
An Evaluation of Directory Schemes for Cache Coherence

Anant Agarwal,’ Richard Simoni, John Hennessy. and Mark Horowitz
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

The problem of cache coherence in shared-memory multipre
cessors has been addressed using two basic approaches: direc-
tory schemes and snoopy cache schemes. Directory schemes
have been given less attention in the past several years, while
snoopy cache methods have become extremely popular. Di-
rectory schemes for cache coherence are potentially attrac-
tive in large multiprocessor systems that are beyond the scal-
ing limits of the snoopy cache schemes. Slight modifications
to directory schemes can make them competitive in perfor-
mance with snoopy cache schemes for small multiprocessors.
Trace driven simulation. using data collected from several real
multiprocessor applications, is used to compare the perfor-
mance of standard directory schemes, modifications to these
schemes, and snoopy cache protocols.

1 Introduction

In the past several years, shared-memory multiprocessors
have gained wide-spread attention due to the simplicity of
the shared-memory parallel programming model. However,
allowing the processors to share memory complicates the de-
sign of the memory hierarchy. The most prominent example
of this is the cache coherency or cache conrirtency problem,
which is introduced if the system includes caches for each pro-
cessor. A system of caches is said to be coherent if all copies of
a main memory location in multiple caches remain consistent
when the contents of that memory location are modified [I].
A cache coherency protocol is the mechanism by which the ce
herency of the caches is maintained. Maintaining coherency
entails taking special action when one processor writes to a
block of data that exists in other caches. The data in the
other caches, which is now stale, must be either invalidated
or updated with the new value, depending on the protocol.
Similarly, if a read miss occurs on a shared data item and
memory has not been updated with the most recent value
(aa would happen in a copy-back cache), that most recent
value must be found and supplied to the cache that missed.
These two actions are the essence of all cache coherency pro-
tocols. The protocols differ primarily in how they determine
whether the block is shared, how they find out where block
copies reside, and how they invalidate or update copies.

Most of the consistency schemes that have been or are be-
ing implemented in multiprocessors are called snoopy cache
protocols [‘2,3,4,5,6,7] because each cache in the system
must watch all coherency transactions to determine when
consistency-related actions should take place for shared data.
Snoopy cache schemes store the state of each block of cached

‘Anant Agarwal is currently with the Laboratory for Computer
Science (NE43-418), M.I.T. Cambridge, MA 02139.

CH2545-2/88/0000/0280S01.00 C 1988 IEEE

data in the cache directories - the information about the state
of the cached data is distributed.

Another class of coherency protocols is directory-bosed
[g,S,lO,l I]. Directory-based protocols keep a separate direc-
tory associated with main memory that stores the state of
each block of main memory. Each entry in this centralized
directory may contain several fields depending on the proto-
col, for example, a dirty bit, a bit indicating whether or not
the block is cached, pointers to the caches that contain the
block, etc.

How do snoopy cache protocols work? A typical scheme
enforces consistency by allowing multiple readers but only
one writer. The state associated with a block’s cached copy
denotes whether the block is, for example, (i) invalid, (ii),
valid (possibly shared), or (iii) dirty (exclusive copy). When
a cache miss occurs, the address is broadcast on the shared
bus. If another cache has the block in state dirty, the state is
changed to valid and the block is supplied to the requesting
cache. In addition, for write misses all copies of the block
are invalidated. Similarly, on a write hit to a clean block, the
address is broadcast and each cache must invalidate its copy.
In general, all cache transactions that may require a data
transfer or state change in other caches must be broadcast
over the bus.

Snoopy cache schemes are popular because small-scale mul-
tiprocessors can live within the bandwidth constraints im-
posed by a single, shared bus to memory. This shared bus
makes the implementation of the broadcast actions straight-
forward. However, snoopy cache schemes will not scale be-
yond the range of the number of processors that can be ac-
commodated on a bus (probably no more than 20). Attempts
to scale them by replacing the bus with a higher bandwidth
communication network will not be successful since the con-
sistency protocol relies on low-latency broadcasts to maintain
coherency. For this reason, shared-memory multiprocessors
with large numbers of processors, such as the RP3 [12], do
not provide cache coherency support in hardware.

These snoopy cache schemes also interfere with the
processor-cache connection. Because the caches of all pro-
cessors are examined on each coherency transaction, inter-
ference between the processor and its cache is unavoidable.
This interference can be reduced by duplicating the tags and
snooping on the duplicate tags. However, the processor must
write both sets of tags and thus arbitration is required on the
duplicate tags. This impacts the cache write time which may
slow down the overall cycle time, especially in a high perfor-
mance machine. Attempts to reduce the bus traffic generated
by cache coherency requests in a snoopy cache scheme results
in fairly complex protocols. These may impact either the
cache access time or the coherency transaction time.

In this paper we propose that directory-based schemes are
better suited to building large-scale. cache-coherent multi-

353

processors. where a single bus is unsuitable for a communi-
cation mechanism. This paper is a first step in evaluating
directory schemes using traces from real multiprocess appli-
cations. Although we do not have sufficient data to demon-
strate quantitatively that the directory schemes are effective
in a large-scale multiprocessor, we do discuss how these di-
rectory schemes can be scaled and we demonstrate that their
performance in a small-scale multiprocessor is acceptable.

We use trace-driven simulation, with traces obtained from
real multiprocessor applications, to evaluate a basic directory-
based coherency protocol that uses bus broadcasts and ver-
ify that its performance approaches that of snoopy cache
schemes. We then obviate broadcasts by including a valid bit
per cache in each directory entry, allowing sequential invali-
dation of multiple cached copies. Performance is not signifi-
cantly degraded by this modification, and in most cases (over
85% of writes to previously-clean blocks) no more than one
sequential invalidation request is necessary. Unfortunately,
the need for a valid bit per cache restricts the ability to add
on to an existing multiprocessor without modifying parts of
the existing system. This motivates a scheme that can per-
form up to some small number of sequential invalidates to
handle the most frequent case, and that resorts to some form
of “limited broadcast” otherwise.

