
Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

Fine-grain Access Control for Distributed Shared Memory�

Ioannis Schoinas, Babak Falsa�, Alvin R. Lebeck,

Steven K. Reinhardt, James R. Larus, David A. Wood

Computer Sciences Department

University of Wisconsin{Madison

1210 West Dayton Street

Madison, WI 53706 USA

wwt@cs.wisc.edu

Abstract

This paper discusses implementations of �ne-grain mem-
ory access control, which selectively restricts reads and
writes to cache-block-sized memory regions. Fine-grain
access control forms the basis of e�cient cache-coherent
shared memory. This paper focuses on low-cost im-
plementations that require little or no additional hard-
ware. These techniques permit e�cient implementation
of shared memory on a wide range of parallel systems,
thereby providing shared-memory codes with a portabil-
ity previously limited to message passing.

This paper categorizes techniques based on where ac-
cess control is enforced and where access con
icts are han-
dled. We incorporated three techniques that require no
additional hardware into Blizzard, a system that supports
distributed shared memory on the CM-5. The �rst adds
a software lookup before each shared-memory reference
by modifying the program's executable. The second uses
the memory's error correcting code (ECC) as cache-block
valid bits. The third is a hybrid. The software technique
ranged from slightly faster to two times slower than the
ECC approach. Blizzard's performance is roughly compa-
rable to a hardware shared-memory machine. These re-
sults argue that clusters of workstations or personal com-
puters with networks comparable to the CM-5's will be
able to support the same shared-memory interfaces as su-
percomputers.

�This work is supported in part by NSF PYI/NYI Awards
CCR-9157366 and CCR-9357779, NSF Grants CCR-9101035
and MIP-9225097, an AT&T Ph.D. Fellowship, and donations
from Digital Equipment Corporation, Thinking Machines Cor-
poration, and Xerox Corporation. Our Thinking Machines
CM-5 was purchased through NSF Institutional Infrastructure
Grant No. CDA-9024618 with matching funding from the Univ.
of Wisconsin Graduate School.

0

1 Introduction

Parallel computing is becoming widely available with
the emergence of networks of workstations as the
parallel \minicomputers" of the future [1]. Un-
fortunately, current systems directly support only
message-passing communication. Shared memory is
limited to page-based systems, such as TreadMarks
[17], which are not sequentially consistent and which
can perform poorly in the presence of �ne-grain data
sharing [11].

These systems lack �ne-grain access control , a key
feature of hardware shared-memory machines. Ac-
cess control is the ability to selectively restrict reads
and writes to memory regions. At each memory ref-
erence, the system must perform a lookup to deter-
mine whether the referenced data is in local memory,
in an appropriate state. If local data does not sat-
isfy the reference, the system must invoke a protocol
action to bring the desired data to the local node.
We refer to the combination of performing a lookup
on a memory reference and conditionally invoking an
action as access control . Access control granularity
is the smallest amount of data that can be indepen-
dently controlled (also referred to as the block size).
Access control is �ne-grain if its granularity is similar
to a hardware cache block (32{128 bytes).

Current shared-memory machines achieve high per-
formance by using hardware-intensive implementa-
tions of �ne-grain access control. However, this addi-
tional hardware would impose an impossible burden
in the cost-conscious workstation and personal com-
puter market. E�cient shared memory on clusters
of these machines requires low- or no-cost methods
of �ne-grain access control. This paper explores this
design space by identifying where the lookup and ac-
tion can be performed, �tting existing and proposed
systems into this space, and illustrating performance
trade-o�s with a simulation model. The paper then
focuses on three techniques suitable for existing hard-
ware. We used these techniques to implement three
variants of Blizzard, a system that uses the Tempest

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

interface [32] to support distributed shared memory
on a Thinking Machines CM-5. The �rst variant,
Blizzard-S, adds a fast lookup before each shared-
memory reference [22] by modifying the program's
executable [21]. The second, Blizzard-E, employs the
memory's error-correcting code (ECC) bits as block
valid bits [30]. The third, Blizzard-ES, combines the
two techniques.

Blizzard's performance|running six programs
written for hardware cache-coherent shared-memory
machines|is consistent with our simulation results.
Blizzard-S's (software) performance ranged from
slightly faster than Blizzard-E to twice as slow, de-
pending on a program's shared-memory communica-
tion behavior. To calibrate Blizzard's absolute perfor-
mance, we compared it against a Kendall Square Re-
search KSR-1 shared-memory machine. For one pro-
gram, Blizzard-E outperforms the KSR-1; for three
others, it is within a factor of 2.4{3.6; and two appli-
cations ran 6{7 times faster on the KSR-1.

These results show that clusters of workstations
or personal computers can e�ciently support shared
memory when equipped with networks and network
interfaces comparable to the CM-5's [23]. Blizzard
also demonstrates the portability provided by the
Tempest interface. Tempest allows clusters to sup-
port the same shared-memory abstraction as super-
computers, just as MPI and PVM support a common
interface for coarse-grain message passing.

The paper is organized as follows. Section 2 exam-
ines alternative implementations of �ne-grain access
control. In particular, Section 2.5 presents a simula-
tion of the e�ect of varying access control overheads.
Section 3 describes Blizzard. Finally, Section 4 con-
cludes the paper.

2 Access Control Alternatives

Fine-grain access control performs a lookup at each
memory reference and, based on the result of the
lookup, conditionally invokes an action. The refer-
enced location can be in one of three states: Read-

Write, ReadOnly , or Invalid . Program loads and
stores have the following semantics:

load(address) =
if (lookup(address) 62 fReadOnly , ReadWriteg)

invoke-action(address)
perform-load(address)

store(address) =
if (lookup(address) 6= ReadWrite)

invoke-action(address)
perform-store(address)

Action

Lookup Dedicated Primary Auxiliary
Hardware Processor Processor

Software Orca (object)
Blizzard-S

TLB IVY (page)

Cache Alewife1 Alewife1

KSR-1

Memory S3.mp Blizzard-E FLASH

Snoop DASH Typhoon

1Location of action depends on protocol state.

