of failure
B Undo: cancels incomplete, ignores complete transactions

B Redo: ignores incomplete, re-executes complete transactions
® Methodology: Redo

X:value - --

memory

o= oo
e

s X
copy of log

&

~~-
—
-
—
—

g ey
SN

+<T, X, value>

2.
<COMMIT T>

log

~Univ. of Crete

CS460 Fall 2012

Quick Review: Undo vs. Redo Logging

® Checkpointing:
Undo:

1. Write
<START CKPT (T4,...,Tk)>

2. Flush the log.

3. Wait until all T1,... Tk commit or
abort.

4. Write <END CKPT>.
5. Flush the log.

Redo:
1. Write
<START CKPT (Ta,...,Tk)>
2. Flush the log.
3. Write to disk all elements of

4

5.

transactions that had already
committed before step 1.

. Write <END CKPT>.
Flush the log.

—Univ. of Crete CS460 Fall 2012

Quick Review: Undo vs. Redo Logging

® Recovery:

Undo: Redo:

m Complete checkpoint: scan m Completed checkpoint:
backwards as far as the start scanning from the
START CKPT record. earliest of T1,...Tk.

B Incomplete checkpoint: m Incomplete checkpoint:
scan backwards as far as search for previous

the earliest of Ti,...Tk. complete checkpoint.

—Univ. of Crete

CS460 Fall 2012

Example 1: Undo Recovery - Case 1

<START T1>

<T1, A, 5>
<START T2>

<T2, B, 10>
<START CKPT(T1,T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>

—» <T3, F, 30>
L.

® System crash after checkpoint

m Start scanning from the end.

m T3 is an incomplete transaction and must
be undone. We set F = 30.

m We find an <END CKPT>. Therefore, we
will stop scanning at the START CKPT.

B T2 committed. Do not touch!

m T3 incomplete. We set E = 25.

m No other transactions that started, but did
not commit, until the START CKPT. End of
scanning.

—_Univ. of Crete CS460 Fall 2012

Example 1: Undo Recovery - Case 2

® System crash during checkpoint

<SE‘RAT ;1> m Start scanning from the end.
< > .
<START T2> m T3 incomplete. We set E = 25.
<T2, B, 10> B T1 committed. Do not touch!
<START CKPT(T1,72)> W T2 incomplete. We set C = 15.
:STT2A|§+1T53>> m We find <START CKPT(T1,T2)>. The only
possible incomplete are T1, T2. Still, T1
<T1, D, 20> . . .
committed. Therefore, we continue until
<COMMIT T1>

we meet <START T2>.
B T2 incomplete. We set B = 10.
Bl \We meet <START T2>. End of scanning.

—p» <T3, E, 25>
=3

__Univ. of Crete CS460 Fall 2012

Example 1: Undo Recovery - Case 212

® System crash during checkpoint

<START T1> m It is the same case as before.
<§|‘I—',]5\’R"A'\Il $Z> m We find <START CKPT(T1,T2)>. The only
<T2. B, 10> possible incomplete are T1, T2.

<START CKPT(T1,T2)> Therefore, we continue until we meet all

<START Ti>, where 1 = 1,2.

—Univ. of Crete

CS460 Fall 2012

Example 2: Redo Recovery - Case 1

<START T1>

<T1, A, 5>
<START T2>
<COMMIT T1>

<T2, B, 10>
<START CKPT(T2)>

<T2,C, 15>
<START T3>

<T3, D, 20>

<END CKPT>
<COMMIT T2>
—p <COMMIT T3>

& &

® System crash after checkpoint

m \WWe make a quick scan from the end.

m We find <END CKPT> so we only need to
care with those mentioned in the

beginning record of the checkpoint and
the ones started after that. Thatis T2, T3,
and not T1.

m We start from the earliest transaction
mentioned in the beginning record of the
checkpoint and continue downwards.

B T2 committed, it must be redone. B = 10.
B T2 committed, it must be redone. C = 15.
B T3 committed, it must be redone. D = 20. s

—Univ. of Crete CS460 Fall 2012

Example 2: Redo Recovery - Case 112

® System crash after checkpoint

<START T1> m Now T3 Is not a committed transaction

<T1, A, 5> :
<START T2 and, as a result, we must not redo It.

<COMMIT T1> H At the end of the recovery process, we

<T2. B, 10> add an <ABORT T3> record to the log.

<START CKPT(T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
e — ®

10

—Univ. of Crete

CS460 Fall 2012

Example 2: Redo Recovery - Case 2

<START T1>

<T1, A, 5>
<START T2>
<COMMIT T1>

<T2, B, 10>
<START CKPT(T2)>

<T2, C, 15>

<START T3>

_, <T3,D,20
= = ——

® System crash during checkpoint

m \We must search back to the previous

checkpoint and find its list of active
transactions.

m In this case there is no previous
checkpoint. We start from the beginning
of the log.

m Only T1 is committed and must be
redone. A=5.

m At the end of the recovery process, we
add <ABORT T2>, <ABORT T3> to the log.

