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Abstract

The SPLASH-2 suite of parallel applications has recently been
released to facilitate the study of centralized and distributed shared-
address-space multiprocessors. In this context, this paper has two
goals. Oneisto quantitatively characterize the SPLASH-2 programs
interms of fundamental propertiesand architectural interactionsthat
are important to understand them well. The properties we study in-
clude the computational load balance, communication to computa-
tion ratio and traffic needs, important working set sizes, and issues
related to spatial locality, as well as how these properties scale with
problem size and the number of processors. The other, related goal
is methodological: to assist people who will use the programsiin ar-
chitectural evaluations to prune the space of application and ma-
chine parametersin an informed and meaningful way. For example,
by characterizing the working sets of the applications, we describe
which operating points in terms of cache size and problem size are
representative of realistic situations, which are not, and which rere-
dundant. Using SPLASH-2 as an example, we hope to convey the
importance of understanding the interplay of problem size, number
of processors, and working setsin designing experiments and inter-
preting their results.

1 Introduction

Many architectural studies use parallel programs as workloads
for the quantitative evaluation of ideas and tradeoffs. In shared-ad-
dress-space multiprocessing, early research typically used small
workloads consisting of afew simple programs. Often, different pro-
grams and different problem sizes were used, making comparisons
across studies difficult. Many recent studies have used the Stanford
ParalleL Applications for SHared memory (SPLASH) [SWG92], a
suite of parallel programswritten for cache-coherent shared address
space machines. While SPL A SH has provided adegree of consisten-
cy and comparability across studies, like any other suite of applica-
tionsit has many limitations. In particular, it consists of only asmall
number of programs and does not provide broad enough coverage
even of scientific and engineering computing. The SPLASH pro-
grams are also not implemented for optimal interaction with modern
memory system characteristics (long cache lines, high latencies and
physically distributed memory) or for machines that scale beyond a
relatively small number of processors.

Given these limitations, and with the increasing use of SPLASH
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for architectural studies, the suite has recently been expanded and
modified to include several new programs as well asimproved ver-
sions of the original SPLASH programs. The resulting SPLASH-2
suite contains programs that (i) represent awider range of computa-
tions in the scientific, engineering and graphics domains; (ii) use
better algorithms and implementations; and (iii) are more architec-
turally aware.

This paper has two related goals.

» To characterize the SPLASH-2 programs in terms of the basic
properties and architectural interactionsthat areimportant to un-
derstand them well.

* To help people who will use the programs for system evaluation
to choose parameters and prune the experimental space in in-
formed and meaningful ways.

While thefirst goal is clearly useful—it provides data about the
behavior of new parallel programs and allows us to compare the re-
sults with those of previous studies—the second is in many ways
more important. Architectural evaluations are faced with a huge
space of application as well as machine parameters, many of which
can substantially impact the results of a study. Performing a com-
plete sensitivity analysis on this space is prohibitive. In addition,
most architectural studies use software simulation, which istypical-
ly very slow and compels usto scale down the problem and machine
configurations from those we would really like to evaluate. Finaly,
many pointsin the parameter space (scaled down or original) lead to
execution characteristics that are not representative of reality, so
blind sensitivity sweeps may not be appropriate anyway. For these
reasons, it is very important that we understand the relevant charac-
teristics of the programs we use for architectural evaluation, and
how these characteristics change with problem and machine param-
eters. The goal is to avoid unrealistic combinations of parameters,
choose representative points among the realistic ones, and prune the
rest of the space when possible.

In this paper, we provide the necessary quantitative character-
ization and qualitative understanding for the SPLASH-2 programs.
We aso identify some specific methodological guidelines that
emerge from the characterization. By doing this, we hope to help
people prunetheir parameter spaces, and a so contribute to the adop-
tion of sound experimental methodology in using these (and other)
programs for architectural evaluation.

The next section discusses the particular program characteristics
that we measure, and our motivations for choosing them. It also de-
scribes our overall approach to gathering and presenting results. In
Section 3, we provide a very brief description of each of the
SPLASH-2 programs, concentrating on the featuresthat will later be
relevant to explaining the effects observed. Sections 4 through 7
characterize the programs along the dimensions discussed in Section
2. Finally, we present some concluding remarks in Section 8.



2 Characteristicsand Approach
2.1 Axesof Characterization

We characterize the programs along four axes which we consid-
er most important to understanding shared address space programs
from the viewpoint of choosing experimental parameters. They are:
(i) speedup and load balancing, (ii) working sets, (iii) communica
tion to computation ratios and traffic needs, and (iv) issuesrelated to
spatial locality. We aso discuss how these characteristics change
with important application parameters and the number of processors,
since understanding thisisvery important for using the programs ap-
propriately.

» The concurrency and load balancing characteristics of a pro-
gram indicate how many processors can be effectively utilized
by that program, assuming a perfect memory system and com-
munication architecture. This indicates whether a program with
a certain data set is appropriate for evaluating the communica-
tion architecture of amachine of agiven scale. For example, if a
program does not speed up well, it may not be appropriate for
evaluating alarge scale machine.

Theworking setsof aprogram [Den68, RSG93] indicateitstem-
poral locality. They can beidentified asthe kneesin the curve of
cache miss rate versus cache size. Whether or not an important
working set fits in the cache can have a tremendous impact on
local memory bandwidth aswell as on communication needs. It
istherefore crucial to understand the sizes and scaling of theim-
portant working sets, so that application and machine parame-
ters can be chosen in ways that represent realistic situations. As
we shall see, knowledge of working sets can help us prune the
cache size dimension of the parameter space.

The communication to computation ratio indicates the potential
impact of communication latency on performance, aswell asthe
potential bandwidth needs of the application. The actual perfor-
mance impact and bandwidth needs are harder to predict, since
they depend on many other characteristics such asthe burstiness
of the communi cation and how much latency is hidden. Our goal
in characterizing this ratio and how it scalesisto guide simula-
tion studies against making unrepresentative bandwidth provi-
sions relative to bandwidth needs. In addition to the inherent
communication in the application, we also characterize the total
communication traffic and local traffic for a set of architectural
parameters.

The spatial locality in aprogram also has tremendous impact on
its memory and communication behavior. In addition to the un-
iprocessor tradeoffsin using long cache lines (prefetching, frag-
mentation and transfer time), cache-coherent multiprocessors
have the potential drawback of false sharing, which causes com-
munication and can be very expensive. We therefore need to un-
derstand the spatial locality and fal se sharing in our programs, as
well as how they scale.

There are two important program characteristics that we do not
examine quantitatively in this paper: the patterns of data sharing or
communication, and contention. While the first is useful in under-
standing a program and the second can be performance-critical, they
are not asimportant as the other issues from the viewpoint of choos-
ing application and memory system parameters.

2.2 Approach to Characterization

.

.

Experimental Environment: We perform our characterization
study through execution-driven simulation, using the Tango-Lite
reference generator [Gol93] to drive a multiprocessor cache and
memory system simulator. The simulator tracks cache misses of var-
ious types according to an extension of the classification presented
in [DSR+93] developed to handle the effects of finite cache capaci-
ty. We simulate a cache-coherent shared address space multiproces-

sor with physically distributed memory and one processor per node.
Every processor has asingle-level cache that is kept coherent using
a directory-based Illinois protocol (dirty, shared, valid-exclusive,
and invalid states) [PaP84]. Processors are assumed to send replace-
ment hints to the home nodes when shared copies of data are re-
placed from their caches, so that thelist of sharing nodes maintained
at the home contains only those nodes which require invalidations
when an invalidating action occurs.