Table 1: Taxonomy of shared-memory systems.

Fine-grain access control can be implemented in
many ways. The lookup and action can be performed
in either software, hardware, or a combination of the
two. These alternatives have di�erent performance,
cost, and design characteristics. This section classi�es
access control techniques based on where the lookup
is performed and where the action is executed. Ta-
ble 1 shows the design space and places current and
proposed shared-memory systems within it.

The following sections explore this taxonomy in
more detail. Section 2.3 discusses the lookup and ac-
tion overheads of the systems in Table 1. Section 2.4
discusses how the tradeo�s in the taxonomy a�ect a
wide range of shared-memory machines. Section 2.5
presents a simulation study of the e�ect of varying
access control overheads.

2.1 Where is the Lookup Performed?

Either software or hardware can perform an access
check. A software lookup avoids the expense and de-
sign cost of hardware, but incurs a �xed overhead at
each lookup. Hardware typically incurs no overhead
when the lookup does not invoke an action. Lookup
hardware can be placed at almost any level of the
memory hierarchy|TLB, cache controller, memory
controller, or a separate snooping controller. How-
ever, for economic and performance reasons, most
hardware approaches avoid changes to commodity
microprocessors.

Software. The code in a software lookup checks a
main-memory data structure to determine the state
of a block before a reference. As described in Sec-
tion 3.2, careful coding and liberal use of memory
makes this lookup reasonably fast. Our current im-
plementation adds 15 instructions before each shared-
memory load or store. Static analysis can detect and

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

potentially eliminate redundant tests. However, the
asynchrony in parallel programs makes it di�cult to
predict whether a cache block will remain accessible
between two instructions.

Either a compiler or a program executable editing
tool [21] can insert software tests. We use the latter
approach in Blizzard so every compiler need not reim-
plement test analysis and code generation. Compiler-
inserted lookups, however, can exploit application-
level information. Orca [2], for example, provides ac-
cess control on program objects instead of blocks.

TLB. Standard address translation hardware pro-
vides access control, though at memory page gran-
ularity. Nevertheless, it forms the basis of sev-
eral distributed-shared-memory systems|for exam-
ple, IVY [26], Munin [4], and TreadMarks [17].
Though unimplemented by current commodity pro-
cessors, additional, per-block access bits in a TLB en-
try could provide �ne-grain access control. The \lock
bits" in some IBM RISC machines, including the 801
[7] and RS/6000 [29], provide access control on 128-
byte blocks, but they do not support the three-state
model described above.

Cache controller. The MIT Alewife [6] and
Kendall Square Research KSR-1 [18] shared-memory
systems use custom cache controllers to implement
access control. In addition to detecting misses in
hardware cache(s), these controllers determine when
to invoke a protocol action. On Alewife, a local direc-
tory is consulted on misses to local physical addresses
to determine if a protocol action is required. Misses
to remote physical addresses always invoke an action.
Due to the KSR-1's COMA architecture, any refer-
ence that misses in both levels of cache requires proto-
col action. A trend toward on-chip second-level cache
controllers [15] may make modi�ed cache controllers
incompatible with future commodity processors.

Memory controller. If the system can guarantee
that the processor's hardware caches never contain
Invalid blocks and that ReadOnly blocks are cached
in a read-only state, the memory controller can per-
form the lookup on hardware cache misses. This ap-
proach is used by Blizzard-E, Sun's S3.mp [28], and
Stanford's FLASH [20].

As described in Section 3.3, Blizzard-E uses the
CM-5's memory error-correcting code (ECC) to im-
plement a cache-block valid bit. While e�ective, this
approach has several shortcomings. ReadOnly access
is enforced with page-level protection, so stores may
incur an unnecessary protection trap. Also, modi-
fying ECC values is an awkward and privileged op-
eration. The Nimbus NIM6133, an MBUS memory
controller co-designed by Nimbus Technology, Think-
ing Machines, and some of the authors [27], addressed
these problems. The NIM6133 supports Blizzard-like

systems by storing a 4-bit access control tag with each
32-byte cache block. The controller encodes state
tags in unassigned ECC values, which requires no
additional DRAM. On a block write, the controller
converts the 4-bit tag to a unary 1-of-16 encoding.
For each 64-bit doubleword in the block, it appends
the unary tag, computes the ECC on the resulting
80-bit value, and stores the 64 data bits plus ECC
(but not the tag). On a read, the controller concate-
nates 16 zeros to each 64-bit doubleword. The ECC
single-bit error correction then recovers the unary tag
value. Because the tag is stored redundantly on each
doubleword in the block, double-bit error detection is
maintained. Tag manipulations are unprivileged and
the controller supports a ReadOnly state.
S3.mp has a custom memory controller that per-

forms a hardware lookup at every bus request.
FLASH's programmable processor in the memory
controller performs the lookup in software. It keeps
state information in regular memory and caches it on
the controller.
Custom controllers are possible with most current

processors. However, future processors may inte-
grate on-chip memory controllers (as do the TI Mi-
croSPARC and HP PA7100LC).
Bus snooping. When a processor supports a

bus-based coherence scheme, a separate bus-snooping
agent can perform a lookup similar to that performed
by a memory controller. Stanford DASH [24] and
Wisconsin Typhoon [32] employ this approach. On
DASH, as on Alewife, local misses may require pro-
tocol action based on local directory state and re-
mote misses always invoke an action. Typhoon looks
up access control state for all physical addresses in
a reverse-translation cache with per-block access bits
that is backed by main-memory page tables.