11

- Univ. of Crete

CS460 Fall 2012

Example 3

<START T1> ® The following values are stored in the disk:
<T1,C, 35> A=10, B=12, C=45, D=65, E=2.
<T1, D, 450> . he | hown
<START T2> @ Given the log s
<T2, C, 18> B could this be an undo log?
<T2, B, 12>
<T1.D. 5005 m No, becguse, for an undo log, all
<COMMIT T1> transactions mentioned at the start of the
- ~<START CKPT (T2)5>~ ., checkpoint must commit before its ending.
iy 55%?;_‘%1:_ _--“ M could this log result in the previously
<START T3> mentioned values for A, B, C, D and E?
<T3, C, 45>
<T3, E, 2>
<T2, A, 10>
<COMMIT T3>

<COMMIT T2>

12

~ Univ. of Crete

<START T1>
<T1, C, 35>
<T1, D, 450>
<START T2>
<T2, C, 18>
<T2, B, 12>
_<T1,D, 500>
<START €KPT (r’2)>
<END_CKPT>
£ <T2,D,18> 3
<START T3>
<T3, C, 45>
<T3, E, 2>
<T2, A, 10>
<COMMIT T3>
<COMMIT T2>

CS460 Fall 2012

Example 4

® The following values are stored in the disk:
A=10, B=12, C=45, D=65, E=2.
® Given the log shown
B could this be a redo log?

H Yes.

m could this log result in the previously
mentioned values for A, B, C, D and E?

m No. The problem is the value of D. Since
T1 committed before the checkpoint and
IS not mentioned as active, we are sure
that D = 500 for the moment. T2 also
accesses D. Maybe the changes were
written or maybe not. In either case, D [
65.

13

—_Univ. of Crete CS460 Fall 2012

A Point of Caution

@ \What if the size of the elements are not equal to the size of
memory buffers?

@ For instance, if a buffer contains element A that was changed by
a committed transaction and another element B that was changed
by a transaction that has not yet had its COMMIT record written to
disk.

® During checkpointing both undo and redo put contradictory
requirements: the buffer must be copied to disk because of A, but
also forbidden because of B.

e Solution: Undo/Redo Logging

Buffer containing
A B elements A, B

» Changed by T2. T2 is active.

» Changed by T1. T1 committed. 14

—_Univ. of Crete CS460 Fall 2012

¥ Undo/Redo Logging

e Rule: Before modifying any element on disk, the log records must
first be flushed.

® Checkpointing: Remember that we write an <END CKPT> only
after all dirty buffers are written to disk (i.e., we flush all buffers,
not just those written by committed transactions as in redo).

® Recovery: We proceed first backward to find checkpoints, forward
to redo history and backward to undo uncommitted transactions,
as appropriate.

15

~Univ. of Crete

CS460 Fall 2012

Example 5: Undo/Redo Recovery - Case 1

<START T1>
<T1,A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT(T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>

—» <COMMIT T3>
& = 4

® System crash after checkpoint

m There is no need to look prior to the
<START CKPT ...> record

m T1is assumed completed and stored. We
ignore it.

m T2 and T3 are redone.

16

e Univ. of Crete CS460 Fall 2012

Example 5: Undo/Redo Recovery - Case 2

® System crash after checkpoint

m As before but at the end we redo T2 and
undo T3

<START T1>
<T1,A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT(T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
¢ = »

17

TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong

XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong

2NUEIWMUATO

2nNUEiwpa adglodoTnong

*To TTapdv UAIKOG diaTiBeTal pe Toug Opoucg TnS adelag xpriong Creative Commons
Avagopd, Mn Eptropikr) Xprion, OXI I'Iapaywyo ‘Epyo 4.0 [1] R peTayavaspn Aigbvnc
EK600n E&oupouvmu TQ GUTOTEZ)\r] Epya Tplva X PWTOYPAPIEC, 6|0(yp0(ppona K.A.TT.,
TA OTTOIA EUTTEPIEXOVTAI OE AUTO KAl T OTToia ava@EpovTal padi ue Toug OPOUC XProng
TOUG OTO «2Znueiwpa Xpriong Epywv Tpitwv».

©OS0)

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.

2NUEIWNA Ava@popac

Copyright TMavemotiuio Kpntng, AnuAtpng TMAecouocdkns. «ZUCTAMOATA
Alaxeipiong Baoewv Acdopévwyv. OpovtioThplo 9: Transactions - part 1».
‘Ekdoon: 1.0. HpakAegio/P€Bupvo 2015. AiaBéoipyo atrd tn dikTuakn dieuBuvon:
http://www.csd.uoc.gr/~hy460/

