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Empirical measurements

« Can be beneficial in revealing
— deficiencies of a wireless technology
— different phenomena of the wireless access & workload

* Provide data for modelling efforts aiming to produce more realistic
models & synthetic traces

« Enable meaningful performance analysis studies using such
empirical, synthetic traces and models



* Network performance benchmarks include:
o Jitter
 Latency/delay/response delay
. One way, round-trip delay

Network workload can be characterized based on:
* Amount of traffic
* Number of packets or bytes
« Downloading vs. uploading
» Packet or flow arrival process
 Interactivity model
« Application type
* Usage pattern Network topologies can be described based on
* Their connectivity
» Link charactertsics
 Distribution & density of peers
» Degree of clustering
o Co-residency time
* Inter-contact time
« Duration of disconnection for the Internet
 Interaction patterns
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Web traffic also exhibits self-similarity.
The majority of web traffic in wired networks is below 10KB,
while a small percentage of vey large flow account for 90% of
the total traffic. Power laws can describe web flow sizes.

So Poisson processes cannot accurately model the traffic load.
However, they can be used to model the arrival of user
sessions (e.g., telnet connections or arrivals at a wireless AP).



Poisson process

» Stochastic process which counts the number of events and the time that these events occur
In a given time interval.

« The time between each pair of consecutive events has an exponential distribution with

parameter A and each of these inter-arrival times is assumed to be independent of other
inter-arrival times

Exponential distribution : PDF X: Prob(X=x)=A e-**, x € [0, ), E[X] = 1/\, Var[X] = 1/A?

Power law, Zipf distribution, Pareto distribution are “heavy-tail” distributions

f‘:’l‘ x 2 ‘l.lll"

for x < x,.

Pareto: F(z)=Pr(X > 2z)= {ET‘)
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a self-similar object is exactly or approximately
similar to a part of itself (i.e. the whole has the
same shape as one or more of the parts). -

A self-similar object “looks” roughly the same
on any scale

— -




Propagation Models

e One of the most difficult part of the radio channel design

« Done in statistical fashion based on measurements made specifically
for an intended communication system or spectrum allocation

* Predicting the average signal strength at a given distance from the
transmitter
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Signal Power Decay with Distance

« Asignal traveling from one node to another experiences fast
(multipath) fading, shadowing & path loss

 |deally, averaging RSS over sufficiently long time interval

excludes the effects of multipath fading & shadowing
=

general path-loss model:

P(d) =Py-10nlogy, (d/d,)

n: path loss exponent
P(d): the average received power in dB at distance d P, Is the
received power in dB at a short distance d,



Signal Power Decay with
Distance

 In practice, the observation interval is not long enough to mitigate
the effects of shadowing

<= The received power is commonly modeled to include both path-loss

& shadowing effects, the latter of which are modeled as a zero-mean
Gaussian random variable with standard deviation o, In the
logarithmic scale, P(d), indBcanb e expressed:

P(d) -~ N (P(d), on?)

This model can be used in both line-of-sight (LOS) & NLOS scenarios
with appropriate choice of channel parameters



Important aspects of monitoring

|dentification of the dominant parameters

based on the aspects you need to measure, the parameters that need to be
monitored are decided ...

Strategic placement of monitors
e.g., at routers, APs, clients, and other devices, ...

Automation of the monitoring process to reduce human
Intervention in managing the monitors and collecting data

Aggregation of data collected from distributed monitors to
Improve the accuracy, while maintaining a low communication and
energy overhead

(cross-)validation study to verify that the collected traces
correspond to representative conditions



Monitoring

« Depending on type of conditions that need to be measured,
monitoring needs to be performed at

 Certain layers
e Spatio-temporal granularities
* Monitoring tools
— Are not without flaws

— Several issues arise when they are used in parallel for
thousands devices of different types & manufacturers:

 Fine-grain data sampling

e Time synchronization

 Incomplete information (missing values, incorrect values)

 Data consistency

 Vendor-specific information & dependencies (often not
publicly available)



Monitoring tools

* Fine-grain data sampling

What is its spatio-temporal granularity?
 Time synchronization

Clocks have different drifts...