The paper first reviews previous directory schemes and dis-
cusses how they overcome the limitations created by snoopy
cache schemes. It also proposes a general classification of
these techniques, and identifies a few that seem most inter-
esting for performance and implementation reasons. Section 3
outlines the schemes that we evaluate. We describe our eval-
uation method and the characteristics of our multiprocessor
address traces in Section 4. Section 5 evaluates basic di-
rectory and snoopy cache schemes and discusses their per-
formance. Section 6 then extends the discussion to include
more scalable directory protocols, and Section 7 concludes
the paper.

2 Directory Schemes for Cache
Consistency

The major problems that snoopy cache schemes possess are
limited scalability and interference with the processor-cache
write path. How do directory schemes address these prob
lems? The major advantage directory schemes have over
snooping protocols is that the location of the caches that
have a copy of a shared data item are known. This means
that a broadcast is not required to find all the shared copies.
Instead, individual messages can be sent to the caches with
copies when an invalidate occurs. Since these messages are
directed (i.e., not broadcast), they can be easily sent over any
arbitrary interconnection network, as opposed to just a bus.
The absence of broadcasts eliminates the major limitation on
scaling cache coherent multiprocessors to a large number of
processors.

Because we no longer need to examine every cache for a
copy of the data, the duplicate tags can be eliminated. In-
stead, we store pointers in main memory to the caches where
the data is known to reside and invalidate their copies. The
protocols are also simpler than the distributed snoopy algo-
rithms because of the centralization of the information about
each datum.

Several directory-based consistency schemes have been pro-

posed in the literature. Tang’s method [8] allows clean blocks
to exist in many caches, but disallows dirty blocks from re-
siding in more than one cache (most snoopy cache coherency
schemes use the same policy). In this scheme, each cache
maintains a dirty bit for each of its blocks, and the central
directory kept at memory contains a copy of all the tags and
dirty bits in each cache. On a read miss, the central directory
is checked to see if the block is dirty in another cache. If so,
consistency is maintained by copying the dirty block back to
memory before supplying the data; if the directory indicates
the data is not dirty in another cache, then it supplies the
data from memory. The directory is then updated to indi-
cate that the requesting cache now has a clean copy of the
data. The central directory is also checked on a write miss.
In this case, if the block is dirty in another cache then the
block is first flushed from that cache back to memory before
supplying the data; if the block is clean in other caches then it
is invalidated in those caches (i.e., removed from the cachea).
The data is then supplied to the requesting cache and the
directory modified to show that the cache has a dirty copy of
the block. On a write hit, the cache’s dirty bit is checked. If
the block is already dirty, there is no need to check the central
directory, so the write can proceed immediately. If the block
is clean, then the cache notifies the central directory, which
must invalidate the block in all of the other caches where it
resides.

Censier and Feautrier [9] proposed a similar consistency
mechanism that performs the same actions as the Tang
scheme but organizes the central directory differently. Tang
duplicates each of the individual cache directories as his maiu
directory. To find out which caches contain a block, Tang’s
scheme must search each of these duplicate directories. In
the Censier and Feautrier central directory, a dirty bit and
a number of valid (or “present”) bits equal to the number
of caches are associated with each block in main memory.
This organization provides the same information as the du-
plicate cache directory method but allows this information to
be accessed directly using the address supplied to the central
directory by the requesting cache. Each valid bit is set if the
corresponding cache contains a valid copy of the block. Since
a dirty block can only exist in at most one cache, no more
than one of a block’s valid bits may be set if the dirty bit is
set.

Yen and Fu suggest a small refinement [ll] to the Censier
and Feautrier consistency technique. The central directory
is unchanged, but in addition to the valid and dirty bits,
a flag called the single bit is associated with each block in
the caches. A cache block’s single bit is set if and only if
that cache is the only one in the system that contains the
block. This saves having to complete a directory access before
writing to a clean block that is not cached elsewhere. The
major drawback of this scheme is that extra bus bandwidth
is consumed to keep the single bits updated in all the caches.
Thus, the scheme saves central directory accesses, but does
not reduce the number of bus accesses versus the Censier and
Feautrier protocol.

Archibald and Baer present a directory-based consistency
mechanism [lo] with a different organization for the central
directory that reduces the amount of storage space in the
directory, and also makes it easier to add more caches to the
system. The directory saves only two bits with each block in
main memory. These bits encode one of four possible states:
block not cached, block clean In ezactly one cache, block clean
in an unknown number of caches, and block dirty in ezacdy
one cache. The directory therefore contains no information

354

to indicate which caches contain a block; the scheme relies on
broadcasts to perform invalidates and write-back requests.
The block clean in ezoctly one cache state obviates the need
for a broadcast when writing to a clean block that is not
contained in any other caches.

Two clear differences are present among these directory
schemes: the number of processor indices contained in the
directories and the presence of a broadcast bit. We can thus
classify the schemes as Dir,X, where i is the number of indices
keot in the directorv and X is either B or NB for Broadcast ---r ---

or No Broadcast. In a no-broadcast scheme the number of
procemrs that have copies of a datum must always be less
than or equal to i, the number of indices kept in the directory.
If the scheme allows broadcast then the numbers of proces
~~)rs can be larger and when it is (indicated by a bit in the
directory) a broadcast is used to invalidate the cached data.
The one case that does not make sense is Dire NB, since there
is no way to obtain exclusive access.

In this terminology, the Tang scheme is classified as
Dit,,NB, the Censier and Feautrier scheme is Dir,, NB abo,
and the Baer and Archibald scheme is DiroB. Our evalu-
ation concentrates on a couple of key points in the design
space: Dir, NB and DiroB. We will also present results for
Dir, NB.

There are two potential difficulties that prevent scalability
of the directory schemes. First, if the scheme always or fre-
quently requires broadcast, then it will do no better than the
snoopy schemes. Variations in the directory schemes (e.g.,
increasing the value of i in a DiriB scheme) decrease the
frequency of broadcast. We must also examine the dynamic
numbers of caches that contain a shared datum to evaluate
the actual frequency of occurrence. Second, the access to the
directory is a potential bottleneck. However, we will show
that the directory is not much more of a bottleneck than
main memory, and the bandwidth to both can be increased by
having a distributed memory hierarchy rather than central-
ized. That is, memory is distributed together with individual
processors. In addition to certain advantages in providing

the organization distributes the directory, associating it with
the individual memory modules.

