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Abstract 

The problem of cache coherence in shared-memory multipre 
cessors has been addressed using two basic approaches: direc- 
tory schemes and snoopy cache schemes. Directory schemes 
have been given less attention in the past several years, while 
snoopy cache methods have become extremely popular. Di- 
rectory schemes for cache coherence are potentially attrac- 
tive in large multiprocessor systems that are beyond the scal- 
ing limits of the snoopy cache schemes. Slight modifications 
to directory schemes can make them competitive in perfor- 
mance with snoopy cache schemes for small multiprocessors. 
Trace driven simulation. using data collected from several real 
multiprocessor applications, is used to compare the perfor- 
mance of standard directory schemes, modifications to these 
schemes, and snoopy cache protocols. 

1 Introduction 

In the past several years, shared-memory multiprocessors 
have gained wide-spread attention due to the simplicity of 
the shared-memory parallel programming model. However, 
allowing the processors to share memory complicates the de- 
sign of the memory hierarchy. The most prominent example 
of this is the cache coherency or cache conrirtency problem, 
which is introduced if the system includes caches for each pro- 
cessor. A system of caches is said to be coherent if all copies of 
a main memory location in multiple caches remain consistent 
when the contents of that memory location are modified [I]. 
A cache coherency protocol is the mechanism by which the ce 
herency of the caches is maintained. Maintaining coherency 
entails taking special action when one processor writes to a 
block of data that exists in other caches. The data in the 
other caches, which is now stale, must be either invalidated 
or updated with the new value, depending on the protocol. 
Similarly, if a read miss occurs on a shared data item and 
memory has not been updated with the most recent value 
(aa would happen in a copy-back cache), that most recent 
value must be found and supplied to the cache that missed. 
These two actions are the essence of all cache coherency pro- 
tocols. The protocols differ primarily in how they determine 
whether the block is shared, how they find out where block 
copies reside, and how they invalidate or update copies. 

Most of the consistency schemes that have been or are be- 
ing implemented in multiprocessors are called snoopy cache 
protocols [‘2,3,4,5,6,7] because each cache in the system 
must watch all coherency transactions to determine when 
consistency-related actions should take place for shared data. 
Snoopy cache schemes store the state of each block of cached 

‘Anant Agarwal is currently with the Laboratory for Computer 
Science (NE43-418), M.I.T. Cambridge, MA 02139. 

CH2545-2/88/0000/0280S01.00 C 1988 IEEE 

data in the cache directories - the information about the state 
of the cached data is distributed. 

Another class of coherency protocols is directory-bosed 
[g,S,lO,l I]. Directory-based protocols keep a separate direc- 
tory associated with main memory that stores the state of 
each block of main memory. Each entry in this centralized 
directory may contain several fields depending on the proto- 
col, for example, a dirty bit, a bit indicating whether or not 
the block is cached, pointers to the caches that contain the 
block, etc. 

How do snoopy cache protocols work? A typical scheme 
enforces consistency by allowing multiple readers but only 
one writer. The state associated with a block’s cached copy 
denotes whether the block is, for example, (i) invalid, (ii), 
valid (possibly shared), or (iii) dirty (exclusive copy). When 
a cache miss occurs, the address is broadcast on the shared 
bus. If another cache has the block in state dirty, the state is 
changed to valid and the block is supplied to the requesting 
cache. In addition, for write misses all copies of the block 
are invalidated. Similarly, on a write hit to a clean block, the 
address is broadcast and each cache must invalidate its copy. 
In general, all cache transactions that may require a data 
transfer or state change in other caches must be broadcast 
over the bus. 

Snoopy cache schemes are popular because small-scale mul- 
tiprocessors can live within the bandwidth constraints im- 
posed by a single, shared bus to memory. This shared bus 
makes the implementation of the broadcast actions straight- 
forward. However, snoopy cache schemes will not scale be- 
yond the range of the number of processors that can be ac- 
commodated on a bus (probably no more than 20). Attempts 
to scale them by replacing the bus with a higher bandwidth 
communication network will not be successful since the con- 
sistency protocol relies on low-latency broadcasts to maintain 
coherency. For this reason, shared-memory multiprocessors 
with large numbers of processors, such as the RP3 [12], do 
not provide cache coherency support in hardware. 

These snoopy cache schemes also interfere with the 
processor-cache connection. Because the caches of all pro- 
cessors are examined on each coherency transaction, inter- 
ference between the processor and its cache is unavoidable. 
This interference can be reduced by duplicating the tags and 
snooping on the duplicate tags. However, the processor must 
write both sets of tags and thus arbitration is required on the 
duplicate tags. This impacts the cache write time which may 
slow down the overall cycle time, especially in a high perfor- 
mance machine. Attempts to reduce the bus traffic generated 
by cache coherency requests in a snoopy cache scheme results 
in fairly complex protocols. These may impact either the 
cache access time or the coherency transaction time. 

In this paper we propose that directory-based schemes are 
better suited to building large-scale. cache-coherent multi- 
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processors. where a single bus is unsuitable for a communi- 
cation mechanism. This paper is a first step in evaluating 
directory schemes using traces from real multiprocess appli- 
cations. Although we do not have sufficient data to demon- 
strate quantitatively that the directory schemes are effective 
in a large-scale multiprocessor, we do discuss how these di- 
rectory schemes can be scaled and we demonstrate that their 
performance in a small-scale multiprocessor is acceptable. 

We use trace-driven simulation, with traces obtained from 
real multiprocessor applications, to evaluate a basic directory- 
based coherency protocol that uses bus broadcasts and ver- 
ify that its performance approaches that of snoopy cache 
schemes. We then obviate broadcasts by including a valid bit 
per cache in each directory entry, allowing sequential invali- 
dation of multiple cached copies. Performance is not signifi- 
cantly degraded by this modification, and in most cases (over 
85% of writes to previously-clean blocks) no more than one 
sequential invalidation request is necessary. Unfortunately, 
the need for a valid bit per cache restricts the ability to add 
on to an existing multiprocessor without modifying parts of 
the existing system. This motivates a scheme that can per- 
form up to some small number of sequential invalidates to 
handle the most frequent case, and that resorts to some form 
of “limited broadcast” otherwise. 