2.2 Where is the Action Taken?

When a lookup detects a con
ict, it must invoke an
action dictated by a coherence protocol to obtain an
accessible copy of a block. As with the lookup itself,
hardware, software, or a combination of the two can
perform this action. The protocol action software can
execute either on the same CPU as the application
(the \primary" processor) or on a separate, auxiliary
processor.
Hardware. The DASH, KSR-1, and S3.mp sys-

tems implement actions in dedicated hardware, which
provides high performance for a single protocol.
While custom hardware performs an action quickly,
research has shown that no single protocol is op-
timal for all applications [16] or even for all data
structures within an application [3, 12]. High de-
sign costs and resource constraints also make custom
hardware unattractive. Hybrid hardware/software

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

Lookup Action Remote

System Bytes/ Where No Action Where Action miss time

Block Performed Action Needed Executed Invocation (approx.)

Alewife 8 cache 0 1 / �10 hardware 0 30
prim. proc. 13

KSR-1 128 cache 0 �10 hardware 0 200
DASH 16 snoop 0 10 / �20 hardware 0 100
FLASH 128 memory 0 4 / �14 aux. proc. 0 �100
Typhoon 32 memory 0 3 aux. proc. 2 100

Blizzard-S 32 software 18 18 prim. proc. 25 6000
Blizzard-E r,w1 32 memory 0 �10 prim. proc. 250 6000

w1 32 software (OS) 230 230
Blizzard-ES r 32 memory 0 �10 prim. proc. 250 6000

w 32 software 18 18 25

Munin 4K TLB 0 �50 prim. proc. 2.01 ms ??
TreadMarks 4K TLB 0 �50 prim. proc. 2600 110,000

1Lookup cost for writes depends on whether there are ReadOnly blocks on the page (see Section 3.3).

Table 2: Overheads of �ne-grain access control for various systems (in processor cycles).

protocols|e.g., Alewife's LimitLESS [6] and Dir1SW
[13]|implement the expected common cases in hard-
ware and trap to system software to handle complex,
infrequent events.

Primary processor. Performing actions on the
main CPU provides protocol
exibility and avoids the
additional cost of custom hardware or an additional
CPU. Blizzard uses this approach, as do page-based
DSM systems such as IVY and Munin. However, as
the next section discusses, interrupting an applica-
tion to run an action can add considerable overhead.
Alewife addressed this problem with a modi�ed pro-
cessor that supports rapid context switches.

Auxiliary processor. FLASH and Typhoon
achieve both high performance and protocol
exibil-
ity by executing actions on an auxiliary processor
dedicated to that purpose. This approach avoids a
context switch on the primary processor and may be
crucial if the primary processor cannot recover from
late arriving exceptions caused by an access control
lookup in the lower levels of the memory hierarchy.
In addition, an auxiliary processor can provide rapid
invocation of action code, tight coupling with the
network interface, special registers (e.g., Typhoon's
home node and protocol state pointer registers), and
special operations (e.g., FLASH's bit �eld instruc-
tions). Of course, the design e�ort increases as the
processor is more extensively customized.

2.3 Performance

Table 2 summarizes the access control overheads
and remote miss times for existing and proposed
distributed-shared-memory systems [4, 5, 17, 20, 25,
32, 33]. Values marked with '�' are estimated.

The left side of Table 2 lists the overhead of testing
a shared memory reference for accessibility. Software

lookups incur a �xed overhead, while the overhead of
hardware lookups depends on whether or not action is
required. Hardware typically avoids overhead when
no action is needed by overlapping the lookup and
local data access. When action is required (e.g., a re-
mote miss), the data cannot be used so the lookup
counts as overhead. Alewife, DASH, and FLASH
have two numbers in the \Action Needed" column
because misses to remote physical addresses immedi-
ately invoke an action but misses to local addresses
require an access to local directory state. For Munin
and TreadMarks, this column re
ects the overhead
of a TLB miss and page-table walk to detect a page
fault.

Table 2 also lists action invocation overheads. This
overhead re
ects the time required from when an ac-
cess con
ict is detected to the start of the proto-
col action (e.g., for software actions, the execution
of the �rst instruction). Dedicated hardware incurs
no overhead since the lookup and action mechanisms
are tightly coupled. FLASH also has no overhead
because the auxiliary processor is already running
lookup code, so the overhead of invoking software is
re
ected in the \Action Needed" column. Typhoon's
overhead is very low because, like FLASH, its auxil-
iary processor is customized for fast dispatch.

Systems that perform lookup in hardware and ex-
ecute actions on the primary processor incur much
higher invocation overheads. A noticeable exception
to this rule is Alewife. Its custom support for fast
context switching can invoke actions in 13 cycles. By
contrast, TreadMarks requires 2600 cycles on a DEC-
Station 5000/240 running Ultrix 4.3 [17]. Of course,
the overhead is the fault of Ultrix 4.3, not Tread-
Marks. With careful kernel coding (on a di�erent
processor), Blizzard-E's invocation overhead is 250
cycles, including 50 cycles that are added to every

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

CM-5 trap by a workaround for a hardware bug.
The �nal column of Table 2 presents typical round-

trip miss times for these systems. These times are af-
fected by access control overheads and other factors,
such as network overheads and latencies. The sys-
tems in the �rst group of Table 2 provide low-latency
interconnects that are closely coupled to the dedi-
cated hardware or auxiliary processors. At the other
extreme, TreadMarks communicates through Unix
sockets using heavy-weight protocols. Its send time
for a minimum size message is 3200 cycles (80 �s)
[17]. Blizzard bene�ts from the CM-5's low-latency
network and user-level network interface. Blizzard's
performance would be better if the network supported
larger packets (as, for example, the CM-5E). To e�-
ciently communicate, packets must hold at least a vir-
tual address, program counter, and a memory block
(40 bytes total on Blizzard). Our CM-5 limits pack-
ets to 20 bytes, which requires block data messages to
be split into multiple packets. Our implementation
bu�ers only packets that arrive out-of-order, which
eliminates bu�ering for roughly 80% of all packets.