All instructions in our simulated multiprocessor complete in a
single cycle. The performance of the memory system is assumed to
be perfect (PRAM model [FoW78]), so that all memory references
complete in a single cycle as well regardless of whether they are
cache hits, or whether they arelocal or remote misses. There aretwo
reasons for this. First, for non-deterministic programsit is otherwise
difficult to compare data (e.g., missrates, bustraffic) when architec-
tural parameters are varied, since the execution path of the program
may change. Second, the focus of this study is not absolute perfor-
mance but the architecturally-relevant characteristics of the pro-
grams. While these can sometimes be affected by the interleaving of
instructions from different processors and hence the timing model
(in both deterministic and particularly in nondeterministic pro-
grams), a given timing model is not necessarily any better than an-
other from this perspective. In fact, we believe that the effect of the
timing model on the characteristics we measure is small for our ap-
plications, including the nondeterministic ones.

Data are distributed among the processing nodes according to
the guidelines stated in each SPLASH-2 application. In most cases,
we begin our measurements just after the parallel processes are cre-
ated. The exceptions are cases where the application would in prac-
tice run for many more iterations or time-steps than we simulate. In
these cases, we start our measurements after initialization and cold
start. All programs were compiled with cc compiler version 3.18 on
Silicon Graphics Indy machines with the -O2 optimization level.

Data Sets and Scaling: Default input data sets are specified for the
programsin the SPLASH-2 suite. For aimost all applications, larger
data sets are either provided or automatically generated by the pro-
grams. These data sets are by no means large compared to practical
data setslikely to be run on real machines. Rather, they are intended
to besmall enough to simulatein areasonabletime, yet large enough
to be of interest in their problem domainsin practice. While data set
size and number of processors can have tremendous impact on the
results of characterization experiments, due to space constraints we
present most of our quantitative data for the default problem config-
uration and afixed number of processors. We fix the number of pro-
cessors at 32 for most of our characterizations, (except the commu-
nication to computation ratio), and discuss the effects of scaling the
number of processors qualitatively.

Inherent versus Practical Characteristics: A question that arises
in such a study is whether to characterize the inherent properties of
the applications or to characterize properties that arise with realistic
machine parameters. For example, the best way to measure inherent
communication isby using infinite cacheswith aline size of asingle
word, and the best way to measure inherent working sets is with a
one-word cache line and fully-associative caches. However, these
memory system parameters are not realistic, and unlike timing pa-
rameters can change the observed characteristics substantialy. Ide-
aly, we would present both inherent properties and those obtained
with realistic machine parameters, but space constraints prevent us
from doing so. Since researchers are likely to use the SPLASH-2

1Thismay not betruefor multiprogrammed workloads that exercisethe
operating system intensively, or for other workloads with areal -time compo-
nent, since changes to the instructions executed by a processor (due to non-
determinism) may affect memory system behavior substantially. The impact
of the timing model on memory system behavior cannot be ignored so easily
in these cases.



suite with realistic memory system parameters, we choose to focus
on these while still trying to approach inherent properties and avoid
too many artifacts. For example, the default line size for our charac-
terizations (other than when we vary it to measuring spatial locality)
is 64 bytes, which leads us away from inherent properties. On the
other hand, our default cache associativity is4-way, which isrealis-
tic but large enough to be relatively free of cache mapping artifacts.

We cannot present as much data as we would like in this paper,
and since researchers may want to view this and other datain other
ways, we have created an online database of characterization results.
This database has amenu-driven interface to an interactive graphing
tool that allows results for different combinations of machine and
experiment parameters to be viewed. The tool and database are ac-
cessible viathe World Wide Web at http://www-flash.stanford.edu/.

3 TheSPLASH-2 Application Suite

The SPLASH-2 suite consists of amixture of complete applica-
tionsand computational kernels. It currently has 8 complete applica-
tionsand 4 kernels, which represent avariety of computationsin sci-
entific, engineering, and graphics computing. Some of the original
SPLASH codes have been removed because of their poor formula-
tion for medium-to-large scale parallel machines (e.g. MP3D), or
because they are no longer maintainable (e.g. PTHOR) and some
have been improved. We now briefly describe the applications and
kernels. More complete descriptions will be available in the upcom-
ing SPLASH-2 report. In these descriptions, p refers to the number
of processors used.

Barnes: The Barnes application simulates the interaction of a sys-
tem of bodies (galaxies or particles, for example) in three dimen-
sionsover anumber of time-steps, using the Barnes-Hut hierarchical
N-body method. It differs from the version in SPLASH in two re-
spects: (i) it allows multiple particles per leaf cell [HoS95], and (ii)
itimplementsthe cell datastructures differently for better datalocal-
ity. Like the SPLASH application, it represents the computational
domain as an octree with leaves containing information on each
body, and internal nodes representing space cells. Most of the time
isspent in partia traversals of the octree (one traversal per body) to
compute the forces on individual bodies. The communication pat-
ternsare dependent on the particle distribution and are quite unstruc-
tured. No attempt is made at intelligent distribution of body datain
main memory, since thisis difficult at page granularity and not very
important to performance.

Cholesky: The blocked sparse Cholesky factorization kernel factors
a sparse matrix into the product of alower triangular matrix and its
transpose. It is similar in structure and partitioning to the LU factor-
ization kernel (see LU), but hastwo major differences: (i) it operates
on sparse matrices, which have alarger communication to computa-
tion ratio for comparable problem sizes, and (ii) it is not globally
synchronized between steps.

FFT: The FFT kernel isacomplex 1-D version of the radix- Jn six-
step FFT algorithm described in [Bai90], which is optimized to min-
imize interprocessor communication. The data set consists of the n
complex data points to be transformed, and another n complex data
points referred to as the roots of unity. Both sets of data are orga-
nized as /n x «/n matrices partitioned so that every processor isas-
signed acontiguous set of rowswhich areallocated initslocal mem-
ory. Communication occurs in three matrix transpose steps, which
require al-to-al interprocessor communication. Every processor
transposes a contiguous submatrix of Jn/ p X Jn/ p from every
other processor, and transposes one submatrix locally. The transpos-
es are blocked to exploit cache line reuse. To avoid memory hot-
spotting, submatrices are communicated in a staggered fashion, with
processor i first transposing a submatrix from processor i+1, then
one from processor i+2, etc. See [WSH94] for more details.

FMM: Like Barnes, the FMM application aso smulates a system

of bodies over anumber of timesteps. However, it simulatesinterac-
tionsin two dimensions using a different hierarchical N-body meth-
od called the adaptive Fast Multipole Method [Gre87]. Asin Barnes,
the major data structures are body and tree cells, with multiple par-
ticles per leaf cell. FMM differs from Barnesin two respects: (i) the
tree is not traversed once per body, but only in a single upward and
downward pass (per timestep) that computes interactions among
cells and propagates their effects down to the bodies, and (ii) the ac-
curacy is not controlled by how many cells a body or cell interacts
with, but by how accurately each interaction is modeled. The com-
munication patterns are quite unstructured, and no attempt is made
at intelligent distribution of particle datain main memory.