* Incomplete information (missing values, incorrect values)

e How do you handle missing values? Explain what caused them!

« Various techniques to “fill” the gaps, if necessary, such as interpolation,
model-prediction, matrix completion and other sophisticated statistical
analysis methods ...

« Explain the outliers! Are there due to misconfigured devices? Or network
anomalies? Or due to the occurrence of “extreme” phenomena?

 Data consistency
 Vendor-specific information & dependencies (often not publicly

available)
e.g., RSSI differs depending on the manufacture



Monitoring & Data Collection

-Ine spatio-temporal detail monitoring can

= Improve the accuracy of the performance estimates
out also

% Increase the energy spendings and detection delay

Network interfaces may need to

« Monitor the channel in finer & longer time scales
« Exchange this information with other devices



Challenges in Monitoring (1/2)

« Identification of the dominant parameters through
— sensitivity analysis studies
 Strategic placement of monitors at
— Routers
— APs
— clients and other devices of users
e Automation of the monitoring process to reduce human intervention
INn managing the
e Monitors
 Collecting data



Challenges in Monitoring (2/2)

e Aggregation of data collected from distributed monitors to improve
the accuracy while maintaining low overhead in terms of

e Communication
e Energy

 Cross-layer measurements, collected data spanning from the physical
layer up to the application layer, are required



Wireless Networks

— Are extremely complex
— Have been used for many different purposes

— Have their own distinct characteristics due to radio propagation
characteristics & mobility

e.g., wireless channels can be highly asymmetric and time varying

Note:

Interaction of different layers & technologies creates many situations

that cannot be foreseen during design & testing stages of
technology development



Empirically-based Measurements

 Real-life measurement studies can be particularly beneficial in
revealing

— deficiencies of a wireless technology

— different phenomena of the wireless access and the workload
 Rich sets of data can

— Impel modeling efforts to produce more realistic models

— Enable more meaningful performance analysis studies



It is important to assess whether
typical assumptions are realistic!

Typical assumptions in performance analysis of wireless networks

— Models & analysis of wired networks are valid for wireless networks
— Wireless links are symmetric

— Link conditions are static

— The density of devices in an area is uniform

— The communication pairs are fixed

— User mobility is based on random-walk models



Wireless Access Parameters

Traffic workload
— In different time-scales
— In different spatial scales (e.qg., AP client, infrastructure)
— In bytes, number of packets, number of flows, application-mix

Delays

— Jitter and delay per flow
— Statistics at an AP and/or channel

Packet losses
%packet loss & burstiness of packet losses

User mobility patterns

Link conditions & channel quality
Network topology



Traffic Load Analysis

* As the wireless user population increases, the
characterization of traffic workload can facilitate

* More efficient network management
o Better utilization of users’ scarce resources

« Application-based traffic characterization
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Traffic Load at APs

Wide range of workloads that log-normality is prevalent
In general, traffic load is light, despite the long tails

No clear dependency with type of building the AP is located exists

— Although some stochastic ordering is present in
« Tail of the distributions

Dichotomy among APs is prominent in both infrastructures:

APs dominated by uploaders
APs dominated by downloaders
As the total received traffic at an AP

— There is also " in its total traffic sent
— { in the sent-to-received ratio



Traffic load at APs

Substantial number of non-unicast packets

Number of unicast received packets strongly correlated with
number of unicast sent packets (in log-log scale)

Most of APs send & receive packets of relatively small size
Significant number of APs show rather asymmetric packet sizes
— APs with large sent & small receive packets
— APs with small sent & large receive packets

Distributions of the number of associations & roaming
operations are heavy-tailed

Correlation between the traffic load & number of associations

In log-log scale



Complementary Cumulative Probability

In general, the traffic load is light

% long tails
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Wide-range of workloads