3 Schemes Evaluated

We wiIl evaluate two directory schemes (called Diri ND and
DiroB), and two snoopy cache schemes (Write-Through-
With-Invalidate and Dragon) for comparison purposes. These
particular snoopy cache techniques were selected because they
represent two extremes of performance and complexity. The
two directory schemes are also extremes in the number of
simultaneous cached copies allowed. The following is a de-
scription of these four protocols.

The most restrictive of the four schemes is Dir, NB in
that a given block is allowed to reside in no more than one
cache at a time; therefore, there can be no data inconsistency
across caches. The directory entry for each block consists of
a pointer to the cache that contains the block. On a cache
miss, the directory is accessed to find out which cache con-
tains the block, that cache is notified to invalidate the block
and write it back to memory if dirty, and the data is then
supplied to the requesting cache. Diri NB is included in the
evaluation because it is perhaps the simplest directory-based
consistency scheme and is easily scaled to support a large

number of processors.

The DiroB is the Archibald and Baer scheme (lo] out-
lined in the previous section. L’k i e many consistency proto-
cols, a clean block may reside in many caches, while a dirty
block may exist in exactly one cache. Invalidations are accom-
plished with broadcasts; a similar scheme that uses sequen-
tial invalidates in place of broadcasts (Dir, NB) will later be
shown to have nearly the same performance. For the ini-
tial evaluation, broadcasts are used in both the directory and
snooping schemes because it results in a simpler cost model
and allows a fair comparison of the two.

Write-Through-With-Invalidate (WTI) is a simple snoopy
cache protocol that relies on a write-through (as opposed to
copy-back) cache policy and is used in several commercial
multiprocessors. All writes to cache blocks are transmitted
to main memory. Other caches snooping on the bus check to
see if they have the block that is being written; if so, they
invalidate that block in their own cache. When a different
processor accesses the block, a cache miss will occur and the
current data will be read from memory. Like DirsB, mul-
tiple cached copies of clean blocks can exist simultaneously.
Because of the high level of bus traffic caused by the write
through strategy, WTI is generally considered to be one of the
lowest-performance snooping cache consistency protocols,

While the three previous schemes are all invalidation pro-
tocols, Dragon is an update protocol, i.e., it maintains con-
sistency by updating stale cached data with the new value
rather than by invalidating the stale data [13]. The cache
keeps state with each block to indicate whether or not each
block is shared; all writes to shared blocks must be broadcast
on the bus so that the other copies can be updated. Dragon
uses a special “shared” line to determine whether a block is
currently being shared or not. Each cache snoops on the bus
and pulls the shared line whenever it sees an address for which
it has a cached copy of the data. Dragon is often considered
to have the best performance among snoopy cache schemes.

4 Evaluation Methodology

Simulation using multiprocessor address traces is our method
of evaluation. Most previous studies that evaluated direc-
tory schemes used analytical models [14,9] and those that
used simulation had to make rough assumptions about the
characteristics of shared memory references [IO]. Because the
performance of cache coherence schemes is very sensitive to
the shared-memory reference patterns, both of these previ-
ous methods have the drawback that the results are highly
dependent on the assumptions made. Trace-driven simula-
tion has the drawback that the same trace is used to evaluate
all consistency protocols, while in reality the reference pat-
tern would be different for each of the schemes due to their
timing differences. But the traces represent at least one pos-
sible run of a real program, and can accurately distinguish
the performance of various schemes for that run.

This paper deals with the inherent cost of sharing in multi-
processors and the memory traffic required to maintain cache
consistency. We therefore exclude the misses caused by the
first reference to a block in the trace because these occur in a
uniprocessor infinite cache as well. The additional overhead
due to multiprocessing now consists of (i) the extra misses
that occur due to fetching the block into multiple caches and
(ii) the cache consistency-related operations. Our results rep
resent exactly this overhead.

We wish to isolate and measure only the traffic incurred
in maintaining a coherent shared memory system in a multi-
processor. To this end our simulations use infinite caches to
eliminate the traffic caused by interference in finite caches.
The performance of an infinite cache is also a good approxi-
mation to that of a very large cache, where the miss rate is
essentially the cost of first-time fetches. Moreover, the per-
formance of a system with smaller caches can be estimated
to first order by adding the costs due to the finite cache size.
Typical cache miss rates are reported in [15,16].

4.1 Performance Measures

To determine the absolute performance of a multiprocessor
system using total processor utilizations, a simulation must
be carried out for every hardware model desired. A problem
with this approach is that the sharing characteristics may
change because the simulation model is different from the
hardware used for gathering data.

We would like a metric for performance that is not tied to
any particular processor or interconnection network architec-
ture. We use the communication cost per memory reference
an our basic metric. This cost is simply the average number of
cycles that the bus (or network) is busy during a data transfer
from a cache to another cache, cache to directory, and from
cache to or from main memory. We refer to this metric sim-
ply as bus cycles per memory reference. Thii metric abstracts
away details of how the directories are implemented, either
as centralized or distributed. It also requires no assumptions
about the relative speeds of local and non-local memories,
local and non-local buses, or processor and the bus.

Since the snoopy cache schemes require a bus-based archi-
tecture, we often talk of a bus in our directory models. How-
ever, the directory schemes we discuss are general enough to
work in any network architecture. While the bus cycles metric
allows us to compare the relative merits of various cache con-
sietency schemes, it cannot indicate accurately the absolute
performance of a multiprocessor. However, in lightly loaded
systems, multiprocessor performance could still be approxi-
mated to first order from the number of bus cycles used per
memory reference.

The bus cycles per reference for a given cache consistency
scheme are computed as follows. First we measure event fro
quencies for various schemes by simulating multiple infinite
caches, where events are different types of memory references.
The simulator reads a reference from a trace and takes a eet
of actions depending on the type of the reference, the state
of the referenced block, and the given cache consistency pro-
tocol.