The paper first reviews previous directory schemes and dis- 
cusses how they overcome the limitations created by snoopy 
cache schemes. It also proposes a general classification of 
these techniques, and identifies a few that seem most inter- 
esting for performance and implementation reasons. Section 3 
outlines the schemes that we evaluate. We describe our eval- 
uation method and the characteristics of our multiprocessor 
address traces in Section 4. Section 5 evaluates basic di- 
rectory and snoopy cache schemes and discusses their per- 
formance. Section 6 then extends the discussion to include 
more scalable directory protocols, and Section 7 concludes 
the paper. 

2 Directory Schemes for Cache 
Consistency 

The major problems that snoopy cache schemes possess are 
limited scalability and interference with the processor-cache 
write path. How do directory schemes address these prob 
lems? The major advantage directory schemes have over 
snooping protocols is that the location of the caches that 
have a copy of a shared data item are known. This means 
that a broadcast is not required to find all the shared copies. 
Instead, individual messages can be sent to the caches with 
copies when an invalidate occurs. Since these messages are 
directed (i.e., not broadcast), they can be easily sent over any 
arbitrary interconnection network, as opposed to just a bus. 
The absence of broadcasts eliminates the major limitation on 
scaling cache coherent multiprocessors to a large number of 
processors. 

Because we no longer need to examine every cache for a 
copy of the data, the duplicate tags can be eliminated. In- 
stead, we store pointers in main memory to the caches where 
the data is known to reside and invalidate their copies. The 
protocols are also simpler than the distributed snoopy algo- 
rithms because of the centralization of the information about 
each datum. 

Several directory-based consistency schemes have been pro- 

posed in the literature. Tang’s method [8] allows clean blocks 
to exist in many caches, but disallows dirty blocks from re- 
siding in more than one cache (most snoopy cache coherency 
schemes use the same policy). In this scheme, each cache 
maintains a dirty bit for each of its blocks, and the central 
directory kept at memory contains a copy of all the tags and 
dirty bits in each cache. On a read miss, the central directory 
is checked to see if the block is dirty in another cache. If so, 
consistency is maintained by copying the dirty block back to 
memory before supplying the data; if the directory indicates 
the data is not dirty in another cache, then it supplies the 
data from memory. The directory is then updated to indi- 
cate that the requesting cache now has a clean copy of the 
data. The central directory is also checked on a write miss. 
In this case, if the block is dirty in another cache then the 
block is first flushed from that cache back to memory before 
supplying the data; if the block is clean in other caches then it 
is invalidated in those caches (i.e., removed from the cachea). 
The data is then supplied to the requesting cache and the 
directory modified to show that the cache has a dirty copy of 
the block. On a write hit, the cache’s dirty bit is checked. If 
the block is already dirty, there is no need to check the central 
directory, so the write can proceed immediately. If the block 
is clean, then the cache notifies the central directory, which 
must invalidate the block in all of the other caches where it 
resides. 

Censier and Feautrier [9] proposed a similar consistency 
mechanism that performs the same actions as the Tang 
scheme but organizes the central directory differently. Tang 
duplicates each of the individual cache directories as his maiu 
directory. To find out which caches contain a block, Tang’s 
scheme must search each of these duplicate directories. In 
the Censier and Feautrier central directory, a dirty bit and 
a number of valid (or “present”) bits equal to the number 
of caches are associated with each block in main memory. 
This organization provides the same information as the du- 
plicate cache directory method but allows this information to 
be accessed directly using the address supplied to the central 
directory by the requesting cache. Each valid bit is set if the 
corresponding cache contains a valid copy of the block. Since 
a dirty block can only exist in at most one cache, no more 
than one of a block’s valid bits may be set if the dirty bit is 
set. 

Yen and Fu suggest a small refinement [ll] to the Censier 
and Feautrier consistency technique. The central directory 
is unchanged, but in addition to the valid and dirty bits, 
a flag called the single bit is associated with each block in 
the caches. A cache block’s single bit is set if and only if 
that cache is the only one in the system that contains the 
block. This saves having to complete a directory access before 
writing to a clean block that is not cached elsewhere. The 
major drawback of this scheme is that extra bus bandwidth 
is consumed to keep the single bits updated in all the caches. 
Thus, the scheme saves central directory accesses, but does 
not reduce the number of bus accesses versus the Censier and 
Feautrier protocol. 

Archibald and Baer present a directory-based consistency 
mechanism [lo] with a different organization for the central 
directory that reduces the amount of storage space in the 
directory, and also makes it easier to add more caches to the 
system. The directory saves only two bits with each block in 
main memory. These bits encode one of four possible states: 
block not cached, block clean In ezactly one cache, block clean 
in an unknown number of caches, and block dirty in ezacdy 
one cache. The directory therefore contains no information 
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to indicate which caches contain a block; the scheme relies on 
broadcasts to perform invalidates and write-back requests. 
The block clean in ezoctly one cache state obviates the need 
for a broadcast when writing to a clean block that is not 
contained in any other caches. 

Two clear differences are present among these directory 
schemes: the number of processor indices contained in the 
directories and the presence of a broadcast bit. We can thus 
classify the schemes as Dir,X, where i is the number of indices 
keot in the directorv and X is either B or NB for Broadcast ---r --- 

or No Broadcast. In a no-broadcast scheme the number of 
procemrs that have copies of a datum must always be less 
than or equal to i, the number of indices kept in the directory. 
If the scheme allows broadcast then the numbers of proces 
~~)rs can be larger and when it is (indicated by a bit in the 
directory) a broadcast is used to invalidate the cached data. 
The one case that does not make sense is Dire NB, since there 
is no way to obtain exclusive access. 