2.4 Discussion

Both the cost of implementing access control and its
speed increase as the lookup occurs higher in the
memory hierarchy and as more hardware resources
(e.g., an auxiliary processor) are dedicated to proto-
col actions. Because of the wide range of possible
implementation techniques, a designer can trade-o�
cost and performance in a family of systems.
In the high-end supercomputer market, implemen-

tations will emphasize performance over cost. These
systems will provide hardware support for both the
access control test and protocol action. An auxiliary
processor in the memory system, as in FLASH and
Typhoon, minimizes invocation and action overhead
while still exploiting commodity (primary) proces-
sors. However, this approach requires either a com-
plex ASIC or full-custom chip design, which signi�-
cantly increases design time and manufacturing cost.
In mid-range implementations targeted toward

clusters of high-performance workstations, the cost
and complexity of additional hardware is more impor-
tant because workstations must compete on unipro-
cessor cost/performance. For these systems, sim-
ple hardware support for the test|as in the Nimbus
memory controller|may be cost-e�ective.
The low end of parallel systems|networks of per-

sonal computers|will not tolerate additional hard-
ware for access control. For these systems, imple-
mentations must rely on software access control, like
that described in Section 3.2.
These tradeo�s would change dramatically if ac-

cess control was integrated into commodity proces-

sors. For example, combining an RS/6000-like TLB
with Alewife's context switching support would per-
mit fast access control and actions at low hardware
cost. Unfortunately, modifying a processor chip is
prohibitively expensive for most, if not all, parallel
system designers. Even the relatively cost-insensitive
supercomputer manufacturers are resorting to com-
modity microprocessors [19] because of the massive
investment to produce competitive processors. Com-
modity processor manufacturers are unlikely to con-
sider this hardware until �ne-grain distributed shared
memory is widespread. The solutions described in
this paper and employed by Blizzard provide accept-
able performance on existing hardware to break this
chicken and egg problem.

2.5 Access Control Overheads

This section describes a simulation that studies the
e�ect of varying the overhead of access control and
action invocation on the performance of a �ne-grain
distributed shared-memory system. Our simulator
is a modi�ed version of the Wisconsin Wind Tunnel
[31] modeling a machine similar to the CM-5. The
target nodes contain a single-issue SPARC processor
that runs the application, executes protocol action
handlers on access faults, and handles incoming mes-
sages via interrupts. As on the CM-5, the proces-
sor has a 64 Kbyte direct-mapped cache with a 32-
byte line size. Instruction cycle times are accurately
modeled, but we assume a perfect instruction cache.
Local cache misses take 29 cycles. Misses in the
fully-associative 64-entry TLB take 25 cycles. Mes-
sage data is sent and received using single-cycle 32-bit
stores and loads to a memory-mapped network inter-
face. Message interrupts incur a 100-cycle overhead
before the interrupt handler starts. Fine-grain ac-
cess control is maintained at 32-byte granularity. The
applications run under the full-map, write-invalidate
Stache coherence protocol with 32-byte blocks [32].
In the simulations of two programs shown in Fig-

ure 1, we varied the overhead of lookups and the over-
head of invoking an action handler. The \ideal" case
is an upper bound on performance. It models a sys-
tem in which access fault handlers and message pro-
cessing run on a separate, in�nitely-fast processor.
In particular, the protocol software runs in zero time
without polluting the processor's cache. However, to
make the simulation repeatable, message sends are
charged one cycle. The ideal case is 2:2{2:8� faster
than a realistic system running protocol software on
the application processor with hardware access con-
trol that reduces lookup overhead to zero and invoca-
tion overhead near zero. The simulations show that
lookup overhead has a far larger e�ect on system per-
formance than invocation overhead. For example, in

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Invocation Cost (cycles)

Barnes

ideal
15-cycle lookup
10-cycle lookup
5-cycle lookup
0-cycle lookup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Invocation Cost (cycles)

Ocean

ideal

15-cycle lookup
10-cycle lookup
5-cycle lookup
0-cycle lookup

Figure 1: Simulation of �ne-grain access control overheads.

Barnes , increasing the invocation overhead from 0 to
1000 cycles decreases performance less than increas-
ing the lookup overhead from 0 to 5 cycles.

3 Access Control in Blizzard

Blizzard is our system that implements the Tempest
interface on a Thinking Machines CM-5. Tempest
is a communication and memory management inter-
face [32] that can be supported on on a wide range of
systems, ranging from multi-million-dollar supercom-
puters to low-cost clusters of workstations. Tempest
provides four basic mechanisms necessary for both
�ne-grain shared memory and message passing [32]:
active messages, bulk data transfer, virtual memory
management, and �ne-grain access control. This sec-
tion presents an overview of Blizzard, with a focus on
alternative implementations of �ne-grain access con-
trol. Although we implemented these techniques for
Tempest, they could also be used in other distributed-
shared-memory systems.
Blizzard consists of a modi�ed version of the CM-5

operating system and a user-level library. A shared-
memory program is executed by compiling it with
a standard compiler (e.g., gcc), linking it with the
Blizzard library and a Tempest-compliant user-level
protocol (e.g., Stache [32]), and running it on a CM-5
with the modi�ed OS.
The next section describes our modi�cations to

the CM-5 operating system. We then describe the
three implementations of �ne-grain access control:
Blizzard-S, Blizzard-E, and Blizzard-ES.