L U: TheLU kernel factors adense matrix into the product of alower
triangular and an upper triangular matrix. The dense n x n matrix A
isdividedintoan N x N array of B x B blocks(n = NB) to exploit
temporal locality on submatrix elements. To reduce communication,
block ownership isassigned using a 2-D scatter decomposition, with
blocks being updated by the processors that own them. The block
size B should be large enough to keep the cache missrate low, and
small enough to maintain good |load balance. Fairly small block sizes
(B=8 or B=16) strike agood balance in practice. Elements within a
block are allocated contiguously to improve spatial locality benefits,
and blocks are alocated locally to processors that own them.
See [WSH94] for more details.

Ocean: The Ocean application studies large-scal e ocean movements
based on eddy and boundary currents, and isan improved version of
the Ocean program in SPLASH. Themajor differencesare: (i) it par-
titions the grids into square-like subgrids rather than groups of col-
umns to improve the communication to computation ratio, (ii) grids
are conceptually represented as4-D arrays, with all subgrids allocat-
ed contiguously and locally in the nodes that own them, and (iii) it
uses a red-black Gauss-Seidel multigrid equation solver [Bra77],
rather than an SOR solver. See [WSH93] for more details.

Radiosity: Thisapplication computesthe equilibrium distribution of
light in a scene using the iterative hierarchical diffuse radiosity
method [HSA91]. A sceneisinitially modeled as a number of large
input polygons. Light transport interactions are computed among
these polygons, and polygons are hierarchically subdivided into
patches as necessary to improve accuracy. In each step, the algo-
rithm iterates over the current interaction lists of patches, subdivides
patches recursively, and modifies interaction lists as necessary. At
the end of each step, the patch radiosities are combined via an up-
ward pass through the quadtrees of patchesto determineif the over-
al radiosity has converged. The main data structures represent
patches, interactions, interaction lists, the quadtree structures, and a
BSP tree which facilitates efficient visibility computation between
pairs of polygons. The structure of the computation and the access
patterns to data structures are highly irregular. Parallelism is man-
aged by distributed task queues, one per processor, with task stealing
for load balancing. No attempt is made at intelligent data distribu-
tion. See [SGL94] for more details.

Radix: The integer radix sort kernel is based on the method de-
scribed in [BLM+91]. The algorithm is iterative, performing one it-
eration for each radix r digit of the keys. In each iteration, a proces-
sor passes over its assigned keys and generates a local histogram.
Thelocal histograms are then accumulated into a global histogram.
Finally, each processor usesthe global histogram to permuteitskeys
into anew array for the next iteration. This permutation step requires
all-to-all communication. The permutation isinherently a sender-de-
termined one, so keys are communicated through writes rather than
reads. See [WSH93, HHS+95] for details.

Raytrace: This application renders a three-dimensional scene using
ray tracing. A hierarchical uniform grid (similar to an octree) is used
to represent the scene, and early ray termination and antialiasing are
implemented, although antialiasing isnot used in thisstudy. A ray is



Total Total Total Total Shared | Shared
Problem Instr FLOPS Reads Writes | Reads | Writes
Code Size (M) (M) (M) (M) (M) (M) Barriers | Locks | Pauses
Barnes 16K particles 2002.79 239.24 406.85 | 313.29 | 225.05 93.23 8 34648 0
Cholesky tk15.0 539.17 172.00 111.86 28.03 75.87 2331 3 54054 4203
FFT 64K points 34.79 6.36 4.07 2.88 4.05 2.87 6 0 0
FMM 16K particles 1250.02 423.88 226.23 38,58 | 217.84 30.10 20 28088 0
LU 512 x 512 matrix, 494.05 92.20 104.00 48.00 93.20 4474 66 0 0
16 x 16 blocks
Ocean 258 x 258 0cean 379.93 101.54 81.89 18.93 80.26 17.27 364 2592 0
Radiosity room, -ae 5000.0 2832.47 499.72 | 284.61 | 261.08 21.99 10 | 231190 0
-en 0.050 -bf 0.10
Radix 1M integers, 50.99 12.06 7.03 12.06 7.03 10 0 124
radix 1024
Raytrace car 829.32 208.90 79.95 | 159.97 2222 0 94471 0
Volrend head 754.77 152.19 59.57 81.93 3.07 15 28934 0
Water-Nsgq | 512 molecules 460.52 98.15 81.27 35.25 69.07 26.60 10 17728 0
Water-Sp 512 molecules 435.42 91.50 72.31 32.73 60.54 22.64 10 353 0

Table 1. Breakdown of instructions executed for default problem sizes on a 32 processor machine. Instructions executed are broken

down into total floating point operations across all processors for applications with significant floating point computation, reads,
and writes. The number of synchronization operationsis broken down into number of barriers encountered per processor, and total
number of locks and pauses (flag-based synchronizations) encountered across all processors.

traced through each pixel in the image plane, and reflects in unpre-
dictable ways off the objects it strikes. Each contact generates mul-
tiplerays, and therecursion resultsin aray tree per pixel. Theimage
planeis partitioned among processors in contiguous blocks of pixel
groups, and distributed task queues are used with task stealing. The
major data structures represent rays, ray trees, the hierarchical uni-
form grid, task queues, and the primitives that describe the scene.
The data access patterns are highly unpredictable in this application.
See [SGL94] for more information.

Volrend: This application renders a three-dimensional volume us-
ing aray casting technique. The volume is represented as a cube of
voxels (volume elements), and an octree data structure is used to
traverse the volume quickly. The program renders severa frames
from changing viewpoints, and early ray termination and adaptive
pixel sampling are implemented, although adaptive pixel sampling
is not used in this study. A ray is shot through each pixel in every
frame, but rays do not reflect. Instead, rays are sampled along their
linear paths using interpolation to compute a color for the corre-
sponding pixel. The partitioning and task queues are similar to those
in Raytrace. The main data structures are the voxels, octree and pix-
els. Data accesses are input-dependent and irregular, and no attempt
ismade at intelligent data distribution. See [NiL92] for details.

Water-Nsguared: This application is an improved version of the
Water program in SPLASH [SWG92]. This application evaluates
forces and potentials that occur over time in a system of water mol-
ecules. The forces and potentials are computed using an O(n2) ago-
rithm (hence the name), and a predictor-corrector method is used to
integrate the motion of the water molecules over time. The main dif-
ference from the SPLASH program isthat the locking strategy in the
updates to the accelerations is improved. A process updates a local
copy of the particle accelerations as it computes them, and accumu-
lates into the shared copy once at the end.

Water-Spatial: This application solves the same problem as Water-
Nsquared, but uses a more efficient algorithm. It imposes a uniform
3-D grid of cellson the problem domain, and uses an O(n) algorithm
which is more efficient than Water-Nsquared for large numbers of

molecules. The advantage of the grid of cells is that processors
which own a cell need only look at neighboring cells to find mole-
cules that might be within the cutoff radius of molecules in the box
it owns. The movement of moleculesinto and out of cells causes cell
lists to be updated, resulting in communication.