In this terminology, the Tang scheme is classified as 
Dit,,NB, the Censier and Feautrier scheme is Dir,, NB abo, 
and the Baer and Archibald scheme is DiroB. Our evalu- 
ation concentrates on a couple of key points in the design 
space: Dir, NB and DiroB. We will also present results for 
Dir, NB. 

There are two potential difficulties that prevent scalability 
of the directory schemes. First, if the scheme always or fre- 
quently requires broadcast, then it will do no better than the 
snoopy schemes. Variations in the directory schemes (e.g., 
increasing the value of i in a DiriB scheme) decrease the 
frequency of broadcast. We must also examine the dynamic 
numbers of caches that contain a shared datum to evaluate 
the actual frequency of occurrence. Second, the access to the 
directory is a potential bottleneck. However, we will show 
that the directory is not much more of a bottleneck than 
main memory, and the bandwidth to both can be increased by 
having a distributed memory hierarchy rather than central- 
ized. That is, memory is distributed together with individual 
processors. In addition to certain advantages in providing 

the organization distributes the directory, associating it with 
the individual memory modules. 

3 Schemes Evaluated 

We wiIl evaluate two directory schemes (called Diri ND and 
DiroB), and two snoopy cache schemes (Write-Through- 
With-Invalidate and Dragon) for comparison purposes. These 
particular snoopy cache techniques were selected because they 
represent two extremes of performance and complexity. The 
two directory schemes are also extremes in the number of 
simultaneous cached copies allowed. The following is a de- 
scription of these four protocols. 

The most restrictive of the four schemes is Dir, NB in 
that a given block is allowed to reside in no more than one 
cache at a time; therefore, there can be no data inconsistency 
across caches. The directory entry for each block consists of 
a pointer to the cache that contains the block. On a cache 
miss, the directory is accessed to find out which cache con- 
tains the block, that cache is notified to invalidate the block 
and write it back to memory if dirty, and the data is then 
supplied to the requesting cache. Diri NB is included in the 
evaluation because it is perhaps the simplest directory-based 
consistency scheme and is easily scaled to support a large 

number of processors. 

The DiroB is the Archibald and Baer scheme (lo] out- 
lined in the previous section. L’k i e many consistency proto- 
cols, a clean block may reside in many caches, while a dirty 
block may exist in exactly one cache. Invalidations are accom- 
plished with broadcasts; a similar scheme that uses sequen- 
tial invalidates in place of broadcasts (Dir, NB) will later be 
shown to have nearly the same performance. For the ini- 
tial evaluation, broadcasts are used in both the directory and 
snooping schemes because it results in a simpler cost model 
and allows a fair comparison of the two. 

Write-Through-With-Invalidate (WTI) is a simple snoopy 
cache protocol that relies on a write-through (as opposed to 
copy-back) cache policy and is used in several commercial 
multiprocessors. All writes to cache blocks are transmitted 
to main memory. Other caches snooping on the bus check to 
see if they have the block that is being written; if so, they 
invalidate that block in their own cache. When a different 
processor accesses the block, a cache miss will occur and the 
current data will be read from memory. Like DirsB, mul- 
tiple cached copies of clean blocks can exist simultaneously. 
Because of the high level of bus traffic caused by the write 
through strategy, WTI is generally considered to be one of the 
lowest-performance snooping cache consistency protocols, 

While the three previous schemes are all invalidation pro- 
tocols, Dragon is an update protocol, i.e., it maintains con- 
sistency by updating stale cached data with the new value 
rather than by invalidating the stale data [13]. The cache 
keeps state with each block to indicate whether or not each 
block is shared; all writes to shared blocks must be broadcast 
on the bus so that the other copies can be updated. Dragon 
uses a special “shared” line to determine whether a block is 
currently being shared or not. Each cache snoops on the bus 
and pulls the shared line whenever it sees an address for which 
it has a cached copy of the data. Dragon is often considered 
to have the best performance among snoopy cache schemes. 

4 Evaluation Methodology 

Simulation using multiprocessor address traces is our method 
of evaluation. Most previous studies that evaluated direc- 
tory schemes used analytical models [14,9] and those that 
used simulation had to make rough assumptions about the 
characteristics of shared memory references [IO]. Because the 
performance of cache coherence schemes is very sensitive to 
the shared-memory reference patterns, both of these previ- 
ous methods have the drawback that the results are highly 
dependent on the assumptions made. Trace-driven simula- 
tion has the drawback that the same trace is used to evaluate 
all consistency protocols, while in reality the reference pat- 
tern would be different for each of the schemes due to their 
timing differences. But the traces represent at least one pos- 
sible run of a real program, and can accurately distinguish 
the performance of various schemes for that run. 

This paper deals with the inherent cost of sharing in multi- 
processors and the memory traffic required to maintain cache 
consistency. We therefore exclude the misses caused by the 
first reference to a block in the trace because these occur in a 
uniprocessor infinite cache as well. The additional overhead 
due to multiprocessing now consists of (i) the extra misses 
that occur due to fetching the block into multiple caches and 
(ii) the cache consistency-related operations. Our results rep 
resent exactly this overhead. 



We wish to isolate and measure only the traffic incurred 
in maintaining a coherent shared memory system in a multi- 
processor. To this end our simulations use infinite caches to 
eliminate the traffic caused by interference in finite caches. 
The performance of an infinite cache is also a good approxi- 
mation to that of a very large cache, where the miss rate is 
essentially the cost of first-time fetches. Moreover, the per- 
formance of a system with smaller caches can be estimated 
to first order by adding the costs due to the finite cache size. 
Typical cache miss rates are reported in [15,16]. 