3.1 Kernel Support for Blizzard

The Thinking Machines CM-5 [14] is a distributed-
memory message-passing multiprocessor. Each pro-
cessing node consists of a 33 MHz SPARC micropro-
cessor with a 64 KB direct-mapped uni�ed cache and

a memory management unit, up to 128 MB of mem-
ory, a custom network interface chip, and optional
custom vector units.

Blizzard uses a variant of the \executive interface"
extensions developed for the Wisconsin Wind Tunnel
[30]. These extensions provide protected user-level
memory-management support, including the ability
to create, manipulate, and execute within subordi-
nate contexts. The executive interface also provides
support for �ne-grain access control using a mem-
ory tag abstraction. Although the executive interface
provides the required functionality, there are several
important di�erences discussed below.

First, the executive interface is optimized for
switching contexts on all faults, which incurs a
moderately-high overhead due to SPARC register
window spills, etc. Tempest handles faults in the
same address space and runs most handlers to com-
pletion. This change allowed a much faster imple-
mentation, in which exceptions (including user-level
message interrupts) are handled on the same stack.
Exceptions e�ectively look like involuntary procedure
calls, with condition codes and other volatile state
passed as arguments. In the common case, this inter-
face eliminates all unnecessary stack changes and reg-
ister window spills and restores. Furthermore, han-
dlers can usually resume a faulting thread without
entering the kernel. A kernel trap is only required in
the relatively rare cases when the handler must re-
enable hardware message interrupts or the SPARC
PC and NPC are not sequential.

Second, Tempest requires that active message han-
dlers and access fault handlers execute atomically.
However, we use the CM-5's user-level message in-
terrupt capability to implement our active message
model. To preserve atomicity, we need to disable
user-level interrupts while running in a handler. Un-
fortunately, the CM-5 does not provide user-level ac-
cess to the interrupt mask, so it requires expensive

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

kernel traps to both disable and re-enable interrupts.
Instead, we use a software interrupt masking

scheme similar to one proposed by Stodolsky, et al.
[35]. The key observation is that interrupts occur
much less frequently than critical sections, so we
should optimize for this common case. This approach
uses a software
ag to mark critical sections. The
lowest-level interrupt handler checks this \software-
disable"
ag. If it is set, the handler sets a \deferred-
interrupt"
ag, disables further user-level hardware
interrupts, and returns. On exit from a critical sec-
tion, code must �rst clear the software-disable
ag
and then check for deferred interrupts. After process-
ing deferred interrupts, the user-level handler traps
back into the kernel to re-enable hardware interrupts.
Stodolsky, et al.'s implementation uses a static vari-
able to store the
ags. To minimize overhead, our
scheme uses a global register.

3.2 Blizzard-S: Software

Blizzard-S implements �ne-grain access control en-
tirely in software, using a variant of the Fast-Cache
simulation system [22]. Fast-Cache rewrites an exist-
ing executable �le [21] to insert a state table lookup
before every shared-memory reference. The lookup
table is indexed by the virtual address and contains
two bits for each 32-byte block (the size is a compile-
time constant). The state and reference type (i.e.,
load or store) determine the handler. When the
current state requires no action (i.e., a load to a
ReadWrite block) Blizzard-S invokes a special NULL
handler which immediately resumes execution. Oth-
erwise, it invokes a user handler through a stub that
saves processor state. With the table lookup and null
handlers, Blizzard-S avoids modifying the SPARC
condition codes, which are expensive to save and re-
store from user code. Although Blizzard-S reserves
address space for a maximum sized lookup table, it
allocates the table on demand, so memory overhead
is proportional to the data set size.
The lookup code uses two global registers left un-

used by programs conforming to the SPARC applica-
tion binary interface (ABI). These registers are tem-
poraries used to calculate the e�ective address, index
into the lookup table, and invoke the handler. The
current implementation adds 15 instructions (18 cy-
cles in the absence of cache and TLB misses) before
all load and store instructions that cannot be deter-
mined by inspection to be a stack reference. Simple
optimizations, such as scavenging free registers and
recognizing redundant tests could lower the average
overhead, but these were not completed in time for
inclusion in this paper.
To avoid inconsistency, interrupts cannot be pro-

cessed between a lookup and its corresponding refer-

ence. Disabling and re-enabling interrupts on every
reference would increase the critical lookup overhead.
Instead, we permanently disable interrupts with the
software
ag described above, leaving hardware in-
terrupts enabled, and periodically poll the deferred-
interrupt
ag. Because the deferred-interrupt
ag is
a bit in a global register, the polling overhead is ex-
tremely low. Our current implementation polls on
control-
ow back-edges.