Table 1 provides a basic characterization of the applications for
a 32-processor execution. We now examine the four characteristics
previously discussed for the SPLASH-2 suite.

4  Concurrency and Load Balance

Asdiscussed in Section 2.1, the concurrency and load balance of
a program—and how they change with problem size and number of
processors—are very important to understanding whether an appli-
cation and data set are appropriate for a study involving a machine
with agiven number of processors. For example, if aprogramislim-
ited by computational load balance to asmall speedup on agivenin-
put, it may not be appropriate for usein evaluating alarge-scale ma-
chine. We study how the computational |oad balance scales with the
number of processors by measuring speedups on a PRAM architec-
tural model. When measured in this manner, deviations from ideal
speedup are attributable to load imbalance, serialization due to crit-
ical sections, and the overheads of redundant computation and par-
alelism management.

Figure 1 shows the PRAM speedups for the SPLASH-2 pro-
grams for up to 64 processors. Most of the programs speed up very
well even with the default data sets. The exceptions are LU,
Cholesky, Radiosity, and Radix. To illustrate load imbalance fur-
ther, Figure 2 showsthetime spent waiting at Synchronization points
for 32-processor executions of each application. Figure 2 indicates
the minimum, maximum, and average fraction of time, over al pro-
cesses, spent at synchronization points (locks, barriers, and pauses).
Notethat for Cholesky, LU and Radiosity, the average synchroniza-
tion time exceeds 25% of overall execution time.

The reasons for sub-linear speedups in the above four applica
tions have to do with the sizes of the input data-sets rather than the
inherent nature of the applications. In LU and Cholesky, the default
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Figure 1: Speedups for the SPL ASH-2 applications given the default input data sets shown in Table 1 and a perfect memory system. The
poor scalability of LU, Cholesky, and Radiosity isduein large part to small problem sizes. The poor scalability of Radix isdueto a
prefix computation in each phase that is not completely parallelizable.

datasetsresult in considerableload imbalance for 64 processors, de-
spite their block-oriented decompositions. Larger data sets reduce
the imbalance by providing more blocks per processor in each step
of thefactorization. In LU, the number of blocks per processor inthe
Kih step (out of n/B total blocks) is (1/p) ((n/B) —k)2 (see Sec-
tion 3 for an explanation of these parameters). Thus, larger input
data sets should be used when studying larger machines. For Radi-
osity, the sublinear speedup is also due to the use of asmall data set.
Theimbalanceisdifficult to analyze, and alarger data set is not cur-
rently available in an appropriate form. Finally, for Radix the poor
speedup at 64 processors is due to a paralel prefix computation in
each phase that cannot be completely parallelized. Thetime spentin
this prefix computation is O(logp) while the time spent in the other
phases is O(n/p), so the fraction of total work in this unbalanced
phase decreases quickly as the number of keys being sorted increas-
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Figure 2: Synchronization characteristics of the SPLASH-2
suite for 32 processors. The graph shows a breakdown of
minimum, maximum, and average execution time spent in
synchronization across all processors (locks, barriers, and
pauses) as well as user defined synchronization (for Radi-
osity only).

es. All four applications can therefore be used to evaluate larger ma-
chines aslong as larger data sets are chosen.

Overall, even with the default input data sets, most of the pro-
grams in SPLASH-2 scale well and are suitable for studying 32-64
processor systems. Because of this they are likely to be useful for
studies involving larger numbers of processors as well.

The next characteristics we examine are the sizes and scaling of
the important working sets of the applications. We study working
sets before communication to computation ratio because in the latter
section we examine not only inherent communication but also arti-
factual communication and local traffic, for which we use our under-
standing of working sets to pick parameters.

5 Working Setsand Temporal Locality

The temporal locality of aprogram, and how effectively a cache
of given organization exploits it, can be determined by examining
how a processor’s miss rate changes as afunction of cache size. Of-
ten, the relationship between miss rate and cache size is not linear,
but contains points of inflection (or knees) at cache sizes where a
working set of the program fits in the cache[Den68]. As shown
in [RSG93], many parallel applications have a hierarchy of working
sets, each corresponding to a different knee in the miss rate versus
cache size curve. Some of these working sets are more important to
performance than others, since fitting them in the cache lowers the
miss rate more.

M ethodological | mportance: Depending on how data are distribut-
ed in main memory, the capacity misses resulting from not fitting an
important working set in the cache may be satisfied locally (and in-
crease local datatraffic), or they may cause inter-node communica-
tion. Methodologically, it is very important that we understand the
sizes of an application’simportant working sets and how they scale
with application parameters and the number of processors, aswell as
how a cache's ability to hold them changes with line size and asso-
ciativity. This can help us determine which working sets are expect-
ed to fit or not fit in the cache in practice. In turn, this helps us
achieve our methodological goals of avoiding unrealistic situations
and selecting redlistic ones properly. This understanding is particu-
larly important when scaling down problem sizes for ease of simu-
lation, since cache sizes for the reduced problems must be chosen
that represent redlistic situations for full-scale problems running
with full-scale caches.

When the knees in aworking set curve are well defined knees,
and particularly when they are separated by relatively flat regions,



they present a valuable opportunity to prune the cache size dimen-
sion of the experimental space. Knowledge of the size and scaling of
an important working set can indicate whether (i) it isunrealistic for
that working set to fit in the cache for realistic problem and machine
parameters, (ii) it is unrealistic for that working set to not fit in the
cache, or (iii) both situations, fitting and not fitting, are redlistic.
This knowledge indicates which regions in the miss rate versus
cache size curves are representative of practice and which are not.
This helps us prune the space in two ways. First, we can ignore the
unrealistic regions. Second, if the curve in arepresentative regionis
relatively flat, and if all we care about with respect to a cacheisits
miss rate, then a single operating point (cache size) can be chosen
from that region and the rest can be pruned.

The inherent working sets of an application are best character-
ized by simulating fully associative caches of different sizes with
one-word cache lines. Cache sizes should be varied at a fine granu-
larity to precisely identify the sizes at which knees occur. Following
our interest in realism (Section 2.2) however, we use a 64-byte line
size, and examine only cache sizes that are powers of two. Sincethe
cache size needed to hold a working set depends on cache associa
tivity aswell, we present results for threefinite associativities, four-
way, two-way and one-way. We also supply fully-associative miss
rate information for comparison. We ignore the impact of line size
on cache size required to hold working sets for space reasons. How-
ever, because most of the programs exhibit very good spatial locality
the required cache size does not change much.

5% -

Figure 3 depicts the miss rate as a function of cache size for the
SPLASH-2 suite. Results are shown for all power-of-two cache siz-
es between 1KB and 1IMB. 1IMB is chosen because it is a realistic
sizefor second-level cachestoday, and it islarge enough to comfort-
ably accommodate the important working sets in ailmost all our ap-
plications. The methodological danger in ignoring caches smaller
than 1K B isthat there may be an important working set smaller than
this for our default problem sizes, but which growsrapidly at larger
problem sizes so that it may no longer fit in the cache. However, this
is not true for these applications.