4.1 Performance Measures 

To determine the absolute performance of a multiprocessor 
system using total processor utilizations, a simulation must 
be carried out for every hardware model desired. A problem 
with this approach is that the sharing characteristics may 
change because the simulation model is different from the 
hardware used for gathering data. 

We would like a metric for performance that is not tied to 
any particular processor or interconnection network architec- 
ture. We use the communication cost per memory reference 
an our basic metric. This cost is simply the average number of 
cycles that the bus (or network) is busy during a data transfer 
from a cache to another cache, cache to directory, and from 
cache to or from main memory. We refer to this metric sim- 
ply as bus cycles per memory reference. Thii metric abstracts 
away details of how the directories are implemented, either 
as centralized or distributed. It also requires no assumptions 
about the relative speeds of local and non-local memories, 
local and non-local buses, or processor and the bus. 

Since the snoopy cache schemes require a bus-based archi- 
tecture, we often talk of a bus in our directory models. How- 
ever, the directory schemes we discuss are general enough to 
work in any network architecture. While the bus cycles metric 
allows us to compare the relative merits of various cache con- 
sietency schemes, it cannot indicate accurately the absolute 
performance of a multiprocessor. However, in lightly loaded 
systems, multiprocessor performance could still be approxi- 
mated to first order from the number of bus cycles used per 
memory reference. 

The bus cycles per reference for a given cache consistency 
scheme are computed as follows. First we measure event fro 
quencies for various schemes by simulating multiple infinite 
caches, where events are different types of memory references. 
The simulator reads a reference from a trace and takes a eet 
of actions depending on the type of the reference, the state 
of the referenced block, and the given cache consistency pro- 
tocol. 

The event frequencies are now weighted by their respective 
coats in bus cycles to give the aggregate number of bus cycles 
ueed per reference. For example, a cache miss event might 
require 5 bus cycles of communication cost (1 cycle to send 
the address, and 4 cycles to get 4 words of data back). If 
the rate of cache misses is, say, I%, then the bus cycles used 
up by cache misses per reference is 0.05. In like manner, the 
costs due to other events are added to get the aggregate cost 
per reference. Since the choice of the hardware model (i.e., 
cost per event) is independent of the event frequencies, we 
need just one simulation run per protocol to compute the 
event frequencies, and we can then vary costs for different 
hardware models. 

Details of traces used in simulations are given in Sec- 

tion 4.4. The block size used throughout this paper is 4 words 
(16 bytes). In all the schemes we assume that instructions do 
not cause any cache consistency related traffic. In addition, 
we do not include the bus traffic caused by instruction misses 
in our performance estimations. 

4.2 Event Frequencies 

The event types of interest in a particular scheme are those 
that may result in a bus transaction. All the schemes re- 
quire the frequency of read and write misses (read-miss or rm 
and write-m& or wm. Depending on the scheme some other 
events rates are also needed: 

The Dragon events include the fraction of references to 
blocks that are clean or dirty in another cache on a read 
or write miss (rm-blk-cln, rm-blk-drty, rum-blk-cln, and 
wm-blk-drty). The clean and dirty numbers indicate 
when a block is supplied by another cache as opposed to 
from main memory. In addition, we need the frequency 
of write updates to blocks present in multiple caches on 
a write hit (wh-dirtrib). 

The write-through scheme requires the frequency of 
writes (write) because alI writes are transmitted to 
main memory. 

In the Dir, NB scheme, we need the fractions of read 
and write references that miss in the cache, but are 
present in a dirty or clean state in another cache 
(ma-blk-cln, rm-blk-drty, wm-blk-cln, and wm-blk-drty). 
These events indicate when invalidation requests must 
be sent to another cache and when dirty blocks have to 
be written back to main memory. 

In the Dir0 B scheme, in addition to the four events for 
the Dir, NB scheme, we need the proportion of write 
hits to a clean block (wh-blk-cln). This event represents 
queries to the directory to check whether the block rc 
sides in any other cache and has to be invalidated. We 
also measure the distribution of the number of caches 
the block resides in during a possibie invalidation situ- 
ation to determine the impact of various invalidations 
methods. The various invalidation methods include full 
broadcast, limited broadcast, and sequential invalida- 
tion messages to each cache. 

4.3 Bus Models 

The bus cycle costs for the various events depend on the 
sophistication of the bus and main memory. The examples 
given in this paper use the bus timing depicted in Table 1. 
From this basic bus model, and some assumptions about the 
sophistication of the bus, we can estimate the cost in bus cy- 
cles for each of the events that cause bus traffic. Because the 
costs can differ depending on the type of bus or interconnec- 
tion network used, we will use two bus types of widely diverse 
complexity to give an idea of how the schemes will perform 
over a range of bus and memory organizations. On the so- 
phisticated end of the spectrum, we use a pipeline-d bus model 
that has separate data and address paths. At the other end 
we use a non-pipelined bus that has to multiplex the address 
and data on the same bus lines. The data transfer width of 
both buses is assumed to be one word (32 bits). 

For the pipelined bus with separate lines for address and 
data, memory or non-local cache accesses cost 5 cycles (1 
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Table 1: Timing for fundamental bus operations, 

Transfer 1 data word 1 
Invalidate 1 
Wait for Directory 2 
Wait for Memory 2 
Wait for Cache 1 1 

Table 2: Summary of bus cycle costs. 
APPP.P vnr I Pioelined Bus I Non-Pioebned Bus 

k 

ii 

cycle to send the address and 4 cycles to get the data). The 
bus is not held during the access. Write-backs cost 4 cycles: 
the first cycle sends the address and the first data word; the 
remaining 3 words are sent in the next three cycles. When 
the data is transferred to memory during a write-back, the 
requesting cache also receives it. The bus cycles used for data 
transfer are then counted under the write-back category. A 
writothrough to memory or a write update to another cache 
is 1 cycle. A directory check uses 1 cycle to send the address, 
and invalidates are also 1 cycle. 