3.3 Blizzard-E: ECC

Although several systems have memory tags and
�ne-grain access control, e.g., J-machine [10], most
contemporary commercial machines|including the
CM-5|lack this facility. In Blizzard-E, we synthe-
sized the Invalid state on the CM-5 by forcing uncor-
rectable errors in the memory's error correcting code
(ECC) via a diagnostic mode [30, 31]. Running the
SPARC cache in write-back mode causes all cache
misses to appear as cache block �lls. A �ll causes
an uncorrectable ECC error and generates a precise
exception, which the kernel vectors to the user-level
handler. The Wisconsin Wind Tunnel [31] and Tape-
worm II [36] both use this ECC technique to simulate
memory systems.
This technique causes no loss of reliability. First,

uncorrectable ECC faults are treated in the normal
way (e.g., panic) unless a program speci�ed a han-
dler for a page. Second, the ECC is only forced
\bad" when a block's state is Invalid, and hence the
block contains no useful data. Third, the Tempest
library and kernel maintain a user-space access bit

vector that veri�es that a fault should have occurred.
The �nal possibility is that a double-bit error changes
to a single-bit error, which the hardware automati-
cally corrects. This is e�ectively solved by writing
bad ECC in at least two double-words in a memory
block, so at least two single bit errors must occur.
Unfortunately, the ECC technique provides only

an Invalid state. Di�erentiating ReadOnly and Read-

Write is more complex. Blizzard-E uses the MMU to
enforce read-only protection. If any block on a page
is ReadOnly , the page's protection is set read-only.
On a write-protection fault, the kernel checks the ac-
cess bit vector. If the block is ReadOnly , the fault is
vectored to the user-space Blizzard-E handler. If the
block is ReadWrite, the kernel completes the write
and resumes the application. Despite careful coding,
this path through the kernel still requires �230 cycles.
Protection is maintained in two ways. First, this

check is only performed if the user has installed an
access bit vector for the page. This ensures that
write faults are only processed in this fashion on
Blizzard-E's shared-data pages. Second, the kernel
uses the SPARC MMU's \no fault" mode to both

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

Benchmark Brief Description Input

Appbt Computational
uid dynamics 323, 10 iters
Barnes Barnes-Hut N-body simulation 8192 bodies
Mp3d Hypersonic
ow simulation 24000 mols, 50 iters
Ocean Hydrodynamic simulation 386 x 386, 8 days
Tomcatv Parallel version of SPEC benchmark 10262, 50 iters
Water Water molecule simulation 256 mols, 10 iters

Table 3: Benchmark descriptions.

Application Blizzard-E Blizzard-S Blizzard-ES Blizzard-P KSR-1

Appbt 137 177 142 732 38
(1.00) (1.29) (1.04) (5.35) (0.28)

Barnes 48 60 51 288 7
(1.00) (1.27) (1.07) (6.05) (0.14)

Mp3d 134 132 147 716 24
(1.00) (0.98) (1.09) (5.33) (0.18)

Ocean 81 111 82 380 34
(1.00) (1.37) (1.01) (4.67) (0.42)

Tomcatv 78 162 87 478 94
(1.00) (2.08) (1.11) (6.12) (1.20)

Water 57 83 62 99 16
(1.00) (1.47) (1.09) (1.74) (0.28)

Table 4: Execution time in CPU seconds and (in parentheses) relative to Blizzard-E.

read the access bit vector and perform the store, al-
lowing it to safely perform these operations with traps
disabled.

3.4 Blizzard-ES: Hybrid

We also implemented a hybrid version of Blizzard
that combines ECC and software checks. It uses ECC
to detect the Invalid state for load instructions, but
uses executable rewriting to perform tests before store
instructions. This version|Blizzard-ES|eliminates
the overhead of a software test for load instructions
and the overhead introduced for stores to ReadWrite

blocks on read-only pages in Blizzard-E.

3.5 Blizzard Performance

We examined the overall performance of Blizzard for
six shared-memory benchmarks, summarized in Ta-
ble 3. These benchmarks|four from the SPLASH
suite [34]|were written for hardware shared-memory
systems. Page-granularity DSM systems generally
perform poorly on these codes because of their �ne-
grain communication and write sharing [9].
We ran these benchmarks on �ve 32-node systems:

Blizzard-E, Blizzard-S, Blizzard-ES, Blizzard-P, and
a Kendall Square KSR-1. The �rst three Blizzard
systems use a full-map invalidation protocol imple-
mented in user-level software (Stache) [32] with a
128-byte block size. Blizzard-P is a sequentially-
consistent, page-granularity version of Blizzard. The

KSR-1 is a parallel processor with extensive hardware
support for shared memory. Table 4 summarizes the
performance of these systems. It contains both the
measured times of these programs and the execution
time relative to that of Blizzard-E.
Blizzard-E usually ran faster than Blizzard-S

(27%{108%), although for Mp3d , Blizzard-S is 2%
faster. Blizzard-E's performance is generally better
for computation-bound codes, such as Tomcatv , in
which remote misses are relatively rare. Blizzard-S
performs well for programs, such as Mp3d and
Barnes , that have frequent, irregular communication
and many remote misses. Surprisingly, Blizzard-ES
is always worse than Blizzard-E. This indicates that
writes to cache blocks on read-only pages are infre-
quent and that synthesizing Tempest's four mem-
ory states by a combination of valid bits and page-
level protection is viable. Blizzard-P predictably per-
forms worse than the �ne-grain shared-memory sys-
tems (74% to 512% slower than Blizzard-E) because
of severe false-sharing in these codes. Relaxed consis-
tency models would certainly help, but we have not
implemented them.

To provide a reference point to gauge the abso-
lute performance of Blizzard, we executed the bench-
marks on a commercial shared-memory machine, the
KSR-1.1 The KSR-1 ranges from almost 7 times
faster to 20% slower than Blizzard-E. These results

1KSR operating system version R1.2.1.3 (release) and C
compiler version 1.2.1.3-1.0.2.