Wefirst examinetheresultsfor our default 4-way set associative
caches (the bold lines). We see that for all the applications, the miss
rate has either completely or ailmost completely stabilized by 1MB
caches. The important working sets for these problem sizes (and for
several applications the entire footprint of data that a processor ref-
erences) are smaller than IMB. From the fact that these are redlistic
problem sizesthat can a so yield good speedups (see Section 4), and
from the sizes and growth rates of the working setsthat we shall dis-
cuss, we infer that having the important working setsfit in the cache
is an important operating point to consider for al applications. We
therefore use 1IMB caches as one of the operating points in the rest
of our characterizations. The question iswhether thereisaso areal-
istic operating point in practice where an important working set does
not fit in a modern secondary cache. In this case we should also
choose a cache size to represent this operating point. We examine
this question next.
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All of the applications have large miss rates at 1KB caches,
which decrease dramatically by IMB. For most of the applications
(Barnes, Cholesky, FFT, FMM, LU, Radiosity, Volrend, Water-
Nsqguared and Water-Spatial) the most important working set is en-
countered quite early (in these cases by 64KB). However, if awork-
ing set grows quickly with problem size or number of processors,
then there might be situationsin practice with much larger problems
or machineswhereit doesnot fit in areal second-level cache. To see
if thisis true, we examine the constitution and growth rates of the
working sets, which are summarized in Table 22 We seethat theim-
portant working sets in the applications listed above do not grow
with increasing numbers of processors, and grow either very slowly
or not at all with the data set size. They are therefore expected to al-
most always fit in realistic second-level caches in practice, and it
would not make sense to simulate cache sizes smaller than these
working sets. For example, in the LU and Cholesky factorization ap-
plications, the important working set is a single block which is a-
ways sized to fit in the cache. There are other working sets in all
these programsthat are larger and that may not fit in acachein prac-
tice, but these usually amount to a processor’ s entire partition of the
data set and turn out not to be very important to performance.

The applications that do have arealistic operating point in prac-
tice for which an important working set does not fit in the cache are
Ocean, Raytrace, Radix and to a lesser extent FFT. Ocean streams
through its partition of many different gridsin different phases of the
computation, and can incur substantial capacity and conflict misses
as problem sizes increase. In Raytrace, unstructured reflections of
rays result in large working sets and curves that are not so well de-
fined into knees and flat regions until the asymptote. Radix streams
through different sets of keyswith both regular and irregular strides
in two types of phases, and also accesses a small histogram heavily.
This results in a working set that is also not sharply defined, and

2The scaling expressions assume fully-associative caches and a one-
word linesize, sinceit isdifficult to analyze artifacts of associativity and line
size. This also makes it difficult to use analytic scaling models to predict
working sets exactly with finite-associativity caches. Users are advised to
use the base results and the working set growth rates we provide as guidesto
determine for themselves where the working sets fall for the problem and
machine sizes they choose.

which may or may not fit in the cache. And in FFT, a processor typ-
ically captures its most important working set in the cache, but may
or may not capture the next one (its partition of the data set). The
most important working set in the SPLASH-2 FFT is proportional to
arow of the ﬁ X Jﬁ matrix. If it does not fit in the cache, the row-
wise FFTs can be blocked to make the working set fit.

For these four applications we should also examine a cache size
that does not accommodate the working sets described above. For
Ocean and FFT, we choose a cache size that holds the first working
set described in Table 2 (which we expect to fit in the cachein prac-
tice) but not the second. In Radix and Raytrace, the working setsare
not sharply defined, so we might choose a range of cache sizes be-
tween 1KB and 1M B. We compromise by simply choosing areason-
able cache size that yields a relatively high capacity miss rate. A
cache size of 8KB works out well in all cases, so for these four ap-
plications we shall present results in subsequent sections for both
1MB and 8KB caches.

Figure 3 a so shows us how the missrate, and potentially the de-
sirable cache sizes to examine, change with associativity. In most
cases, increasing cache associativity from 1-way (direct-mapped) to
2-way improves miss rates greatly, while increasing from 2-way to
4-way changes them much less. While direct-mapped caches some-
times change the power-of-two cache size needed to hold the work-
ing set compared to fully-associative caches, 2-way set associative
caches do not for these problem sizes. In general, the impact of as-
sociativity on working set size is unpredictable,.

To summarize, the results and discussion in this section clearly
show that understanding the relationship between working sets and
cachesizes (i) isvery important to good experimental methodology,
and (ii) requires substantial understanding of how the important
working sets in an application’s hierarchy depend on the problem
and machine parameters.

6 Comm-to-Comp Ratio and Traffic

In this section, we examine the communication-to-computation
ratio and the traffic characteristics of applications, using our default
cache parameters (4-way set associative with 64-byte lines) and the
representative cache sizes that we identified for the default data-set
sizein the previous section (IMB in all cases and 8KB for four cas-

Growth Rate Growth Rate
of Working Impo- | Fitsin of Working Impo- Fitsin
Code Working Set 1 Set 1 rtant? | Cache? | Working Set 2 Set 2 rtant? | Cache?
Barnes Treedatafor 1 body | logDS Yes Yes partition of DS DS/P No Maybe
Cholesky One block Fixed Yes Yes partition of DS DS/P No Maybe
FFT One row of matrix /DS Yes Yes partition of DS DS/P Maybe | Maybe
FMM Expansion terms Fixedfor n,P | Yes Yes partition of DS DS/P No Maybe
LU One block Fixed Yes Yes partition of DS DS/P No Maybe
Ocean A few subrows JP/./DS Yes Yes partition of DS DS/P Yes Maybe
Radiosity BSPtree log (polygons)| Yes Yes Unstructured Unstructured No Maybe
Radix Histogram Radix r Yes Yes partition of DS DS/P Yes Maybe
Raytrace Unstructured Unstructured Yes Yes Unstructured Unstructured Yes Maybe
Volrend Octree, part of ray KlogD S+ Yes Yes partition of DS approx DS/P | No Maybe
k3/DS
Water-Nsq | Private data Fixed Yes Yes partition of DS DS No Maybe
Water-Sp Private data Fixed Yes Yes partition of DS DS/P No Maybe

Table 2. Important working sets and their growth rates for the SPLASH-2 suite. DS represents the data set size, P represents the
number of processors, and K and k represent large and small constants, respectively.




es). Thisapproach is useful for characterizing the traffic for realistic
cache parameters but not necessarily useful for characterizing thein-
herent communication in the algorithm itself, since the traffic in-
cludes artifacts of those cache parameters. In fact, we usetrue shar-
ing traffic, which is the data traffic due to true sharing misses, as an
approximation of the inherent communication. A true sharing miss
is defined so that it is independent of finite capacity, finite associa
tivity, and false sharing effects (see Section 7). The difference be-
tween the true sharing traffic and the inherent communication isthat
the true sharing traffic includes unnecessary traffic that occurs when
thereis not enough spatial locality to use the entire 64-byte commu-
nicated line. Aswewill discussin Section 7, our applications gener-
ally have good spatial locality up to 64-byte lines, so that the true
sharing traffic is a good approximation of the inherent communica
tion.