IA the non-pipelined bus model, the bus has to be held 
during the memory or non-local cache access. Here a memory 
access costs 7 cycles, I cycle to send the address, 2 cycles to 
wait for the memory access, and 4 cycles to get the data. 
An access from another cache is 6 cycles, and takes a cycle 
less than the memory access because the cache access wait 
ir only one cycle. Write-backs still cost 4 cycles; the waiting 
for memory is counted under the memory access category, 
and the bus need not be held while the write into memory is 
taking place. As in the pipelined bus, the data is also received 
by the requesting cache on a write-back. A writtthrough or 
a write update to another cache is 2 cycles, 1 cycle to send 
the address and 1 cycle to send the data word. A directory 
check is 3 cycles, 1 cycle to send the address and 2 cycles to 
access the directory. When possible the directory access is 
overlapped with memory access. Invalidations cost 1 cycle. 
These costs for the pipelined and non-pipelined bus models 
are summarized in Table 2. 

In the non-pipelined bus, once the address and the data 
have been sent to memory or to another cache on a write 
(or write-back) operation we assume that the bus need not 
be held while data is being written into memory. Thhr is 
a simplifying assumption and is usually true if memory is 
interleaved. We also assume that broadcast invalidates, like 
a single invalidate, take 1 cycle. We do not attempt to model 
the impact of broadcast invalidate on the bus cycle time. 

4.4 Multiprocessor Trace Data 

Table 3: Summary of trace characteristics. All numbers 
are in tbousands. 

Trace Refs lnstr DRd DWrt User Sys 
POPS 3142 1624 1257 261 2817 325 

THOR 3222 1456 1398 368 2727 495 
PER0 3508 1834 1266 409 3242 266 

four processors. An address trace contains interleaved ad- 
dress streams of the four processors. CPU numbers and prc- 
cess identifiers of the active processes are also included in 
the trace so that any address in the trace can be identified 
as coming from a given CPU and given process. A current 
limitation of ATUM traces is that only four-CPU traces can 
be obtained. We are currently developing a multiprocessor 
simulator that builds on top of the VAX T-bit mechanism 
and can provide accurate simulated traces of a much larger 
number of processors. 

The traces show some amount of sharing between proces- 
sors that is induced solely by process migration. The char- 
acteristics of migration-induced sharing is significantly differ- 
ent from sharing present in the application processes [18]. We 
would like to exclude this form of sharing from our study since 
a large multiprocessor would probably try to minimize pro- 
cess migration. Therefore, for this study, we consider sharing 
between processes (as opposed to sharing between proces 
sors), which means that a block is considered shared only if 
it is accessed by more than one process. Because the time 
sequence of the references in the trace is strictly maintained, 
the temporal ordering of various synchronization activities in 
the trace, such as getting or releasing a synchronization lock, 
is still retained. As a check on this model, we collected all our 
statistics based on both process sharing and processor sharing 
and found that the numbers were not significantly different. 
The similarity is due to the few instances of process migration 
in our traces. 

We currently use three traces for this study. The traces are 
of parallel applications running under the MACH operating 
system [19]. Table 3 describes the characteristics of the traces 
used for this study. POPS [20] is a parallel implementation of 
OPSS, which is a rule-based programming language. THOR 
is a parallel impiementation of a logic simulator done by Larry 
Soule at Stanford University. PER0 is a p.arallel VLSI router 
written by Jonathan Rose at Stanford. All traces include 
operating system activity, which comprises roughly 10% of 
the traces. 

The traces show a larger-than-usual read-to-write reference 
ratio due to spins on locks in POPS and THOR. The spins 
correspond to the first test in a test-and-test-d-set synchro- 
nization primitive. These appear as reads of a data word. 
Roughly one-third of all the reads correspond to reads due to 
spinning on a lock. We will look at how the number of spins 
on a lock affect the performance of cache consistency schemes 
in Section 5.2. The ratio of reads to writes in PER0 is also 
high, but this reference behavior is a result of the algorithm 
used in the program. 

The traces used for simulation are obtained using a multipro 
cessor extension of the ATUM address tracing scheme [17]. 
The multiprocessor used for tracing was a VAX 8350 with 
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5 Evaluation of Directory-Based 
and Snoopy-Cache Protocols 

The first step in evaluating the four consistency schemes is to 
measure the frequency of each type of reference. Table 4 gives 
a breakdown of the various types of references that take place 
in the four schemes and their relative frequencies, averaged 
across the three traces. All numbers in this table are shown 
as a percentage of the total number of references. 

Table 4: Event frequencies. The numbers are shown as 
a percentage of all references. The fractions in each sub- 
category add up. 

Event Schemes 
Type D:rl NB ‘WTI Dwo B Dragn 
instr 49.72 49.72 49.72 49.72 
read 39.82 39.82 39.82 39.82 

rd-hit 34.32 38.88 38.88 39.20 
rd-miss(rm) 5.18 0.62 0.62 0.30 

rm-blk-cln 4.78 - 0.23 0.14 
rm-blk-drty 0.40 - 0.40 0.17 

rm-first-ref 0.32 0.32 0.32 0.32 
write 10.46 10.46 10.46 10.46 

wrt-hit(wh) 10.19 10.25 10.25 10.36 
wh-blk-cln 0.41 
wh-blk-drty 9.84 
wh-distrib 1.74 
wh-local 8.62 

wrt-miss( wm) 0.17 0.12 0.11 0.02 
wm-blk-cln 0.08 - 0.02 0.01 
wm-blk-drty 0.09 - 0.09 0.01 

wm-first-ref 0.08 0.08 0.08 0.08 

LEGEND 
inmtr 
read 

rd-hit 
rd-miss( rm) 

rm-blk-cln 
rm-blk-drty 

rm-first-ref 
write 

wrt-hit(wh) 
wh-blk-cln 
wh-blk-drty 
wh-distrib 
wh-local 

wrtmiss(wm) 
wm-blk-cln 
wm-blk-drty 

wm-first-ref 

Instructions 
RudS 
Read hits 
Read misses 
Read miss, blk clean in another cache 
Read miss, blk dirty in another cache 
Read miss, first reference to the blk 
Write9 
Write hits 
Write hit, blk clean in the same cache 
Write hit, blk dirty in the same cache 
Write hit, block also in another cache 
Write hit, blk not in another cache 
Write miss 
Write miss, blk clean in another cache 
Write miss, blk dirty in another cache 
Write miss, first reference to the blk 

