EAAHNIKH AHMOKPATIA

MANEMIZTHMIO KPHTHZ

CS255 - Programming Lab
Evérnra: Tutorials
AyyeAog MTriAag

TuAua EmoTAung YmroAoyioTwy

Tutorial 5 - Git

Git is a distributed version control system. Version control systems allow developers to track the
development of their process and be able to revert changes or go back in time.

e Terminology

Repositories

With git there is no need for a single central repository.

Local

Users can create local repositories with git init. Additionally using git clone users may create local
clones (copies) of remote repositories.

Remote

Remote repositories are special clones that are hosted in a remote server or even in a different
directory on the filesystem.

The idea is to have multiple local clones where users keep track of their own work and when it gets to
a functional stage they pushit to the remote repository so that other users can view/get it. Note
however that there is no restriction on the number of remote repositories one can use. One might
want to use various remote repositories for redundancy.

Workspace

Workspace is where a user acts, it is essentially the local directory where a repository was cloned.

Index

Index, as it names denotes, is the mechanism that keeps track of the (local) changes. When a user
changes something in his workspace he needs to commit it to update the index.

https://git-scm.herokuapp.com/

Stage area

Something between the workspace and the index. It is more like a temporary state that reflects what
the user is planning to put in the index.

Unstaged changes

Changes (i.e. modifications, additions, deletions of files) in the workspace that have not been added
for commission to the index.

Staged files

Files that are modified or new in the workspace and have been added for commission to the index.

Stash

Stash is a special place where users may temporarily push changes that they don't want to add to the
index. They may later pop those changes. It is essentially a buffer holding various changes that for
some reason the user does not want to index.

e Commands

Creating a repository

git clone path_or_link/to/git/repository

Clones a remote repository. e.g. git clone https://github.com/zakkak/rendezvous.git
git init

Creates a new empty (local) repository in the current directory.

Handling local state (the workspace)

git status

Shows the status of the workspace. It lists any unstaged and staged changes.
git diff

Shows the changes to the tracked files. Tracked files are these files that have been staged at least
once in the lifetime of the repository.

git add file

Adds file to the stage area.

git add .

Stages all current changes.

git add -p file

Starts staging changes in interactive mode and asks the user which changes to stage.
git rm file

Removes file from the workspace and stages its removal.

git commit

Commits any staged changes to the index.

git commit -a

Commits all changes to the index. It is essentially a shortcut for git add . && git commit.
git commit -m "My message"

Commits any staged changes to the index and adds the commit message "My message".
git commit --amend

It allows users to modify the commit message or add some extra changes to the last commit. Note
that it is not safe to amend commits that have been already pushed to a remote repository.

History

git log

Presents the commit logs.

git log -p <file>

Presents the changes to file by each commit in the history.

git log --graph

Presents commit logs with more than one branches in a visually appealing manner.
git blame <file>

Shows which user changed last each line of the file.

Branching

Branches are a very good way to have different versions of the same project in a repository. For
example if you want to try a new feature you can create an new branch and implement that feature in
it. If you are happy with your new feature you can then merge that branch to the master branch.

git branch -a

Lists available branches

git checkout <branch>

Changes the the working branch in the workspace.
git branch <new branch>

Creates a new branch from the current index.

git checkout <old branch> -b <new branch>
Creates a new branch from an old one.

git branch -d <branch>

Deletes a local branch.

Remote management

git remote

Lists all available remotes

git remote show <name>

Lists details about the remote name.

git remote add <name> <url>

Adds a new remote named name with url url.
git remote remove <name>

Removes remote name.

git push

Pushes (i.e. uploads) any updates of the index to the default remote repository

git push <remote> <branch>

Pushes (i.e. uploads) any updates of the index to the branch of remote.

git fetch

Fetches (i.e. downloads) any updates of the index from the default remote repository.

git fetch <remote> <branch>

Fetches (i.e. downloads) any updates of the index from branch of remote.

git pull

Pulls (i.e. downloads and merges) any updates of the index from a remote repository.

git pull <remote> <branch>

Pulls (i.e. downloads and merges) any updates of the index from branch of remote.
git branch -dr <remote/branch>

Deletes a branch from remote.

Tags

git tag <name>

Creates tag name.

git tag <name> -m "My message"

Creates tag name and attached message "My message" to it.
git tag

Lists all available tags.

git tag -n

Lists all available tags along with the attached messages.

git push --tags

Push tags to the default remote repository.

git merge

git merge <branch>

Merges branch to the current index.

git merge --abort

Aborts merge.

git add <resolved>

Stages resolved and changes its state from conflicting.

git rm <resolved>

Stages resolved for removal and changes its state from conflicting.
git mergetool

Use a merge tool to resolve conflicts.

Undo/Revert

git checkout <file>

Drops any changes of file and restores it to the last staged state.

git checkout HEAD <file>

Drops any changes of file and restores it to the HEAD state in the index.

git revert <commit>

Reverts/undos the changes performed by commit. Creates a new commit that reflects this revert.
git reset HEAD

Unstages any changes but preserves them in the workspace.

git reset <commit>

Moves the index HEAD to commit preserving any changes since that commit in the workspace as
unstaged.

git reset --hard HEAD
Drops all changes and restores the workspace to the HEAD state in the index.
git reset --hard <commit>

Drops all changes and restores the workspace to commit and moves the index HEAD to it. Should not
be used to move HEAD before pushed commits, in that case you should use git revert.

Online interactive tutorial
There is also available an interactive tutorial here

Authored by: Foivos S. Zakkak

https://try.github.io/levels/1/challenges/1

Adsieg XpRong

*To TTapov ekTTaIdEUTIKG UAIKS UTTOKEITAI OTNV Adela Xpriong Creative Commons Kal

€10IKOTEPQ

Avag@opd — Mn gptropiki Xpron — Ox1 Mapdywyo Epyo 3.0 EAAGSa

(Attribution — Non Commercial — Non-derivatives 3.0 Greece)

©105l0

*E€aipeital amrd TNV wg Avw adeia UAIKS TTou TTEPIAABAVETAI OTIG SIOPAVEIES
TOU MaBruaTog, kal uttokeITal o€ dAAou TUTTou ddela xpriong. H adeia xpriong
OTNV OTTOIx UTTOKEITAI TO UAIKO AUTO ava@EPETAl pNTWG.

XpnuatodoéTnon

To TTapdv ekKTTAIOEUTIKO UAIKO €€l avaTtrTuxBei oTa TTAGICIO TOU eKTTAIOEUTIKOU £pyou
Tou S1IBACKOVTA.

To épyo «Avolktd Akadnuaikd Madiuara oto MavemoTApio KpAtng» £xel
XpNUATOd0TACEI HOVO TN avadIauOPPWO TOU EKTTAIOEUTIKOU UAIKOU.

To épyo uAotroigital oto TTAQioIo Tou ETixeipnoiakou lMpoypdupatog «Ekmaideuon
kai Al Biou Mdenon» kai ouyxpnuarodoteital amdé Tnv EupwTraiky ‘Evwon
(EupwTraikéd Koivwviké Tapeio) kar atmd €Bvikoug TTépoug.

* X x

EMIXEIPHZIAKO NMPOITPAMMA |

EKMAIAEYEH KAl AIA BIOY MAGHEH 5 Ez nA
- y tE= o (T

YNOYPFEIO NAIAEIAL KAl OPHIKEYMATON EvPanaiko KOINONIKO TAMEI

Evpwmnaiké Kowvwviké Tapeio " " S
Me) ouyxpnpatrodotnon tn¢ EAAadag kat tng Evpwnaikig Evwong

* *
* *
* *

* 5k