We use two metrics to evaluate the different types of traffic
needed by the programs. For programs that perform large amounts
of floating point computation, we present the communication traffic
per floating point operation (FLOP), since the number of FLOPSis
less influenced by compiler technology than the number of instruc-
tions. For programs that mostly perform integer computation, were-
port bytes per instruction executed. We break traffic down into three
major categories: (i) remote data, which is the traffic caused by
writebacks and all data transferred between nodes to satisfy proces-
sor requests, (ii) remote overhead, which is the traffic associated
with remote data-request messages, invalidations, acknowledg-
ments, replacement hints, and headers for remote data transfers, and
(iii) local data, which isthe amount of datatransmitted by processor
reguests and writebacks to local memory. Remote data can be bro-
ken down further into four subcategories: remote shared, remote
cold, remote capacity, and remote writeback. The first three subcat-
egories are a decomposition of remote traffic excluding writebacks,
by the cache miss type (remote shared consists of traffic due to re-
mote true and fal se sharing). Figure 4 showsthe traffic broken down
into these categories as well as the true sharing traffic? for 1 to 64
processor runs using the default input data-set sizes and 1IMB cach-
es. In al cases, headers for data packets, and all other overhead
packets are assumed to be 8 bytes long.

Traffic with 32 processors: Let us first examine the traffic for a
fixed number of processors by focusing our attention on the second
bar from the right for each application in Figure 4. For al integer ap-
plications other than Radix, the remote traffic (the bottom five sec-
tions of each bar) islessthan 0.1 bytes per instruction. With proces-
sors executing at 200 MIPS, this translates into less than 20MB/sec
of traffic per processor. In the absence of contention effects, thisis
well under the per-processor network bandwidths found on shared
memory multiprocessors today. For Radix, the remote traffic for
processors executing at 200 M| PS approaches 90M B/sec per proces-
sor. Thisisquite high, and thetrafficisin fact bursty aswell, so eval-
uation studies using Radix should model both memory contention
and network bandwidth limitations to provide accurate results. Fig-
ure 4 also shows that the overhead traffic is moderate for 64-byte
cachelines (we study the impact of larger cacheline sizesin Section
7). The amount of local traffic is usually small as well, since the
1IMB caches hold the important working sets and keep capacity
misses low (a decomposition of misses by type is shown in Figure
7).

For the eight floating-point intensive applications, the remote
trafficisagain typicaly quite small with IMB caches. For Cholesky,
with processors executing at 200 MFLOPS, the required bandwidth
is about 68MB/sec per processor, not unreasonable for networks

3True sharing misses do not generate remote traffic if a processor re-
quests alocally alocated cache block that has been written back after being
modified by a remote processor. The true sharing traffic shown in Figure 4
consists of local and remote traffic due to true sharing misses.

found on multiprocessors today. (We aso saw in Section 4 that
Cholesky is dominated by load imbalance for this problem size,
which further reduces bandwidth requirements.) The exception is
FFT, inwhich the remote bandwidth requirement is closeto 124M B/
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Code Growth Rate of Comm/Comp Ratio
Barnes approximately Jp/./DS
Cholesky JE/ JDis but input dependent
FFT (P-1)/(PlogD9)

FMM approximately Jp/./DS
LU Jp/./DS

Ocean JP/./DS

Radiosity unpredictable

Radix (P-1)/P

Raytrace unpredictable

Volrend unpredictable

Water-Nsq P/DS

Water-Sp JP/./DS

Table 3. Growth rates of the communication to computation
ratio for the SPLASH-2 suite. DS representsthe data set
size, and P represents the number of processors.

sec per node. Communication in FFT is also bursty, so like Radix,
studies using FFT should be careful about modeling network and
memory system bandwidth and contention.

Scaling with number of processorsand data set size: Let us now
look at the effects on traffic of changing the number of processors
while keeping the problem sizefixed (Figure 4). Typically, the com-
muni cation-to-computation ratio increases with the number of pro-
cessors due to afiner-grained decomposition of the problem. For ex-
ample, in applications that perform localized communication in a
two-dimensional physical domain, the amount of computation is of -
ten proportional to the area of a partition while the amount of com-
munication is proportional to the perimeter. Table 3 shows how the
communication-to-computation ratio changes with data set size and
number of processors for the applications in which these growth
rates can be modeled analytically. DSin the table represents the data
set size, and P is the number of processors. While FFT and Radix
have high communication to computation ratios, their growth rates
with P small, particularly at large values of P.

Let us first look at the results with IMB caches in Figure 4.
Whiletrue and false sharing traffic (and hence remote sharing traffic
in the figure) increase with P, capacity-related traffic may decrease:
A processor accesses |ess data, so more of these data may fit in its
cache. For example, aworking set that grows as DS/P may not fit in
the cache for small P, but may fit for large P. This capacity effect re-
duces local traffic in ailmost al our applications as P increases, and
can even reduce remote traffic due to capacity misses to nonlocal
data (see remote capacity traffic for Raytrace and particularly Vol-
rend, where the working set close to 1IMB for the default data set
with 32 processorsis not completely unimportant, and does not fitin
the IMB cache with smaller P). How significant the change in ca-
pacity related traffic is depends on the importance of the working set
that scales with P.

Theimpact of increasing data set sizeisusually just the opposite
of that of increasing P: Sharing traffic decreases, while capacity-re-
lated traffic (local or remote) may increase. For example, Figure 5
shows the effect of using two different data set sizesin Ocean. The
change in overdl traffic, as well asin the total communication (re-
mote) traffic, depends on how the different components scale.

To examine the representative cases where an important work-
ing set does not fit in the cache, we also present the traffic with 8K B
caches for the four applications discussed in Section 5. The results
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areshown in Figure 6. Thetotal traffic (including local) is of course
much larger than for the IMB caches. The increased capacity-relat-
ed traffic may belocal (asin Ocean and FFT) or cause communica-
tion (asin Raytrace). It istherefore more important to model conten-
tion when the working set does not fit in the cache.

Overall, the above results reaffirm the importance of under-
standing the interplay among problem size, number of processors
and working set sizesfor an application when using it in architectur-
a studies.

7  Spatial Locality and False Sharing

Thelast set of characteristicswe examine are those related to the
use of multiword cache lines: spatial locality and false sharing. Pro-
grams with good spatial locality perform well with long cache lines
due to prefetching effects. Those with poor spatial locality do better
with shorter cache lines, because they avoid fetching unnecessary
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using 8KB, 4-way associative, 64-byte line caches. All
overhead packets and data headers are assumed to be 8
bytes long. Traffic is show in bytesFLOP for FFT and
Ocean and in bytes/instruction for the others.



data and undergoing more capacity misses due to fragmentation. On
parallel machines, long cache lines can aso be detrimental if they
are used as the units of coherence (which we assume), since a pro-
gram may then exhibit false sharing [EgK89]. While perfect spatial
locality implies no false sharing, a program with quite good spatial
locality in each processor’ s reference stream (e.g. aprocessor writes
every other element of a contiguous array, thus having 50% locality)
can suffer greatly from false sharing (e.g. another processor may
write the intervening elements of the array at the sametime). In this
section, we characterize the behavior of the SPLASH-2 applications
as a function of cache line size, looking both at miss rates (which
trandate to latency) and traffic (which translates to bandwidth). We
explain results with respect to the data structures and access patterns
of the applications, classify the applicationsin this regard, and dis-
cuss how the behavior changes with data set size and the number of
processors. Methodologically, the characterization shows how the
interaction with line size depends on these parameters and that one
should therefore be aware of this dependence when performing ar-
chitectural studies. This characterization also tells us for which ap-
plications we can predict the effects of line size and for which ones
we must perform sensitivity analysis along this dimension.