We can make several useful observations about the cache 
behavior as well as the data sharing behavior of the traces 
from these event counts. The most obvious feature of the 
numbers for the Dir] NB consistency scheme is the high rate 
of data read misses (5.18% of all references), indicating a high 
penalty for allowing a block to reside in no more than one 
cache at a time. The Dir, NB numbers also show a low rate 
of data write misses (0.17% of all references), which implies 
that most data writes occur on blocks which have first been 

brought into the cache via read misses.’ Furthermore, it is 
usually the case that no other process accesses those blocks 
between the read immediately preceding a write and the write 
itself, since this situation would result in a write miss for the 
Dir, NB scheme. The DiroB consistency technique, on the 
other hand, shows a much smaller rate of read misses (0.62%) 
than Dir, NB, illustrating that most of the misses incurred in 
Dir1 NB were caused by read sharing among multiple pro 
cewes. 

The fact that the reference rates for the WTI method 
match those of DirsB brings up an interesting point. A 
cache consistency protocol can be thought of as being made 

up of two parts: a specification of the state changes of the 
data in the caches (e.g., when is data brought into the cache, 
invalidated) and the protocol which is used to accomplish 
that specification (e.g., write-through with bus snooping, cen- 
tralized directory). The frequency with which each of the 
events listed in Table 4 occurs depends only on the state 
change specification, not on the method used to implement 
it. Since DiroB and WTI both rely on the same basic data 
state-change model of allowing multiple cached copies of clean 
blocks but only a single copy of dirty blocks, their event ire- 
quencies are identical. (However, they do differ in that Dir0 B 
allows main memory blocks to become stale with respect to 
cache blocks. This distinction and the difference in cost asso 
ciated with some events accounts for their disparity in perfor- 
mance.) This basic state-change model is also found in some 
other consistency schemes [7] and the event frequencies for 
DiroB and WTI are valid for these as well. 

The Dragon consistency mechanism differs from the oth- 
ers in Table 4 because it is an update protocol rather than 
an invalidation protocol. For this reason the miss rates are 
very small in an infinite cache; once a block is loaded into a 
cache, it remains there forever. The most important events 
for Dragon are not cache misses, but rather write hits that 
cause a bus transaction. The numbers in the table indicate 
that roughly one-sixth of all writes require a bus broadcast 
to perform a write update. 

Viewing the event frequencies in absolute terms (rather 
than in relation to the frequencies in other schemes) can pro- 
vide some insight into the amount of overhead generated by 
enforcing cache consistency in a multiprocessor. One sim- 
ple metric of this overhead (for an invalidation protocol) is 
the increase in the cache miss rate due to the invalidations 
required to ensure consistency. Since they were generated us- 
ing infinite caches, the miss rates in Table 4 are an upper 
bound on the amount by which the miss rate of a finite- 
sized cache will increase.’ From Table 4 we can compute 
the component of the miss rate due to invalidations caused 
by cache coherency. Because there are no invalidations in 
the Dragon scheme, its miss rate is the native miss rate for 
these traces. From Table 4, the data component of the na- 
tive miss rate is 0.72%. Therefore, the difference between 
the DiroB data miss rate and the native data miss rate is 
1.13 - 0.72 = 0.41% which is the miss rate component due to 
cache coherency. Consistency-related misses therefore com- 
prise 0.41/1.13 = 36% of the total miss rate. 

In invalidation schemes like Dir0 B, a write to a previously- 

1 Accesses to lock variables - a successful test followed by a test 
and set in the test-and-test-&-set primitive - are an example. 

aThe coherency-related misses will be fewer in a finitcsized 
cache because some of the blocks that would be invalidated to 
enforce consistency in an infinite cache have already been purC;ed 
in a finite cache due to cache interference. 
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Figure 1: Number of caches in which a block must be 
invaiidated on a write to a previously-clean block. 

clean block must invalidate that block in all other caches that 
have a copy. This is the case for two events in Table 4: wm- 
blk-cln and wh-blk-cln. Figure 1 shows the histogram of the 
number of other caches that contain a previously-clean block 
when it is written (i.e., when one of the above two events 
occurs). This number is equal to the number of caches in 
which a clean block must be invalidated when it is written, 
The figure shows that on average, over 85% of the writes to 
previously-clean blocks cause invalidations in no more than 
one cache.3 This points out the inefficiency in using a bus 
broadcast to accomplish the invalidation operation, and sng- 
gests some possible enhancements to directory-based conti- 
tency schemes which will be discussed shortly. 

Figure 2 shows the average number of bus cycles per refer- 
ence, calculated as described in Section 4. The two endpoints 
of each bar represent the performance of the pipelined and 
non-pipelined buses. The performance of DiroB approaches 
that of the Dragon scheme for this metric. Not surprisingly, 
DirlNB and WTI are much worse than DiroB and Dragon. 
As observed in [l], Dragon shows the best performance be- 
cause the cost of a write update is assumed to be much lower 
than the cost of an invalidation and a subsequent miss. Fig- 
ure 3 shows the average number of bus cycles per reference for 
the individual traces. The numbers for the POPS and THOR 
traces are similar, while those for PER0 are much smaller. 
The chief reason is that the fraction of references to shared 
blocks in PER0 is much smaller than in POPS and THOR. 
Another observation is that the relative performance of the 
four schemes does not depend strongly on the sophistication 
of the bus. For the remainder of the paper we will focus on 
the pipelined bus for brevity. 