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

are encouraging given the KSR-1's extensive hard-
ware support for shared memory and relative perfor-
mance of the processors. The KSR-1 uses a custom
dual-issue processor running at 20 MHz, while the
CM-5 uses a 33 MHz SPARC. Uniprocessor measure-
ments indicate that the CM-5 has slightly higher per-
formance for integer codes, but much lower
oating-
point performance. (We currently do not support the
CM-5 vector units.)
The variation in KSR-1 performance can be ex-

plained by the ratio of computation to communica-
tion in each program. Appbt , Ocean, and Water are
dominated by computation. On these benchmarks,
Blizzard-E's performance is within a factor of four of
the KSR-1, which is consistent with the di�erence in

oating point performance. Tomcatv is also compute-
bound and should behave similarly; we were unable
to determine why it performs poorly on the KSR-1.
Most of Tomcatv's computation is on large, private
arrays, and it is possible that the KSR-1 su�ers ex-
pensive, unnecessary remote misses on these arrays
due to cache con
icts. Mp3d incurs a large number
of misses due to poor locality [8]. The high miss ratio
explains both Blizzard-E's poor performance relative
to the KSR-1and Blizzard-S's ability to outperform
Blizzard-E. Barnes also has frequent, irregular com-
munication that incurs a high penalty on Blizzard.

4 Summary and Conclusions

This paper examines implementations of �ne-grain
memory access control, a crucial mechanism for e�-
cient shared memory. It presents a taxonomy of alter-
natives for �ne-grain access control. Previous shared-
memory systems used or proposed hardware-intensive
techniques for access control. Although these tech-
niques provide high performance, the cost of addi-
tional hardware precludes shared memory from low-
cost clusters of workstations and personal computers.
This paper describes several alternatives for �ne-

grain access control that require no additional hard-
ware, but provide good performance. We imple-
mented three in Blizzard, our system that supports
�ne-grain distributed shared memory on the Think-
ing Machines CM-5. Blizzard-S relies entirely on soft-
ware and modi�es an application's executable to in-
sert a fast (15 instruction) access check before each
load or store. Blizzard-E uses the CM-5's memory
error correcting code (ECC) to mark invalid cache-
block-sized regions of memory. Blizzard-ES is a hy-
brid that combines both techniques. The relative per-
formance of these techniques depends on an applica-
tion's shared-memory communication, but on six pro-
grams, Blizzard-S ran from 2% faster to 108% slower
than Blizzard-E.

We believe that the CM-5's network interface and
network performance is similar to facilities that will
be available soon for commodity workstations and
networks, so Blizzard's performance is indicative of
how these techniques will perform on widely-available
hardware in the near future. We ran six applica-
tions, written for hardware shared-memory machines,
and compared their performance on Blizzard and the
KSR-1. The results are very encouraging. Blizzard
outperforms the KSR-1 for one program. For three
others Blizzard is within a factor of 2.4{3.6 times.
Only two of the six applications run more than four
times faster on the KSR-1, and none more than seven
times faster, despite its hardware shared-memory
support and faster
oating-point performance.

While Blizzard on the CM-5 will not supplant
shared-memory machines, these results show that
programmers need not eschew shared memory in or-
der to run on a wide variety of systems. A portable
interface|such as Tempest|can provide the same
shared-memory abstraction on a cluster of personal
computers as on a supercomputer. The software
approach of Blizzard-S provides an acceptable com-
mon denominator for widely-available low-cost work-
stations. Higher performance, at a higher price,
can be achieved by tightly-coupled parallel super-
computers, either current machines like the KSR-1
and KSR-2 or future machines that may resem-
ble Typhoon or FLASH. The widespread availabil-
ity of shared-memory alternatives will hopefully mo-
tivate manufacturers to develop midrange systems
using Blizzard-E-like technology (e.g., the Nimbus
NIM6133).

Acknowledgments

This work was performed as part of the Wisconsin Wind
Tunnel project, which is co-lead by Profs. Mark Hill,
James Larus, and David Wood and funded by the Na-
tional Science Foundation. We would like to thank Mark
Hill, Anne Rogers, and Todd Austin for helpful comments
on this research and earlier drafts of this paper. We would
especially like to thank the Universities of Washington
and Michigan for allowing us access to their KSR-1s.

References

[1] Tom Anderson, David Culler, and David Patterson. A
Case for Networks of Workstations: NOW. Technical re-
port, Computer Science Division (EECS), University of
California at Berkeley, July 1994.

[2] Henri E. Bal, Andrew S. Tanenbaum, and M. Frans
Kaashoek. Orca: A Language for Distributed Program-
ming. ACM SIGPLAN Notices, 25(5):17{24, May 1990.

[3] John K. Bennett, John B. Carter, and Willy Zwaenepoel.
Munin: Distributed Shared Memory Based on Type-
Speci�c Memory Coherence. In Second ACM SIGPLAN

Appears in: \ASPLOS VI," Oct. 1994. Reprinted by permission of ACM.

Symposium on Principles & Practice of Parallel Program-
ming (PPOPP), pages 168{176, February 1990.

[4] John B. Carter, John K. Bennett, and Willy Zwaenepoel.
Implementation and Performance of Munin. In Proceed-
ings of the Thirteenth ACM Symposium on Operating
System Principles (SOSP), pages 152{164, October 1991.

[5] David Chaiken and John Kubiatowicz. Personal Commu-
nication, March 1994.

[6] David Chaiken, John Kubiatowicz, and Anant Agar-
wal. LimitLESS Directories: A Scalable Cache Coherence
Scheme. In Proceedings of the Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS IV), pages 224{
234, April 1991.

[7] Albert Chang and Mark F. Mergen. 801 Storage: Archi-
tecture and Programming. ACM Transactions on Com-
puter Systems, 6(1):28{50, February 1988.

[8] David R. Cheriton, Hendrik A. Goosen, and Philip Ma-
chanick. Restructuring a Parallel Simulation to Improve
Cache Behavior in a Shared-Memory Multiprocessor: A
First Experience. In International Symposium on Shared
Memory Multiprocessing, pages 109{118, April 1991.