The event frequencies are now weighted by their respective
coats in bus cycles to give the aggregate number of bus cycles
ueed per reference. For example, a cache miss event might
require 5 bus cycles of communication cost (1 cycle to send
the address, and 4 cycles to get 4 words of data back). If
the rate of cache misses is, say, I%, then the bus cycles used
up by cache misses per reference is 0.05. In like manner, the
costs due to other events are added to get the aggregate cost
per reference. Since the choice of the hardware model (i.e.,
cost per event) is independent of the event frequencies, we
need just one simulation run per protocol to compute the
event frequencies, and we can then vary costs for different
hardware models.

Details of traces used in simulations are given in Sec-

tion 4.4. The block size used throughout this paper is 4 words
(16 bytes). In all the schemes we assume that instructions do
not cause any cache consistency related traffic. In addition,
we do not include the bus traffic caused by instruction misses
in our performance estimations.

4.2 Event Frequencies

The event types of interest in a particular scheme are those
that may result in a bus transaction. All the schemes re-
quire the frequency of read and write misses (read-miss or rm
and write-m& or wm. Depending on the scheme some other
events rates are also needed:

The Dragon events include the fraction of references to
blocks that are clean or dirty in another cache on a read
or write miss (rm-blk-cln, rm-blk-drty, rum-blk-cln, and
wm-blk-drty). The clean and dirty numbers indicate
when a block is supplied by another cache as opposed to
from main memory. In addition, we need the frequency
of write updates to blocks present in multiple caches on
a write hit (wh-dirtrib).

The write-through scheme requires the frequency of
writes (write) because alI writes are transmitted to
main memory.

In the Dir, NB scheme, we need the fractions of read
and write references that miss in the cache, but are
present in a dirty or clean state in another cache
(ma-blk-cln, rm-blk-drty, wm-blk-cln, and wm-blk-drty).
These events indicate when invalidation requests must
be sent to another cache and when dirty blocks have to
be written back to main memory.

In the Dir0 B scheme, in addition to the four events for
the Dir, NB scheme, we need the proportion of write
hits to a clean block (wh-blk-cln). This event represents
queries to the directory to check whether the block rc
sides in any other cache and has to be invalidated. We
also measure the distribution of the number of caches
the block resides in during a possibie invalidation situ-
ation to determine the impact of various invalidations
methods. The various invalidation methods include full
broadcast, limited broadcast, and sequential invalida-
tion messages to each cache.

4.3 Bus Models

The bus cycle costs for the various events depend on the
sophistication of the bus and main memory. The examples
given in this paper use the bus timing depicted in Table 1.
From this basic bus model, and some assumptions about the
sophistication of the bus, we can estimate the cost in bus cy-
cles for each of the events that cause bus traffic. Because the
costs can differ depending on the type of bus or interconnec-
tion network used, we will use two bus types of widely diverse
complexity to give an idea of how the schemes will perform
over a range of bus and memory organizations. On the so-
phisticated end of the spectrum, we use a pipeline-d bus model
that has separate data and address paths. At the other end
we use a non-pipelined bus that has to multiplex the address
and data on the same bus lines. The data transfer width of
both buses is assumed to be one word (32 bits).

For the pipelined bus with separate lines for address and
data, memory or non-local cache accesses cost 5 cycles (1

356

Table 1: Timing for fundamental bus operations,

Transfer 1 data word 1
Invalidate 1
Wait for Directory 2
Wait for Memory 2
Wait for Cache 1 1

Table 2: Summary of bus cycle costs.
APPP.P vnr I Pioelined Bus I Non-Pioebned Bus

k

ii

cycle to send the address and 4 cycles to get the data). The
bus is not held during the access. Write-backs cost 4 cycles:
the first cycle sends the address and the first data word; the
remaining 3 words are sent in the next three cycles. When
the data is transferred to memory during a write-back, the
requesting cache also receives it. The bus cycles used for data
transfer are then counted under the write-back category. A
writothrough to memory or a write update to another cache
is 1 cycle. A directory check uses 1 cycle to send the address,
and invalidates are also 1 cycle.

IA the non-pipelined bus model, the bus has to be held
during the memory or non-local cache access. Here a memory
access costs 7 cycles, I cycle to send the address, 2 cycles to
wait for the memory access, and 4 cycles to get the data.
An access from another cache is 6 cycles, and takes a cycle
less than the memory access because the cache access wait
ir only one cycle. Write-backs still cost 4 cycles; the waiting
for memory is counted under the memory access category,
and the bus need not be held while the write into memory is
taking place. As in the pipelined bus, the data is also received
by the requesting cache on a write-back. A writtthrough or
a write update to another cache is 2 cycles, 1 cycle to send
the address and 1 cycle to send the data word. A directory
check is 3 cycles, 1 cycle to send the address and 2 cycles to
access the directory. When possible the directory access is
overlapped with memory access. Invalidations cost 1 cycle.
These costs for the pipelined and non-pipelined bus models
are summarized in Table 2.

In the non-pipelined bus, once the address and the data
have been sent to memory or to another cache on a write
(or write-back) operation we assume that the bus need not
be held while data is being written into memory. Thhr is
a simplifying assumption and is usually true if memory is
interleaved. We also assume that broadcast invalidates, like
a single invalidate, take 1 cycle. We do not attempt to model
the impact of broadcast invalidate on the bus cycle time.

4.4 Multiprocessor Trace Data

Table 3: Summary of trace characteristics. All numbers
are in tbousands.

Trace Refs lnstr DRd DWrt User Sys
POPS 3142 1624 1257 261 2817 325

THOR 3222 1456 1398 368 2727 495
PER0 3508 1834 1266 409 3242 266

four processors. An address trace contains interleaved ad-
dress streams of the four processors. CPU numbers and prc-
cess identifiers of the active processes are also included in
the trace so that any address in the trace can be identified
as coming from a given CPU and given process. A current
limitation of ATUM traces is that only four-CPU traces can
be obtained. We are currently developing a multiprocessor
simulator that builds on top of the VAX T-bit mechanism
and can provide accurate simulated traces of a much larger
number of processors.

