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COMPRESSION AND RAREFACTION OF AIR PARTICLES

Infinitely y
/ -
Wall

(b)

(c)



SOME DEFINITIONS

@ Sound wave: propagation of disturbance (local changes in
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SOME

DEFINITIONS

Sound wave: propagation of disturbance (local changes in
pressure, displacement, and velocity) of particles through a medium,
creating the effect of compression or rarefaction.

Wavelength: distance between two consecutive peak compressions,
A

Frequency: number of cycles of compressions per second, f
Speed of sound: ¢ = f\ (at sea level and at 70°F, ¢ = 344m/sec)

Isothermal process: a slow variation of pressure where the
temperature in the medium remains constant

Adiabatic process: a fast variation of pressure where the
temperature in the medium increases



CUBE CONFIGURATION
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NOTATION

Assuming planar propagation, and within the cube:
e p(x, t) fluctuation of pressure about an ambient or average
pressure Py.
> Threshold of hearing: 2 1075 newtons/m?
> Threshold of pain: 20 newtons/m?
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NOTATION

Assuming planar propagation, and within the cube:

e p(x, t) fluctuation of pressure about an ambient or average
pressure Py.
> Threshold of hearing: 2 1075 newtons/m?
> Threshold of pain: 20 newtons/m?

@ v(x, t) fluctuation of particles’ velocity about zero average
velocity.

@ p(x, t) fluctuation of particles’ density about an average
density po.
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THE WAVE EQUATION

Under the assumptions:

o If there is no friction of air particles in the cube with those
outside the cube (no viscosity),

o Cube is very small,
@ The density of air particles is constant in the cube
(i.e..p0 = p)
then, one form of the Wave Equation is given by:

2 ov
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LoOSSLESS CASE OF CROSS SECTION A
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where u(x, t) = Av(x, t)



SOLUTION FOR A LOSSLESS TUBE

Under the assumptions/conditions:
@ No friction along the walls of the tube

o At the open end of the tube, there are no variations in air
pressure, i.e. p(/,t) =0
o Volume velocity at x = 0: u(0,t) = Ug(Q)e/*?



SOLUTION FOR A LOSSLESS TUBE

Under the assumptions/conditions:
@ No friction along the walls of the tube
o At the open end of the tube, there are no variations in air
pressure, i.e. p(/,t) =0
o Volume velocity at x = 0: u(0,t) = Ug(Q)e/*?

> Volume velocity:

~cos[Q(/ - x)/c] U

ulx,t) = cos (Q 1/c) 5@

> (Incremental) Pressure:

.pcsin [Q(/ — x)/c]

pixt) = A cos(Q1/c) Us(@)e™

where U, (Q)e/* denotes volume velocity at x = 0



VELOCITY AND PRESSURE ARE “ORTHOGONAL”
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INPUT/OUTPUT VOLUME VELOCITY

At x =1
1

lLt)= ———
u(l t) cos(Q I/c)
Then, the frequency response V(Q) is:

Ug(Q)e™

_uLQ) 1
V(@) = Ug(Q)  cos(Q 1/c)

providing resonances of infinite amplitudes at frequencies:

e

Q= (2k +1)7;,

k=0,1,2,



INPUT/OUTPUT VOLUME VELOCITY

At x =1
1

lLt)= ———
u(l t) cos(Q I/c)
Then, the frequency response V(Q) is:

Ug(Q)e™

_uLQ) 1
V(@) = Ug(Q)  cos(Q 1/c)

providing resonances of infinite amplitudes at frequencies:

e

Q= (2k +1)7;,

k=0,1,2,

Example: if I= 35cm, ¢ = 350 m/s, then f, = 250,750, 1250, - - -

Hz.



UNIFORM TUBE: BEING REALISTIC

Energy loss due to the wall vibration (left) and with viscous and
thermal loss (right)[1]:
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UNIFORM TUBE: BEING MORE REALISTIC

Sound radiation at the lips, as an acoustic impedance:

_ P(1,9)
W =g0.9)

All the previous losses, plus radiation loss[1]:

32
Formant |Frequency |Bandwidth
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2nd 1423.6 80.5
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Sth 4274.5 201.7
_ 20
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PRESSURE-TO-VOLUME VELOCITY FREQUENCY
RESPONSE

Since we measure pressure at the lips:

P(1,9)

"= 0@

- Z,(Q)V(Q)



NUMERICAL SIMULATIONS FOR /0O/[1]
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CONCATENATING LOSSLESS UNIFORM TUBES

Glottis
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DISCRETIZING THE CONTINUOUS-SPACE TUBE