Total Wireless Traffic Sent By AP in Gigabytes
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Complementary Cumulative Probability
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AP Sent/Received Ratio
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Application-based Traffic
Characterization

¢ Using port numbers to classify flows may lead to significant amounts
of misclassified traffic due to:

—Dynamic port usage

—Qverlapping port ranges

—Traffic masquerading

«Often peer-to-peer & streaming applications:
— Use dynamic ports to communicate
— Port ranges of different applications may overlap

— May try to masquerade their traffic under well-known “non-
suspicious” ports, such as port 80



Desirable Properties for
Models

— Accuracy

— Tractability

— Scalability

— Reusability

— “Easy” interpretation



Related work

* Rich literature in traffic characterization in wired networks
— Willinger, Tagqu, Leland, Park on self-similarity of Ethernet LAN traffic
— Crovela, Barford on Web traffic
— Feldmann, Paxson on TCP
— Paxson, Floyd on WAN
— Jeffay, Hernandez-Campos, Smith on HTTP

» Traffic generators for wired traffic
— Hernandez-Campos, Vahdat, Barford, Ammar, Pescape, ...
o P2P traffic
— Saroiu, Sen, Gummadi, He, Leibowitz, ...
e On-line games
— Pescape, Zander, Lang, Chen, ...
* Modelling of wireless traffic
— Meng et al.



Dimensions in Modeling Wireless
Access

Intended user demand
User mobility patterns
— Arrival at APs

— Roaming across APs

Channel conditions
Network topology



Mobility models

Group or individual mobility
Spontaneous or controlled
Pedestrian or vehicular
Known a priori or dynamic

Random-walk based models
— Randway model in ns-2

Markov-based model



A Very Simple Channel Model

e Gilbert model

« © Compute stationary probabilities

e Py

Pii

P
<A channel can be in the idle or busy state
eMarkov-based model allows us to determine:
e How much time the system spends in each state
e Probability of being in a particular state

“F” In real rife, there is non-stationarity due dynamic

A~ AN~ AN~A



Markov chain model:
(definition)
random process usually characterized as memoryless:
the next state depends only on the current state and
not on the sequence of events that preceded it.

Example:

The states represent whether the economy is 075
in a bull market, a bear market, or a recession, | 9

during a given week:

a bull week is followed by another bull week Bull Market Bear Market

90% of the time, a bear market 7.5% of the 15
time, and a recession the other 2.5%.
Label the state space 025 29 05
{1=bull, 2=bear, 3=recession} 25
Define the transition matrix;
Recession

0.9 0.075 0.025
P= 1015 08 0.05].

025 025 0.5



(Continuing from the previous slide)

From this figure, it is possible to calculate the long-term fraction of time during
which the economy is in a recession, or on average, how long it will take to go
from a recession to a bull market

The distribution over states can be written as a stochastic row vector x with the relation
x(n+1) = x()p.

So if at time n the system is in the state 2 (“bear”) then, at time n + 3 the distribution is

,I{n+-3j — ;l“‘n+"JP — (I{n+ljp) P

— ‘.l‘{n'+l-]P2 — (I{n.]PQ) P

— T (n) P&

0.9 0075 0.025]°

=[0 1 0/|015 08 005
025 025 0.5
[0.7745 0.17875 0.04675
= [0 1 0] 0.3575 0.56825 0.07425
0.4675 0.37125 0.16125
— [0_3575 0.56825 0.07425].




UNC/FORTH web archive

Online repository of models, tools, and traces

ii — Packet header, SNMP, SYSLOG, synthetic traces, ...
http://netserver.ics.forth.gr/datatraces/

@ Free login/ password to access it

< Simulation & emulation testbeds that replay synthetic
traces for various traffic conditions

gzt 2bile Computing Group @ University of Crete/FORTH
9%/ /www.ics.forth.gr/mobile/

| maria@csd.uoc.gr



http://netserver.ics.forth.gr/datatraces/
http://www.ics.forth.gr/mobile/
mailto:maria@csd.uoc.gr
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