The traces show some amount of sharing between proces-
sors that is induced solely by process migration. The char-
acteristics of migration-induced sharing is significantly differ-
ent from sharing present in the application processes [18]. We
would like to exclude this form of sharing from our study since
a large multiprocessor would probably try to minimize pro-
cess migration. Therefore, for this study, we consider sharing
between processes (as opposed to sharing between proces
sors), which means that a block is considered shared only if
it is accessed by more than one process. Because the time
sequence of the references in the trace is strictly maintained,
the temporal ordering of various synchronization activities in
the trace, such as getting or releasing a synchronization lock,
is still retained. As a check on this model, we collected all our
statistics based on both process sharing and processor sharing
and found that the numbers were not significantly different.
The similarity is due to the few instances of process migration
in our traces.

We currently use three traces for this study. The traces are
of parallel applications running under the MACH operating
system [19]. Table 3 describes the characteristics of the traces
used for this study. POPS [20] is a parallel implementation of
OPSS, which is a rule-based programming language. THOR
is a parallel impiementation of a logic simulator done by Larry
Soule at Stanford University. PER0 is a p.arallel VLSI router
written by Jonathan Rose at Stanford. All traces include
operating system activity, which comprises roughly 10% of
the traces.

The traces show a larger-than-usual read-to-write reference
ratio due to spins on locks in POPS and THOR. The spins
correspond to the first test in a test-and-test-d-set synchro-
nization primitive. These appear as reads of a data word.
Roughly one-third of all the reads correspond to reads due to
spinning on a lock. We will look at how the number of spins
on a lock affect the performance of cache consistency schemes
in Section 5.2. The ratio of reads to writes in PER0 is also
high, but this reference behavior is a result of the algorithm
used in the program.

The traces used for simulation are obtained using a multipro
cessor extension of the ATUM address tracing scheme [17].
The multiprocessor used for tracing was a VAX 8350 with

357

5 Evaluation of Directory-Based
and Snoopy-Cache Protocols

The first step in evaluating the four consistency schemes is to
measure the frequency of each type of reference. Table 4 gives
a breakdown of the various types of references that take place
in the four schemes and their relative frequencies, averaged
across the three traces. All numbers in this table are shown
as a percentage of the total number of references.

Table 4: Event frequencies. The numbers are shown as
a percentage of all references. The fractions in each sub-
category add up.

Event Schemes
Type D:rl NB ‘WTI Dwo B Dragn
instr 49.72 49.72 49.72 49.72
read 39.82 39.82 39.82 39.82

rd-hit 34.32 38.88 38.88 39.20
rd-miss(rm) 5.18 0.62 0.62 0.30

rm-blk-cln 4.78 - 0.23 0.14
rm-blk-drty 0.40 - 0.40 0.17

rm-first-ref 0.32 0.32 0.32 0.32
write 10.46 10.46 10.46 10.46

wrt-hit(wh) 10.19 10.25 10.25 10.36
wh-blk-cln 0.41
wh-blk-drty 9.84
wh-distrib 1.74
wh-local 8.62

wrt-miss(wm) 0.17 0.12 0.11 0.02
wm-blk-cln 0.08 - 0.02 0.01
wm-blk-drty 0.09 - 0.09 0.01

wm-first-ref 0.08 0.08 0.08 0.08

LEGEND
inmtr
read

rd-hit
rd-miss(rm)

rm-blk-cln
rm-blk-drty

rm-first-ref
write

wrt-hit(wh)
wh-blk-cln
wh-blk-drty
wh-distrib
wh-local

wrtmiss(wm)
wm-blk-cln
wm-blk-drty

wm-first-ref

Instructions
RudS
Read hits
Read misses
Read miss, blk clean in another cache
Read miss, blk dirty in another cache
Read miss, first reference to the blk
Write9
Write hits
Write hit, blk clean in the same cache
Write hit, blk dirty in the same cache
Write hit, block also in another cache
Write hit, blk not in another cache
Write miss
Write miss, blk clean in another cache
Write miss, blk dirty in another cache
Write miss, first reference to the blk

We can make several useful observations about the cache
behavior as well as the data sharing behavior of the traces
from these event counts. The most obvious feature of the
numbers for the Dir] NB consistency scheme is the high rate
of data read misses (5.18% of all references), indicating a high
penalty for allowing a block to reside in no more than one
cache at a time. The Dir, NB numbers also show a low rate
of data write misses (0.17% of all references), which implies
that most data writes occur on blocks which have first been

brought into the cache via read misses.’ Furthermore, it is
usually the case that no other process accesses those blocks
between the read immediately preceding a write and the write
itself, since this situation would result in a write miss for the
Dir, NB scheme. The DiroB consistency technique, on the
other hand, shows a much smaller rate of read misses (0.62%)
than Dir, NB, illustrating that most of the misses incurred in
Dir1 NB were caused by read sharing among multiple pro
cewes.

The fact that the reference rates for the WTI method
match those of DirsB brings up an interesting point. A
cache consistency protocol can be thought of as being made

up of two parts: a specification of the state changes of the
data in the caches (e.g., when is data brought into the cache,
invalidated) and the protocol which is used to accomplish
that specification (e.g., write-through with bus snooping, cen-
tralized directory). The frequency with which each of the
events listed in Table 4 occurs depends only on the state
change specification, not on the method used to implement
it. Since DiroB and WTI both rely on the same basic data
state-change model of allowing multiple cached copies of clean
blocks but only a single copy of dirty blocks, their event ire-
quencies are identical. (However, they do differ in that Dir0 B
allows main memory blocks to become stale with respect to
cache blocks. This distinction and the difference in cost asso
ciated with some events accounts for their disparity in perfor-
mance.) This basic state-change model is also found in some
other consistency schemes [7] and the event frequencies for
DiroB and WTI are valid for these as well.

The Dragon consistency mechanism differs from the oth-
ers in Table 4 because it is an update protocol rather than
an invalidation protocol. For this reason the miss rates are
very small in an infinite cache; once a block is loaded into a
cache, it remains there forever. The most important events
for Dragon are not cache misses, but rather write hits that
cause a bus transaction. The numbers in the table indicate
that roughly one-sixth of all writes require a bus broadcast
to perform a write update.