@ Impulse response of N lossless concatenated tubes with total
length [

h(t) = bod(t — N7) + > bd(t — Nt — k27)
k=1

_ Ax — 1
where 7 = - and Ax = N
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DISCRETIZING THE CONTINUOUS-SPACE TUBE

@ Impulse response of N lossless concatenated tubes with total
length [

h(t) = bod(t — N7) + > bd(t — Nt — k27)
k=1
where 7 = % and Ax = ﬁ

@ Frequency response:
e .
H(Q) — Z bkef_]szT
k=0

@ Observe that: 5
T
H(Q + E) = H(Q)



SIGNAL FLOW GRAPHS

Uit (t = Teyt)

= Ui 1(t + Tiey1)
Uice1(H)

(k + 1)st Tube

Tube N
—»<

uit—1)

ui(t+1tq)

(a) two concatenated tubes, (b) lip boundary condition, (c) glottal
boundary condition



FOR A LOSSLESS TWO-TUBE MODEL

(1 + rg)
2 (1+r) (1+r)

T T = =

ug(t) u(t)
fg —I4 ry -y
T T =
(1-r9)
(a)

Transfer function relating the volume velocity at the lips to the

glottis:
befs27'

1+ ale—SZT + 326—547

with ag = nrg+nr, aa=rirgand b=05(1+rg)(1+r)(1+n)
(Show me this)

V(s) =



DISCRETE-TIME LOSSLESS MODELS

e Two cubes: By setting z = e°?7, then:

bz 1
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DISCRETE-TIME LOSSLESS MODELS

e Two cubes: By setting z = e°?7, then:

bz 1
VvV =
(Z) 14 312_1 + 322_2
o N cubes: N/2
Az
V(2) :



CHOOSING THE NUMBER OF TUBE ELEMENTS

Question:
If a vocal tract has length | = 17.5 cm and the speed of sound

¢ = 350 m/s, how many tubes, N, do we need to cover a
bandwidth of 5000 Hz?



CHOOSING THE NUMBER OF TUBE ELEMENTS

Question:
If a vocal tract has length | = 17.5 cm and the speed of sound

¢ = 350 m/s, how many tubes, N, do we need to cover a
bandwidth of 5000 Hz?

Answer: N = 10



COMPLETE DISCRETE-TIME MODEL FROM N TUBES

Discrete-time pressure-to-volume velocity frequency response:

where R(z) ~ 1 — az ! and V/(z) is an all-pole model.
And for the speech signal (voiced case):

X(z) = A,G(2)H(z)

with A, to control loudness and G(z) being the z-transform of the
glottal flow input.



COMPLETE DISCRETE-TIME MODEL FROM N TUBES

Discrete-time pressure-to-volume velocity frequency response:

where R(z) ~ 1 — az ! and V/(z) is an all-pole model.
And for the speech signal (voiced case):

X(z) = A,G(2)H(z)

with A, to control loudness and G(z) being the z-transform of the
glottal flow input.

or
1—az!

X(z) =A,G
(2) (Z)1+ZLV:1 axzk




(GLOTTAL WAVEFORM MODEL

A typical glottal flow waveform over one cycle is modeled as:

gln] = (b7 u[=n]) x (b~ "u[-n])

which has as z-transform:



(GLOTTAL WAVEFORM MODEL

A typical glottal flow waveform over one cycle is modeled as:

gln] = (b7 u[=n]) x (b~ "u[-n])
which has as z-transform:
So for a voiced frame:
(1—azh)
Y1 bz)2(1+ Y, akzk)

X(z)=A



MODELING OTHER STATES

o For noisy inputs:

X(z) = ApU(2)V(2)R(2)
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MODELING OTHER STATES

o For noisy inputs:
X(z) = ApU(2)V(2)R(2)
o For impulsive sounds:
X(z) = AiV(2)R(z)
e being more general:

(1 -2z ") [I, (1~ az ™) [11%, (1 — dh2)

X(z)=A
) (1—b2)? (1 -3 az )



AN OVERVIEW THEN

Ay
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GLOTTAL FLOW DERIVATIVE

Since speech signals, x(t) can be obtained in general by:

x(t) ~ A% [ug(£) * v(1)]

and because:

d d
A% Lug(6) V(0] = A | Sugle)] = vl

we usually consider the derivative 4 u,(t) as input to the system,
which is referred to as Glottal Flow Derivative



(GLOTTAL FLOW AND ITS DERIVATIVE

ug(t)
(@)
Closed Return
Phase Open Phase Phase
Ug(t)
(b)
Time
Glottal

Pulse
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RIPPLE IN THE GLOTTAL FLOW DERIVATIVE?
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REGARDING THE FIRST

FORMANT
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TRUNCATION EFFECT - AGAIN

Amplitude
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Xpnuotodotnon

To mapov ekmalSeUTIKO UAKO £xelL avamtuxBei ota mAaiola Tou
ekmaldeutikol £pyou Tou Stédokovta.