If an application has perfect spatial locality, ak-fold increasein
line size will reduce the miss-rate k-fold, while keeping total data
traffic constant. In this case, there is no false sharing, and overall
traffic will decrease since the relativeimpact of header overhead de-
creases asline sizeincreases. To understand why an application falls
short of this perfect interaction, and to obtain insights into program
behavior, the missesincurred by an application are divided into four
broad components (i) cold misses, (ii) capacity (replacement) miss-
es, (iii) true sharing misses, and (iv) false sharing misses. We use the
classification scheme presented by Dubois et al. [DSR+93], which
we have extended to account for the effects of finite cache capacity.

In our classification, a missis a true sharing missif, during the
lifetime of the line in the cache, the processor accesses a value that
waswritten by adifferent processor since either (i) the last true shar-
ing miss by the same processor to the sameline, or (ii) the beginning
of the execution if thereis no such previous true sharing miss. Thus,
amissto aline that was replaced, but which would have incurred a
sharing miss (true or false) had it not been replaced is till classified
as asharing miss. A missisafalse sharing missif the line has been
modified since the last time it was in the processor’s cache (or the
beginning of the execution if thisis the first time in the processor’s
cache), but the processor does not use any of the newly defined val-
ues. All other misses are either cold misses (if theline hasnever been
in this processor’ s cache before) or capacity misses (all others). This

definition captures the true communication inherent in the applica-
tion independent of cache size, and also recognizes the benefits of
long cache linesin capturing required communication.

Following our cache size methodology, we present resultsfor all
applications with IMB 4-way set associative caches (which fit the
important working sets) and for four of the applications with 8KB
caches as well. Here we encounter an interesting methodological
question, since the cache size needed to hold aworking set may de-
pend onthelinesizeif spatial locality is not perfect. Particularly for
applications with poor spatial locality, then, it isimportant to ensure
that asthe line size changes, the cache sizes chosen still represent the
same operating point with regard to fitting a working set. Figure 7
shows the breskdown of missrate for the applications aslinesizeis
varied from 8 to 256 byteswith 1M B caches, and Figure 8 with 8KB
caches for the relevant applications.* Besides Volrend, none of the
applications start to incur many more capacity misses with 1IMB
caches as the line size changes. This is because the operating point
does not shift to the other side of an important knee in the working
set curve astheline size changes. The sameistruefor the 8K B cach-
€s.

We focus first on the results for IMB caches, which are shown
in Figure 7. In this case, all important working sets fit in the cache,
so sharing and cold misses are most prominent. Figure 7 shows that
the impact of long cache lines varies greatly across applications.
Some applications, like LU, amost halve the miss ratio with every
doubling of line size in the range we study, while others like Radi-
osity don’t improve much. Still others, like FMM, improve early on
but then become worse. We first examine the applications in afew
different categories according to the interaction of their data struc-
turesand access patternswith respect to long cache lines. During this
process, we raise some important points that architects should keep
in mind when performing evaluations that depend on line size ef-
fects. Finally, we summarize these observations at the end of this
section.

The first class of applications consists of those whose data ac-
cess patterns are regular, and whose data structures are organized so
the access patterns use good stride through contiguously allocated
data structures. These include LU, Cholesky, FFT, and Ocean. LU

“The bars in these figures contain a new category called Upgrades.
These are writes that find the memory block in cache but in shared state, and
have to send an “upgrade” request for ownership. We put upgrades in white
at the top of the bars, so readers can easily ignore them visually if necessary;
we do not discuss them with miss rates, but they are used to compute traffic
later.
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and Cholesky are blocked matrix codes that use data structures such
that a block is contiguous in the address space. FFT maintains good
stride during the row-wise FFT computations, and uses a blocked
submatrix transpose to ensure good cache line utilization. In Ocean,
processors stream through grid partitionswhich are allocated contig-
uously and locally. Theresultisthat in LU the missrate drops almost
linearly with increasing line size. In Cholesky, both the cold and true
sharing misses (but not the few false sharing misses) fall amost lin-
early aswell. In FFT, the cold and true sharing missesfall almost lin-
early until 256 bytes (this is explained shortly). In Ocean, although
the access patterns have very good spatial locality, the missratewith
1IMB caches does not fall linearly with increasing line size. Therea-
sonisthat the best spatial |ocality is obtained on the references with-
in a processor’s own partition. While these are the majority of the
references, they do not cause missesin a1IMB cachefor thisproblem
size, so only sharing misses are observed. Thus, we would expect to
see alarger influence with long cache lines when a processor’ s local
partition(s) does not fit in the cache, as shown in Figure 8. As for
sharing misses, they occur in Ocean when a processor triesto access
the elements in the nearest-neighbor subrows and subcolumns of its
adjacent partitions. The accesses to the neighboring subrows have
unit stride and good locality, while those to the subcolumns have
non-unit stride and no spatial locality.

These results bring us to an important methodological point. In
many applications the impact of long cache lines depends on appli-
cation parameters (particul arly data set size) and the number of pro-
cessors. We have seen an example of thisfor Ocean, where whether
aprocessor’ s partition fitsin the cache depends on these parameters.
Another example is provided by FFT. With our default 64K-point
FFT (256 x 256 matrix of complex doubles) and 32 processors, a
processor reads a submatrix of 8 x 8 pointsfrom every other proces-
sor during the transpose phase. Since each element is 16 bytes, asub-
row of the submatrix is 128 bytes. Up to 128 byte lines, we see very
good spatia locality for this problem size in Figure 7. But going
from 128 to 256 byte lines does not reduce either the cold miss rate
(for the first transpose) or the sharing miss rate (next two transpos-
es), although it does reduce the number of upgrades required.

Finally, amuch more dramatic exampleis provided by Radix. In
the permutation phase of this program, a processor reads keys con-
tiguously from its partition in one array and writes them in scattered
form (based on histogram values) to another array. The pattern of
writes by processors to the second array is such that on average,
writes by different processors are interleaved in the array at a gran-
ularity of n/ (r x p) keys, where n, r, and p are the number of
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keys being sorted, the radix, and the number of processors, respec-
tively. While the exact pattern is dependent on the distribution of
keys, whether or not we have substantial false sharing clearly de-
pends on how n/ (r x p) compares with the cache line size. We
therefore see the sharing missrate drop with line size, until thisratio
islessthan aline. At this point, the true sharing miss rate continues
to drop while the fal se sharing miss rate rises dramatically, making
large cache lines hurt performance.

The next class of applications are those whose data structuresare
records representing independent logical program units (e.g. mole-
cules), and in which the fields of these records are accessed differ-
ently in different phases of computation. Examples are Water-
Nsquared, Water-Spatial, Barnes-Hut and FMM. A processor in
these applications may only read certain fields of particles not
owned by it that arewritten by other processors. If these fieldsdo not
congtitute an integer multiple of the cache line size, then sharing
misses will not have perfect spatial locality. We seethisin al these
applications beyond about a 64-byte line size, with the Water pro-
grams having better spatial locality than Barnes and FMM. Also, if
these fields are located on the same cache line with other fields of a
particle that is owned and updated by another processor—in either
the same or another phase of computation—then we will see false
sharing with long cache lines. This effect is seen in Barnes and
FMM. In both these programs, true sharing misses continue to drop
with larger lines (though not linearly), and fal se sharing misses start
to grow and outweigh the true-sharing reduction by about 128-byte
lines. If cache lines are larger than a single record, false sharing
across records may result. This is more likely in Water-Nsquared
than in Barnes or FMM, since in the former a processor’ s particles
are contiguous in the array of records while in the latter the assign-
ment of particlesto processors changesdynamically so that aproces-
sor’s particles usually are not contiguous.