Viewing the event frequencies in absolute terms (rather
than in relation to the frequencies in other schemes) can pro-
vide some insight into the amount of overhead generated by
enforcing cache consistency in a multiprocessor. One sim-
ple metric of this overhead (for an invalidation protocol) is
the increase in the cache miss rate due to the invalidations
required to ensure consistency. Since they were generated us-
ing infinite caches, the miss rates in Table 4 are an upper
bound on the amount by which the miss rate of a finite-
sized cache will increase.’ From Table 4 we can compute
the component of the miss rate due to invalidations caused
by cache coherency. Because there are no invalidations in
the Dragon scheme, its miss rate is the native miss rate for
these traces. From Table 4, the data component of the na-
tive miss rate is 0.72%. Therefore, the difference between
the DiroB data miss rate and the native data miss rate is
1.13 - 0.72 = 0.41% which is the miss rate component due to
cache coherency. Consistency-related misses therefore com-
prise 0.41/1.13 = 36% of the total miss rate.

In invalidation schemes like Dir0 B, a write to a previously-

1 Accesses to lock variables - a successful test followed by a test
and set in the test-and-test-&-set primitive - are an example.

aThe coherency-related misses will be fewer in a finitcsized
cache because some of the blocks that would be invalidated to
enforce consistency in an infinite cache have already been purC;ed
in a finite cache due to cache interference.

3.58

!(:-

g w-

70-

w-

w-

w

w

w

10

0
0 1 2 2 4

Figure 1: Number of caches in which a block must be
invaiidated on a write to a previously-clean block.

clean block must invalidate that block in all other caches that
have a copy. This is the case for two events in Table 4: wm-
blk-cln and wh-blk-cln. Figure 1 shows the histogram of the
number of other caches that contain a previously-clean block
when it is written (i.e., when one of the above two events
occurs). This number is equal to the number of caches in
which a clean block must be invalidated when it is written,
The figure shows that on average, over 85% of the writes to
previously-clean blocks cause invalidations in no more than
one cache.3 This points out the inefficiency in using a bus
broadcast to accomplish the invalidation operation, and sng-
gests some possible enhancements to directory-based conti-
tency schemes which will be discussed shortly.

Figure 2 shows the average number of bus cycles per refer-
ence, calculated as described in Section 4. The two endpoints
of each bar represent the performance of the pipelined and
non-pipelined buses. The performance of DiroB approaches
that of the Dragon scheme for this metric. Not surprisingly,
DirlNB and WTI are much worse than DiroB and Dragon.
As observed in [l], Dragon shows the best performance be-
cause the cost of a write update is assumed to be much lower
than the cost of an invalidation and a subsequent miss. Fig-
ure 3 shows the average number of bus cycles per reference for
the individual traces. The numbers for the POPS and THOR
traces are similar, while those for PER0 are much smaller.
The chief reason is that the fraction of references to shared
blocks in PER0 is much smaller than in POPS and THOR.
Another observation is that the relative performance of the
four schemes does not depend strongly on the sophistication
of the bus. For the remainder of the paper we will focus on
the pipelined bus for brevity.

Table 5 shows the breakdown by operation of the average
number of bus cycles per reference. DiroB is shown to use

3The number of times that invalidations occur in no more than
one cache, computed as a fraction of all references that may require
invalidations, is even larger. Such references, in addition CO writes
that occur to previously-cl- blocks, include read/write miss&
CO blocks dirty in another cache (rm-blL-drty. wm-61Ldrty), which
require exactly one invalidation.

Figure 2: Range of bus cycle requirements (average).
The low value of each bar corresponds to the pipeiined
bus and high value to the non-pipelined bus.

m

m POPS
m THOR
m PER0

Figure 3: Range of bus cycle requirements for the in-
dividual traces. The low value of each bar corresponds
to the pipeiined bus and high value to the non-pipelined
bus.

359

close to 50% more bus cycles than the Dragon scheme (0.0491
versus 0.0336). The performance of D&B in a reai system is
closer to Dragon than this metric indicates because the fixed
costs of references which use the bus impact Dragon more
severely, a~ pointed out in Section 5.1.

As an interesting aside, the DiraB event frequencies can be
used to estimate the performance of the Berkeley Ownership
protocol [7] by modifying the DiroB cost model. The cost
models are different because DitsB has to probe the directory
to find out whether it needs to do an invalidate, while the
Berkeley scheme gets this information from the state of the
block in the cache.’ The cost modd for the Berkeley scheme
is thus derived from the D&B scheme by trivially setting
the directory access cost to 0 bus cydes. With this model,
the number of bus cycles consumed by an average reference
in the Berkeley scheme is 0.0499, placing it roughly midway
between the DiroB and Dragon echemes.

Table 5: Breakdown of bus cyclea for the pipelined bus.
Thecategory “wt or wup” stands for write-through in the
WTI scheme and write update in the Dragon scheme.
Note that directory accesses can always be overlapped
with memory accesses in DiqNB.

Access

mem access

dir accessi 1 I - 1 0.0041 1 -
cnmulative (0.3210 1 0.1466 1 0.0491 1 0.0336

The data in Table 5 is showu graphically in Figure 4. The
figure depicts the breakdown of the bun cycles ss a &action
of the total number of bus cycles used by each scheme, hlgh-
lighting the relative importance of various eventa. In Dirt NB,
for instance, the high miss rate on clean blocks makee the
number of bus cycles spent on invali&ations and writ&a&s
small compared to the number of memory acceesea Not sur-
prisingly, most of the bus cycles consumed in WTI are due to
the write-through cache policy. The Dragon scheme splits its
bus cycles evenly between loading up each cache with data
and using the bus on write hits to keep that data cotiknt.