To épyo «Avoikta Akadnuaikd Madnpata oto Naveniotipo Kptneg»
£XEL XPNHATOSOTAOEL LOVO T avadLlapopdwaon Tou eKmalSeUTIKOU UALKOU.

To £pyo uloroleital oto mAaiolo Tou Emixelpnotakol Mpoypdupotog
«Exmaideuon kat Al Biou MaBnon» kat ouyxpnuatodoteital oo tnv
Evpwnaikn Evwon (Eupwmaikd Kowvwvikd Tapeio) kat amnod eBvikoug
ndépoug.

:‘ % *2 E&ir}'mevm‘m AIA‘ ém MAeleH EznA
* * - -

YNOYPTEIO N KAl BPHEIKEY
EvpwnaikiBvwon  EATKH YITHPELIA ATAXELF L
OO el .. i v e EMGSa kar iixiic Evwone

ﬂw




ZNMUELWHOTOL



ZnHeiwpa aderodotnong

« To r(apov UAWKO SlatiBetal pe ToUug 6poug TG aéstaq xpnonq Creative Commons Avadopd, Mn
Epmopikn Xpnon, O)(L MNapdaywyo Epyo 4.0 [1] i petayevéatepn, AleBVAG EK600n EEaLpouvtaL
TOL AUTOTEAN €pya TpiTWV TL.X. Pwrtoypadieg, Staypaupata KA., Ta onoia EUNEPLEXOVTAL OE
QUTO KaL Ta omoia avadEépovtat Hadl e Toug 6POUG XPHONG TOUG OTOo «Znueiwpa Xpriong Epywv
Tpitwv».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/ @

* Q¢ Mn Epropukn opiletal n xprion:
— 1ou 8ev mepAapPAVEL AUECO 1) EUUECO OLKOVOULKO ODENOG QT TNV XProN TOU £pY0U, yLa TO Slavopéa
Tou épyou Kot adelodoxo
— mou Sev mepAapPavet otkovoptkr cuvaAlayr wg mpoindbeon yia tn xprion fi tpdopaacn oto £pyo
— Tou 8ev mpoomopilel oTo SLavopéa Tou £pyou Kal adelo80X0 EPUETO OLKOVOULKO OdeNOG (TT.X.
Sladnpioelg) anod tnv npoPoAr Tou £pyou oe SLadKTUAKO TOTO

e 0 8wkalolUyog Hrmopel va mapExet otov adelo80x0 EexwpLotr dSeLa va XpNOLUOTIOLEL TO £pYO0 Yo
EUTOPLKA XPHON, EPOoOV aUTO Tou INTNOEL.



Znueiwpa Avadopac

Copyright Navemiotrpo Kpntng, ZtuAiavou lwavvng. «Wnolakn Eneéepyacia
®wvng. Akouotikr) Avaiuon Napaywyng Gwvrgy». Ekdoon: 1.0. HpdkAeto/
P£Bupvo 2015. AtaBéoipo and tn diktuakn teuBuvon: http://
www.csd.uoc.gr/~hy578



Alatipnon ZNMELWHATWVY

Onoladnmote avanapaywyr n Sltaokeun Tou UAKoU Ba TipEmeL
va oUPTIEPAQUBAVEL:

= 10 Inueiwpa Avadopag

= 10 Inueilwpa Adeloddtnong

= 1Tn 6nAwon Alatnpnong ZNUELWUATWY

= 10 Inuelwpa Xpnong Epywv Tpitwv (edpodoov umtapxel)

pall pe Toug cUVOSEUOUEVOUG UTIEPOUVOEGHIOUC.



2npeiwpa Xpnoneg Epywv Tpitwv

To Epyo auTto KAVEL Xprion Twv akoAouBwv Epywv:

Ewoveg/Zxfuata/Aaypappata/Pwroypadisg
Ewdvec/oxnuata/Saypaupata/dwtoypadies mou mePLEXOVTAL OE AUTO TO OPXELO TIPOEPXOVTAL ATtO TO
BuBAio:

TitAog: Discrete-time Speech Signal Processing: Principles and Practice
Prentice-Hall signal processing series, ISSN 1050-2769

Suyypadéac: Thomas F. Quatieri

Ek&0tng: Prentice Hall PTR, 2002

ISBN: 013242942X, 9780132429429

MéyeBog: 781 oehibeg

KaL avarnapdyovtal LeTtd and ddela tou ek8oTn.
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