The third class of applications has highly unstructured access
patterns to irregular data structures. The graphics programs Ray-
trace, Volrend and Radiosity fall into this class. In Radiosity the
main data structures are written as well as read. However, access
patterns are unstructured, making it is difficult to analyze or predict
theimpact of line size and how it changes with problem size and the
number of processors. Our limited experiments (not shown) indicate
that the spatial locality of true shared data does not change itslocal-
ity patterns much, while the relative impact of false sharing increas-
es with the number of processors. However, the miss rate is low
enough that the fal se sharing may not matter very much.

Raytrace and Volrend incur little false sharing, but also have
mediocre spatia locality. False sharing is small because the main
datastructures are read-only. The primary sharing happens at theim-
age plane, which has relatively few accesses. The reason for poor
spatial locality is that the access patterns to the read-only data are
highly unstructured, and the processor that touches one small field
of avoxel or polygon may be different than the one that touches the
next field. Volrend is the one example in which the capacity miss
rate increases with line size even in 1IMB caches, due to increased
fragmentation and cache conflicts. Methodologically, this indicates
that, especially for applications like Volrend, working set issues
should in fact be re-evaluated with the larger line sizes. Asfor scal-
ing, as problem size is increased (most likely in the form of more
polygons/voxels) the primary effect is a larger capacity miss rate.
The spatial locality on scene data does not change much, though it
improves on theimage since theimage becomes|larger. The opposite
effect is obtained by reducing the problem size or increasing the
number of processors.

Figure 8 shows the results for FFT, Ocean, Radix, and Raytrace
for 8KB caches, an operating point where an important working set
doesnot fit in the cache. Asexpected, the overall missratesare high-
er since capacity misses increase substantially. The spatial locality
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Figure 9: Breakdown of traffic versus line size for 1IMB, 4-way associative caches.

and false sharing trends do not change significantly as compared to
resultsfor IMB caches, since these properties are fundamental to the
data structures and access patterns of the program, and are not too
sensitiveto cache size. The key new interaction that we seeisfor the
Ocean application, where the capacity misses show much better spa-
tial locality than true sharing misses in the IMB cache case. These
capacity misses dominate, so the overall effect of long cachelinesis
much more positive.

Finaly, Figure 9 indicates the impact of cache line size on net-
work traffic. Remote (network) traffic can be seen from the results
in Figure 9 by ignoring the top component (local traffic) of each bar.
Figure 9 shows the traffic in bytes per instruction as the line sizeis
varied. There are three points to observe from this graph. First, al-
though the traffic decreases with line sizefor LU and FFT (missrate
decreases linearly, and per-miss overhead is amortized over larger
lines), for most of the applications the overall network traffic in-
creases substantially as line sizes become larger. Thus, bandwidth
assumptions for a machine may have to be re-examined as line size
changes. Whether the reduction in miss rate is more important than
theincreased traffic depends on the latency and bandwidth provided
by the machine, and on how much latency can be hidden. Second,
the overall network traffic requirements for the SPLASH-2 suite are
still small even for large line sizes, with the exception of Radix. The
large bandwidth requirements reflect its false sharing problems at
large line sizes. If bandwidth is a possible concern, then Radix
makes agood stresstest. Finally, the constant overhead for each net-
work transaction comprises a significant fraction of total traffic for
small line sizes. Hence, although actual data traffic increases as the
line size is increased, the total traffic is usually a minimum at be-
tween 32 and 128 bytes. Our results reconfirm previous studies such
as [GuwW92], which shows that the overall network traffic in adis-
tributed shared address space multiprocessor is usualy a minimum
for cache line sizes of 32 bytes.

To summarize, in addition to showing which programs have
high bandwidth requirements with long cache lines, which have
good spatial locality and which incur false sharing, the above char-
acterization emphasizes some methodological points:

« |tisimportant that users of the SPLASH-2 suite understand the
behavior of individual applicationswhen choosing alinesizefor
their studies. Line size effects can be predicted in some pro-
grams that have excellent spatial locality, but not in others that
do not (e.g. Volrend and Raytrace) or that can have significant
false sharing relative to other types of misses(e.g., Radix, FMM,
Barnes, Radiosity).
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» The spatial locality and false sharing in a program often depend
on problem size, number of processors, and whether working
sets fit in the cache (capacity misses may have different spatial
locality than sharing misses). These effects must be understood,
and it is not sufficient to evaluate the effects of spatial locality
with asingle set of these parameters.

While there is a thresholding effect in the relationship among
line size, problem size, and number of processors, in many cases
(where this relationship is acute), line size is not as easy a pa-
rameter to prunein architectural studies as cache size.

8 Concluding Remarks

The SPLASH-2 application suite is designed to provide parallel
programs for the evaluation of architectural ideas and tradeoffs.
However, performing such evaluation well is a difficult task owing
to the large number of interacting degrees of freedom. For example,
many memory system parameters such as cache size, associativity,
and line size can both quantitatively and qualitatively impact the re-
sults of a study, as can application parameters and the number of
processors used. It is extremely time consuming to perform com-
plete sensitivity analyseson all these parameters. Since evaluationis
often done through simulation which is expensive, we are forced to
use smaller problem and machine sizes than we would really like to
evaluate. Finally, many combinations of application and machine
parameters that we might choose to evaluate might not be represen-
tative of realistic usage of the programs, so blind sweepsthrough the
space may not be appropriate. To use these programs effectively for
architectural evaluation, it istherefore very important that we under-
stand their relevant characteristics well, particularly with regard to
determining what are realistic and unrealistic regionsin the parame-
ter space, and how these regions change asimportant parameters are
scaled.

In this paper, we have tried to provide the necessary understand-
ing of the SPLASH-2 programs, as well as some methodol ogical
guidelines for their use. We have characterized the programs along
severa important behavioral axes, and described how the character-
istics scale with key application and machine parameters. These
axes are concurrency and load balancing, working-set sizes, com-
munication-to-computation ratio and traffic, and spatial locality.
Our hopeisthat this characterization will allow peopleto understand
the necessary growth rates, decide where the effects of changing cer-
tain parameters can be predicted and where they must be determined
experimentally, and prune the design space by avoiding unrealistic
and redundant operating points. We have provided some specific



guidelines for pruning the space, for example looking for knees and
flat regions in characteristic curves where these can be found (e.g.
working sets in the miss rate versus cache size curve, as well as
kneesin curvesfor bandwidth and associativity), understanding how
the parameter values where knees occur scale, and using this under-
standing to prune entire regions when possible. Of course, we must
be careful in our pruning and ensure that the characteristic that dis-
playsthe knees is the only one we care about with regard to that pa-
rameter.
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