In Dir0 B, the number of cycles used for directory acceaa
that cannot be overlapped with memory acceaa ia small rel-
ative to the total number of cyden This result diminisha
previous concerns that the directory itself could be a major
performance bottleneck In fact, the reqnired directory band-
width is only slightly higher than the bandwidth to memory.
Techniques used to increase available memory bandwidth,
such as distributing memory with the individual processors,
can be applied to the directory M well. The fraction of cydes
spent on invalidationa is low, which implies that increasing
this cost by a small factor will caw a relativeiy small in-
crease in the total number of bus cydes used by DiroB. Thin
result indicates that invalidating data in caches nequentially
(rather than using a bus broad-t) may be viable without
severely degrading performance. This case will be evaluated

“lb Berkeley scheme, in sdditiom uses s different state far a
dirty block that becoma &ared to enable the cache to supply a
block rather than memory. This optimization does not impact our
paiormance metric in the pipelined bru.

further in Section 6.
The data in Table 5 can be used to determine the system

performance in a shard-bus environment. The number of
bus cycles consumed by a reference in the best scheme with a
sophisticated bus is about 0.03 on average. In other words, a
processor will use a bus cycle every 30 references, or a bus cy-
de every 15 instructions since on average each instruction in
the traces makes one data reference. (We assume instruction
n&es do not cause bus transactions.) A lo-MIPS processor
will therefore require a bus cycle every 1500ns, and a bar with
a cyde time of 1OOns will only yield a maximum performance
of 15 effective processors. This limit is an optimistic upper
bound because we have not indaded the bandwidth require-
ments of instruction misses, the effects of finite data caches,
or the effects of bus contention.

DiQB

Figure 4: Bus cycle breakdown in the various schemes M
a &action of the total number of bus cycles used in the
acheme. The code dir is directory access, inv is invali-
date, wb is write-back, memacc is memory accwa, wt irr
write through, and wup ia write update.

5.1 System Performance

Total system performance cannot be determined from the bur
cyda metric alone. A betkr metric for thin purpose is aver-
age memory access time as seeu by each processor, but this
metric requires many assumptions about the implementation
of the memory hierarchy. Regardless of the memory system
details, it is dear that the additional waiting time beyond the
number of bnr cydea for a reference as seen by the processor
will be at least one bus cyde time. This additional “bus cy-
de” is used for initial cache accaa, propagation delay through
the bus controller, and bus arbitration. Figure 5 shows the
average number of bus cycles per bus tra-tion for each of

the schemes. Because the average Dragon cost is smaller than
D;r,,B, the performance of the Dragon scheme will be more
sensitive to changing that cost by a constant value. Conse-
quently, for the metric of average memory access time as seen
by the processor, we would expect Dragon to show less of an
advantage than with the bus cycles metric.

Even using the bus cyclea metric we can get an idea of
the effect of adding a small constant number of bus cycles
to the cost models. If q bus cycles are added to the cost of
each bus transaction, the performance for Dragon is given by
0.0236 + 0.02066 and the performance for DhB is given by
0.0491 + 0.0114g bus cycles per reference. For example, with
Q = 1 D&B needs only 12% more bus cycles than Dragon,
as compared with 46% in Figure 2.

5.2 Impact of Spin Locks on Cache Con-
sistency Performance

Spin lock reads severely degrade the performance of the
Dir1 NB scheme as measured by our bus cycles metric. The
number of bus cycles in Dir1 NB is over a factor of six greater
than the number used by DiroB. As mentioned earlier one-
third of the reads in POPS and THOR are due to spins on
a lock. Because two processes often spin on the same lock,
locks frequently bounce back and forth between two caches
in the Dir, NB scheme. To verify this phenomenon, we ran a
set of experiments excluding all the tests on locks in the three
traces. As expected DiroB gave the rame performance M be-
fore, while the performance of Dir1 NB improved significantly
(from 0.32 to 0.12 bus cycles per reference).

The impact of spin locking on the performance of the
Dir1 NB scheme is also interesting in another light. Software
cache consistency schemes that flush a critical section from
the cache after each use wilI behave like the Dirt NB scheme.
For reasonable performance, these schemes must take special
care in handling locks.

6 Directory Scheme Alternatives
for Scalability

The need to perform full broadcasts limits the potential to
de a multiprocessor to a large number of processors. To
obviate full broadcasts, pointers to all caches containing a
block can be maintained in the directory (Dir, NB [9]). IJI
this scheme, sequential invalidations are sent to each of the
caches denoted by the pointers inlrtead of using a full broad-
cast. We evaluated this scheme assuming that each inv&
dation consumes one bus cycle. The number of bus cycles
per reference for a pipelined bus increares from 0.0491 in the
fuB broadcast case (DiroB) to 0.0499 in the sequential invd-
idate case (Dir”NB). The performance degradation in small
because often no more than one invaiidation is necessary,5

Although the sequential invalidation scheme has compara-
ble performance to the broadcast scheme, the directory size
increases in proportion to the number of processors. The next
scheme that we discuss capitalizes on the observation that a
single invalidation request in the most common case. The
directory maintains exactly one pointer and a broadcast bit

‘Note that our data was obtained from a machluc with only
four processors. We IUV trying to obtain traces for a much larger
number of processes and hope to extmd our resulta shortly.

J-
Figure 5: Average bus cycles per bus tranSaction in var-
ious schemes.

per block (Dirt B). If more than one cache has a block the
broadcast bit is set. When the directory is queried, a sin-
gle invalidation request is issued if the broadcast bit is clear;
otherwise, the invalidation must be broadcast. While it is
hard to quantize the exact effects of broadcasts, the follow-
ing simple model can help indicate the performance of such
a scheme. Suppose that a single invalidation takes one bus
cyde as usual, and that a broadcast uses b cycles. With this
simple model, this directory scheme requires 0.0485 +O.O006b
cycles per memory reference. This scheme can be extended
to use i pointers (i > 1) and a broadcast bit (DitiB). The
broadcast requirement can he eliminated if the number of al-
lowed copies of a block is restricted to i a~ in the scheme
denoted Diri NB. This scheme trades off a slightly increased
miss rate for avoiding broadcasts altogether.

We can also use limited broadcasts if the caches where block
copies exist are known. The number of bits in the main mem-
ory directory can be reduced by storing a simple code repre-
senting a set of caches, which is a superset of all caches with a
copy of the block. For example, consider storing a word with
d digits where each digit takes on one of three values: O,l,
and both. If each digit in the word is either a 0 or a 1, then
the word is the index to exactly one cache in the system. If
any digit is coded l&h, then the word denotes caches whose
indices may either be a 0 or a 1 in that digit, but match the
rut of the word. If i digits are coded bofh, then 2’ caches
are denoted. In Iike manner, we can code a set of caches that
indudes all block copies. Each digit can be coded in 2 bits,
thus requiring 21og(n) bits in a system with n caches.