[9] Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui
Lu, Ramakrishnan Rajamony, and Willy Zwaenepoel.
Software Versus Hardware Shared-Memory Implementa-
tion: A Case Study. In Proceedings of the 21st Annual In-
ternational Symposium on Computer Architecture, pages
106{117, April 1994.

[10] William J. Dally and D. Scott Wills. Universal Mechanism
for Concurrency. In PARLE '89: Parallel Architectures
and Languages Europe. Springer-Verlag, June 1989.

[11] Susan J. Eggers and Randy H. Katz. The E�ect of Sharing
on the Cache and Bus Performance of Parallel Programs.
In Proceedings of the Third International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS III), pages 257{270, 1989.

[12] Babak Falsa�, Alvin Lebeck, Steven Reinhardt, Ioannis
Schoinas, Mark D. Hill, James Larus, Anne Rogers, and
David Wood. Application-Speci�c Protocols for User-
Level Shared Memory. In Proceedings of Supercomputing
94, November 1994. To appear.

[13] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and
David A. Wood. Cooperative Shared Memory: Software
and Hardware for Scalable Multiprocessors. ACM Trans-
actions on Computer Systems, 11(4):300{318, November
1993. Earlier version appeared in ASPLOS V, Oct. 1992.

[14] W. Daniel Hillis and Lewis W. Tucker. The CM-5 Con-
nection Machine: A Scalable Supercomputer. Communi-
cations of the ACM, 36(11):31{40, November 1993.

[15] Peter Yan-Tek Hsu. Designing the TFP Microprocessor.
IEEE Micro, 14(2):23{33, April 1994.

[16] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and
Daniel D. Sleator. Competitive Snoopy Caching. Algo-
rithmica, (3):79{119, 1988.

[17] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy
Zwaenepoel. TreadMarks: Distributed Shared Memory on
Standard Workstations and Operating Systems. Technical
Report 93-214, Department of Computer Science, Rice
University, November 1993.

[18] Kendall Square Research. Kendall Square Research Tech-
nical Summary, 1992.

[19] R. E. Kessler and J. L. Schwarzmeier. CRAY T3D: A New
Dimension for Cray Research. In Proceedings of COMP-
CON 93, pages 176{182, San Francisco, California, Spring
1993.

[20] Je�rey Kuskin et al. The Stanford FLASH Multiproces-
sor. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 302{313, April
1994.

[21] James R. Larus and Thomas Ball. Rewriting Executable
Files to Measure Program Behavior. Software Practice &
Experience, 24(2):197{218, February 1994.

[22] Alvin R. Lebeck and David A. Wood. Fast-Cache: A New
Abstraction for Memory System Simulation. Technical
Report 1211, Computer Sciences Department, University
of Wisconsin{Madison, January 1994.

[23] Charles E. Leiserson et al. The Network Architecture of
the Connection Machine CM-5. In Proceedings of the Fifth
ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), July 1992.

[24] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy,
Mark Horowitz, and Monica Lam. The Stanford DASH
Multiprocessor. IEEE Computer, 25(3):63{79, March
1992.

[25] Daniel Lenoski, James Laudon, Truman Joe, David
Nakahira, Luis Stevens, Anoop Gupta, and John Hen-
nessy. The DASH Prototype: Logic Overhead and Per-
formance. IEEE Transactions on Parallel and Distributed
Systems, 4(1):41{61, January 1993.

[26] Kai Li and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems. ACM Transactions on Com-
puter Systems, 7(4):321{359, November 1989.

[27] NIMBUS Technology. NIM 6133 Memory Controller Spec-
i�cation. Technical report, NIMBUS Technology, 1993.

[28] A. Nowatzyk, M. Monger, M. Parkin, E. Kelly, M. Bor-
wne, G. Aybay, and D. Lee. S3.mp: A Multiprocessor in
a Matchbox. In Proc. PASA, 1993.

[29] R. R. Oehler and R. D. Groves. IBM RISC System/6000
processor architecture. IBM Journal of Research and De-
velopment, 34(1):32{36, January 1990.

[30] Steven K. Reinhardt, Babak Falsa�, and David A. Wood.
Kernel Support for the Wisconsin Wind Tunnel. In Pro-
ceedings of the Usenix Symposium on Microkernels and
Other Kernel Architectures, September 1993.

[31] Steven K. Reinhardt, Mark D. Hill, James R. Larus,
Alvin R. Lebeck, James C. Lewis, and David A. Wood.
The Wisconsin Wind Tunnel: Virtual Prototyping of Par-
allel Computers. In Proceedings of the 1993 ACM Sigmet-
rics Conference on Measurement and Modeling of Com-
puter Systems, pages 48{60, May 1993.

[32] Steven K. Reinhardt, James R. Larus, and David A.
Wood. Tempest and Typhoon: User-Level Shared Mem-
ory. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 325{337, April
1994.

[33] Rafael H. Saavedra, R. Stockton Gaines, and Michael J.
Carlton. Micro Benchmark Analysis of the KSR1. In Pro-
ceedings of Supercomputing 93, pages 202{213, November
1993.

[34] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop
Gupta. SPLASH: Stanford Parallel Applications for
Shared Memory. Computer Architecture News, 20(1):5{
44, March 1992.

[35] Daniel Stodolsky, J. Brad Chen, and Brian Bershad. Fast
Interrupt Priority Management in Operating Systems. In
Second USENIX Symposium on Microkernels and Other
Kernel Archtitectures, pages 105{110, September 1993.
San Diego, CA.

[36] Richard Uhlig, David Nagle, Trevor Mudge, and Stuart
Sechrest. Tapeworm II: A New Method for Measuring OS
E�ects on Memory Architecture Performance. In Proceed-
ings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS VI), October 1994. To appear.