Table 5 shows the breakdown by operation of the average 
number of bus cycles per reference. DiroB is shown to use 

3The number of times that invalidations occur in no more than 
one cache, computed as a fraction of all references that may require 
invalidations, is even larger. Such references, in addition CO writes 
that occur to previously-cl- blocks, include read/write miss& 
CO blocks dirty in another cache (rm-blL-drty. wm-61Ldrty), which 
require exactly one invalidation. 

Figure 2: Range of bus cycle requirements (average). 
The low value of each bar corresponds to the pipeiined 
bus and high value to the non-pipelined bus. 

m 

m POPS 
m THOR 
m PER0 

Figure 3: Range of bus cycle requirements for the in- 
dividual traces. The low value of each bar corresponds 
to the pipeiined bus and high value to the non-pipelined 
bus. 
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close to 50% more bus cycles than the Dragon scheme (0.0491 
versus 0.0336). The performance of D&B in a reai system is 
closer to Dragon than this metric indicates because the fixed 
costs of references which use the bus impact Dragon more 
severely, a~ pointed out in Section 5.1. 

As an interesting aside, the DiraB event frequencies can be 
used to estimate the performance of the Berkeley Ownership 
protocol [7] by modifying the DiroB cost model. The cost 
models are different because DitsB has to probe the directory 
to find out whether it needs to do an invalidate, while the 
Berkeley scheme gets this information from the state of the 
block in the cache.’ The cost modd for the Berkeley scheme 
is thus derived from the D&B scheme by trivially setting 
the directory access cost to 0 bus cydes. With this model, 
the number of bus cycles consumed by an average reference 
in the Berkeley scheme is 0.0499, placing it roughly midway 
between the DiroB and Dragon echemes. 

Table 5: Breakdown of bus cyclea for the pipelined bus. 
Thecategory “wt or wup” stands for write-through in the 
WTI scheme and write update in the Dragon scheme. 
Note that directory accesses can always be overlapped 
with memory accesses in DiqNB. 

Access 

mem access 

dir accessi 1 I - 1 0.0041 1 - 
cnmulative ( 0.3210 1 0.1466 1 0.0491 1 0.0336 

The data in Table 5 is showu graphically in Figure 4. The 
figure depicts the breakdown of the bun cycles ss a &action 
of the total number of bus cycles used by each scheme, hlgh- 
lighting the relative importance of various eventa. In Dirt NB, 
for instance, the high miss rate on clean blocks makee the 
number of bus cycles spent on invali&ations and writ&a&s 
small compared to the number of memory acceesea Not sur- 
prisingly, most of the bus cycles consumed in WTI are due to 
the write-through cache policy. The Dragon scheme splits its 
bus cycles evenly between loading up each cache with data 
and using the bus on write hits to keep that data cotiknt. 

In Dir0 B, the number of cycles used for directory acceaa 
that cannot be overlapped with memory acceaa ia small rel- 
ative to the total number of cyden This result diminisha 
previous concerns that the directory itself could be a major 
performance bottleneck In fact, the reqnired directory band- 
width is only slightly higher than the bandwidth to memory. 
Techniques used to increase available memory bandwidth, 
such as distributing memory with the individual processors, 
can be applied to the directory M well. The fraction of cydes 
spent on invalidationa is low, which implies that increasing 
this cost by a small factor will caw a relativeiy small in- 
crease in the total number of bus cydes used by DiroB. Thin 
result indicates that invalidating data in caches nequentially 
(rather than using a bus broad-t) may be viable without 
severely degrading performance. This case will be evaluated 

“lb Berkeley scheme, in sdditiom uses s different state far a 
dirty block that becoma &ared to enable the cache to supply a 
block rather than memory. This optimization does not impact our 
paiormance metric in the pipelined bru. 

further in Section 6. 
The data in Table 5 can be used to determine the system 

performance in a shard-bus environment. The number of 
bus cycles consumed by a reference in the best scheme with a 
sophisticated bus is about 0.03 on average. In other words, a 
processor will use a bus cycle every 30 references, or a bus cy- 
de every 15 instructions since on average each instruction in 
the traces makes one data reference. (We assume instruction 
n&es do not cause bus transactions.) A lo-MIPS processor 
will therefore require a bus cycle every 1500ns, and a bar with 
a cyde time of 1OOns will only yield a maximum performance 
of 15 effective processors. This limit is an optimistic upper 
bound because we have not indaded the bandwidth require- 
ments of instruction misses, the effects of finite data caches, 
or the effects of bus contention. 

DiQB 

Figure 4: Bus cycle breakdown in the various schemes M 
a &action of the total number of bus cycles used in the 
acheme. The code dir is directory access, inv is invali- 
date, wb is write-back, memacc is memory accwa, wt irr 
write through, and wup ia write update. 

5.1 System Performance 

Total system performance cannot be determined from the bur 
cyda metric alone. A betkr metric for thin purpose is aver- 
age memory access time as seeu by each processor, but this 
metric requires many assumptions about the implementation 
of the memory hierarchy. Regardless of the memory system 
details, it is dear that the additional waiting time beyond the 
number of bnr cydea for a reference as seen by the processor 
will be at least one bus cyde time. This additional “bus cy- 
de” is used for initial cache accaa, propagation delay through 
the bus controller, and bus arbitration. Figure 5 shows the 
average number of bus cycles per bus tra-tion for each of 



the schemes. Because the average Dragon cost is smaller than 
D;r,,B, the performance of the Dragon scheme will be more 
sensitive to changing that cost by a constant value. Conse- 
quently, for the metric of average memory access time as seen 
by the processor, we would expect Dragon to show less of an 
advantage than with the bus cycles metric. 