As the above examples show, a class of directory schemes
exist that can trade off a small amount of performance for
scalability and ease of implementation. An accurate evalu-
ation of the tradeoffs will require traces from a much larger
number of processors.

361

7 Conclusions

This paper shows that directory-based cache consistency
schemes are an interesting approach for providing shared
memory in a large-scale multiprocessor. The directory struc-
ture removes the major limitation of snoopy-cache schemes -
the reliance on broadcasts - while providing similar efficiency
in handling shared references. The bandwidth requirement
to the directory, long considered a potential bottleneck, is
shown to be not much more severe than the memory band-
width need. The basic bandwidth limitation to the memory
and the directory can be mitigated by distributing them on
the processor boards. This technique allows the bandwidth to
both the memory and the directory to scale with the number
of processors.

We evaluated the performance of directory schemes in a
small-scale multiprocessor environment using trace driven
simulation. The performance of the directory protocols is
reasonably competitive to the snoopy cache schemes. In ad-
dition the simulations show that most blocks that are written
into are present in only a small number of other caches, which
makes broadcast invalidates inefficient. This result suggeata
that a directory structure that stores with each block only
a small number of pointers to caches containing the block is
sufficient. If this data holds for large-scale multiprocessors,
directories will provide an efficient method of implementing
shared memory.

8 Acknowledgements

Our thanks to Roberto Bisiani and the Speech Group at CMU
for letting us use their VAX 8350 to obtain traces. Dick Sites
made multiprocessor ATUM possible, and Digital Equipment
Corporation lent the ATUM microcode to us. Jonathan Rose
helped with the PER0 program and Larry Soule with THOR.
The research reported in this paper was funded by DARPA
contract MDA903-83-C-0335. Richard Simoni is partially
supported by a National Science Foundation Graduate Fel-
lowship.

References

PI

PI

131

[41

[51

James Archibald and Jean-Lou Baer. Cache Coherence
Protocols: Evaluation Using a Multiprocessor Simula-
tion Model. ACM Trarwactionr on Computer Systems,
4(4):273-298, November 1986.

James R. Goodman. Using Cache Memory to Rt
duce Processor-Memory Traffic. In Proceedings of the
10th Annual Symposium on Computer Architecture,
pages 124-131, June 1983.

Charles P. Thacker and Lawrence C. Stewart. Firefly: a
Multiprocessor Workstation. In Procadings of ASPLOS
II, pages 164-172, October 1987.

Frank S. J. Tightly Coupled Multiprocessor System
Speeds Up Memory Access Times. Electronics, 57, 1,
January 1984.

Mark S. Papamarcos and Janak H. patel. A Low-
Overhead Coherence Solution for Multiprocessors with
Private Cache Memories. In Proceedings of the 12th
International Symposium on Computer Architecture,
pages 348-354, June 1985.

[61

[71

PI

PI

[lOI

WI

WI

[I31

1141

1151

PI

P71

[I81

WI

PO1

L. Rudolph and Z. Segall. Dynamic Decentralized Cache
Consistency Schemes for MIMD Parallel Processors. In
Proceedings of the flth International Sympostum on
Computer Architecture, pages 340-347, June 1985.

R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins,
and R. G. Sheldon. Implementing a Cache Consistency
Protocol. In Proceedings of the f2th International Syn+
porium on Computer Architecture, pages 276-283, June
1985.

C. K. Tang. Cache Design in the Tightly Coupled Mul-
tiprocessor System. In AFIPS Conference Proceedings,
National Computer Conference, NY, NY, pages 749-753,
June 1976.

Lucien M. Censier and Paul Feautrier. A New So-
lution to Coherence Problems in Multicache Systems.
IEEE Tranractionr on Computers, c-27(12):1112-1118,
December 1978.

James Archibald and Jean-Loup Baer. An Economical
Solution to the Cache Coherence Problem. In Proceed-
ings of the 12th International Symposium on Computer
Architectun, pages 355-362, June 1985.

Wei C. Yen, David W. L. Yen, and King-Sun Fu. Data
Coherence Problem in a Multicache System. IEEE
Transactions on Computers, c-34(1):56-65, January
1985.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Har-
vey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, A.
Norton, and J. Weiss. The IBM Research Parallel Pro-
cessor Prototype (RP3): Introduction and Architecture.
In Procadings ICPP, pages 764-771, August 1985.

E. McCreight. The Dragon Computer System: An Early
Overview. Technical Report, Xerox Corp., September
1984.

Michel Dubios and Faye A. Briggs. Effects of Cache
Coherence in Multiprocessors. In Proceedings of the
9fh Intemationol Symporium on Computer Architectun,
pages 299-308, May 1982.

Alan Jay Smith. Cache Memories. ACM Computing
Surueys, 14(3):473-530, September 1982.

Anant Agarwal. Analysis of Cache Performance for
Opemting Systems and Multiprogramming. PhD the-
sis, Stanford University, Computer Systems Laboratory,
May 1987. Available as CSL-TR-87-332.

Richard L. Sites and Anant Agarwal. Multiprocessor
Cache Analysis using ATUM. In Proceedings of the
15th International Symposium on Computer Architec-
ture, June 1988.

Anant Agarwal and Anoop Gupta. Memory-Reference
Characteristics of Multiprocessor Applications under
MACH. In Proceedings of SIGMETRICS 1988, May
1988.

Robert Baron, Richard Rashid, Ellen Siegel, Avadis
Tevanian, and Michael Young. MACH-l: An Operat-
ing System Environment for Large-Scale Multiprocessor
Applications. IEEE Software, July 1985.

Anoop Gupta, Charles Forgy, and Robert Wedig. Par-
allel Architectures and Algorithms for Rule-Based Sys-
tems. In Proceedinga of the 13th Annual Symposium on
Computer Architecture, June 1986.

362