Even using the bus cyclea metric we can get an idea of 
the effect of adding a small constant number of bus cycles 
to the cost models. If q bus cycles are added to the cost of 
each bus transaction, the performance for Dragon is given by 
0.0236 + 0.02066 and the performance for DhB is given by 
0.0491 + 0.0114g bus cycles per reference. For example, with 
Q = 1 D&B needs only 12% more bus cycles than Dragon, 
as compared with 46% in Figure 2. 

5.2 Impact of Spin Locks on Cache Con- 
sistency Performance 

Spin lock reads severely degrade the performance of the 
Dir1 NB scheme as measured by our bus cycles metric. The 
number of bus cycles in Dir1 NB is over a factor of six greater 
than the number used by DiroB. As mentioned earlier one- 
third of the reads in POPS and THOR are due to spins on 
a lock. Because two processes often spin on the same lock, 
locks frequently bounce back and forth between two caches 
in the Dir, NB scheme. To verify this phenomenon, we ran a 
set of experiments excluding all the tests on locks in the three 
traces. As expected DiroB gave the rame performance M be- 
fore, while the performance of Dir1 NB improved significantly 
(from 0.32 to 0.12 bus cycles per reference). 

The impact of spin locking on the performance of the 
Dir1 NB scheme is also interesting in another light. Software 
cache consistency schemes that flush a critical section from 
the cache after each use wilI behave like the Dirt NB scheme. 
For reasonable performance, these schemes must take special 
care in handling locks. 

6 Directory Scheme Alternatives 
for Scalability 

The need to perform full broadcasts limits the potential to 
de a multiprocessor to a large number of processors. To 
obviate full broadcasts, pointers to all caches containing a 
block can be maintained in the directory (Dir, NB [9] ). IJI 
this scheme, sequential invalidations are sent to each of the 
caches denoted by the pointers inlrtead of using a full broad- 
cast. We evaluated this scheme assuming that each inv& 
dation consumes one bus cycle. The number of bus cycles 
per reference for a pipelined bus increares from 0.0491 in the 
fuB broadcast case (DiroB) to 0.0499 in the sequential invd- 
idate case (Dir”NB). The performance degradation in small 
because often no more than one invaiidation is necessary,5 

Although the sequential invalidation scheme has compara- 
ble performance to the broadcast scheme, the directory size 
increases in proportion to the number of processors. The next 
scheme that we discuss capitalizes on the observation that a 
single invalidation request in the most common case. The 
directory maintains exactly one pointer and a broadcast bit 

‘Note that our data was obtained from a machluc with only 
four processors. We IUV trying to obtain traces for a much larger 
number of processes and hope to extmd our resulta shortly. 

J- 
Figure 5: Average bus cycles per bus tranSaction in var- 
ious schemes. 

per block (Dirt B). If more than one cache has a block the 
broadcast bit is set. When the directory is queried, a sin- 
gle invalidation request is issued if the broadcast bit is clear; 
otherwise, the invalidation must be broadcast. While it is 
hard to quantize the exact effects of broadcasts, the follow- 
ing simple model can help indicate the performance of such 
a scheme. Suppose that a single invalidation takes one bus 
cyde as usual, and that a broadcast uses b cycles. With this 
simple model, this directory scheme requires 0.0485 +O.O006b 
cycles per memory reference. This scheme can be extended 
to use i pointers (i > 1) and a broadcast bit (DitiB). The 
broadcast requirement can he eliminated if the number of al- 
lowed copies of a block is restricted to i a~ in the scheme 
denoted Diri NB. This scheme trades off a slightly increased 
miss rate for avoiding broadcasts altogether. 

We can also use limited broadcasts if the caches where block 
copies exist are known. The number of bits in the main mem- 
ory directory can be reduced by storing a simple code repre- 
senting a set of caches, which is a superset of all caches with a 
copy of the block. For example, consider storing a word with 
d digits where each digit takes on one of three values: O,l, 
and both. If each digit in the word is either a 0 or a 1, then 
the word is the index to exactly one cache in the system. If 
any digit is coded l&h, then the word denotes caches whose 
indices may either be a 0 or a 1 in that digit, but match the 
rut of the word. If i digits are coded bofh, then 2’ caches 
are denoted. In Iike manner, we can code a set of caches that 
indudes all block copies. Each digit can be coded in 2 bits, 
thus requiring 21og(n) bits in a system with n caches. 

As the above examples show, a class of directory schemes 
exist that can trade off a small amount of performance for 
scalability and ease of implementation. An accurate evalu- 
ation of the tradeoffs will require traces from a much larger 
number of processors. 
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7 Conclusions 

This paper shows that directory-based cache consistency 
schemes are an interesting approach for providing shared 
memory in a large-scale multiprocessor. The directory struc- 
ture removes the major limitation of snoopy-cache schemes - 
the reliance on broadcasts - while providing similar efficiency 
in handling shared references. The bandwidth requirement 
to the directory, long considered a potential bottleneck, is 
shown to be not much more severe than the memory band- 
width need. The basic bandwidth limitation to the memory 
and the directory can be mitigated by distributing them on 
the processor boards. This technique allows the bandwidth to 
both the memory and the directory to scale with the number 
of processors. 

We evaluated the performance of directory schemes in a 
small-scale multiprocessor environment using trace driven 
simulation. The performance of the directory protocols is 
reasonably competitive to the snoopy cache schemes. In ad- 
dition the simulations show that most blocks that are written 
into are present in only a small number of other caches, which 
makes broadcast invalidates inefficient. This result suggeata 
that a directory structure that stores with each block only 
a small number of pointers to caches containing the block is 
sufficient. If this data holds for large-scale multiprocessors, 
directories will provide an efficient method of implementing 
shared memory. 
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