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DIGITAL TELEPHONE COMMUNICATION SYSTEM
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CATEGORIES OF SPEECH CODERS

e Waveform coders (16-64 kbps, f; = 8000Hz)
e Hybrid coders (2.4-16 kbps, f; = 8000Hz)
e Vocoders (1.2-4.8 kbps, fs = 8000Hz)
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SPEECH QUALITY

(]

Closeness of the processed speech waveform to the original
speech waveform

Naturalness

Background artifacts

Intelligibility
Speaker identifiability
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MEASURING SPEECH QUALITY

> Subjective tests:
e Diagnostic Rhyme Test (DRT)
e Diagnostic Acceptability Measure (DAM)
@ Mean Opinion Score (MOS)
> Objective tests:
@ Segmental Signal-to-Noise Ratio (SNR)

@ Articulation Index
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(QUANTIZATION

e Statistical models of speech (preliminary)
e Scalar quantization (i.e., waveform coding)

e Vector quantization (i.e., subband and sinusoidal coding)
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LINEAR PREDICTION CODING, LPC

Classic LPC

Mixed Excitation Linear Prediction, MELP
Multipulse LPC

Code Excited Linear Prediction (CELP)

e 6 o
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PROBABILITY DENSITY OF SPEECH

By setting x[n] — x, the histogram of speech samples can be
approximated by a gamma density:

1/2
PX(X)=< v3 ) e

8mox|x|

or by a simpler Laplacian density:

1 _ V3
px(x) = oo
X




DENSITIES COMPARISON
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OUTLINE

© SCALAR QUANTIZATION
e Max Quantizer
e Companding
@ Adaptive quantization
o Differential and Residual quantization



CODING AND DECODING

Encoder
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FUNDAMENTALS OF SCALAR CODING

o Let's quantize a single sample speech value, x[n] into M
reconstruction or decision levels:

R[n] = % = Q(x[n]), xi—1 < x[n] < x;

with 1 < j < M and x, denotes the M decision levels with
0< k<M.
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FUNDAMENTALS OF SCALAR CODING

o Let's quantize a single sample speech value, x[n] into M
reconstruction or decision levels:

R[n] = % = Q(x[n]), xi—1 < x[n] < x;

with 1 < j < M and x, denotes the M decision levels with
0< k<M.

@ Assign a codeword in each reconstruction level. Collection of
codewords makes a codebook.

e Using B-bit binary codebook we can represent each 28
different quantization (reconstruction) levels.

@ Bit rate, I, is defined as: | = Bf;



UNIFORM QUANTIZATION

Xj — Xi—1 = A 1<i<M
f="0 0 1< i< M

A is referred to as uniform quantization step size.
> Example of a 2-bit uniform quantization:

x[n]

01

00

PN GENUSEN G x[n]
7 4 7



UNIFORM QUANTIZATION: DESIGNING DECISION
REGIONS

e Signal range: —4oy < x[n] < 4oy

o Assuming B-bit binary codebook, we get 28 quantization
(reconstruction) levels

@ Quantization step size, A:

o A and quantization noise.



CLASSES OF QUANTIZATION NOISE

There are two classes of quantization noise:

e Granular Distortion:
X[n] = x[n] + e[n]
where €[n] is the quantization noise, with:
A <l
2 2

@ Overload Distortion: clipped samples
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ASSUMPTIONS

@ Quantization noise is an ergodic white-noise random process:
refm] = E(e[n]e[n+ m])
= 02, m=0
= 0, m#0
@ Quantization noise and input signal are uncorrelated:
E(x[nle[n+ m]) =0 Vm
o Quantization noise is uniform over the quantization interval

pe(e) = %, —5<e<%

= 0, otherwise



DITHERING

DEFINITION (DITHERING)

We can force e[n] to be white and uncorrelated with x[n] by
adding noise to x[n| before quantization!



SIGNAL-TO-NOISE RATIO

@ To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

%)

=

By

Il

‘Q
Ammxm

E([n])
E(20)

LNt
Ly N T
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@ To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:
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@ For uniform pdf and quantizer range 2xmax:
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@ To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR =

@ For uniform pdf and quantizer range 2xmax:
2
o = =5
13
— Xmax
- 3 22B
@ Or
3 228
SNR =



SIGNAL-TO-NOISE RATIO

@ To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR = —=

yzi 01 <2[n]

@ For uniform pdf and quantizer range 2xmax:

SNR = ——
(X,;ix )2

@ andindB:

SNR(dB) ~ 6B + 4.77 — 20 logyq (X'"“)
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SIGNAL-TO-NOISE RATIO

@ To quantify the severity of the quantization noise, we define the Signal-to-Noise Ratio (SNR) as:

SNR = T
e

yzi 01 <2[n]

@ For uniform pdf and quantizer range 2xmax:

SNR = ——
(X,;ix )2

@ andindB:

SNR(dB) ~ 6B + 4.77 — 20 logyq (X'"“)

Tx

@ and since xpmax = 4ox:
SNR(dB) ~ 6B — 7.2
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PuLse CobE MobDULATION, PCM

o B bits of information per sample are transmitted as a
codeword

@ instantaneous coding

@ not signal-specific

@ 11 bits are required for “toll quality”
@ what is the rate for f; = 10kHz?

e For CD, with f; = 44100 and B = 16 (16-bit PCM), what is
the SNR?



OPTIMAL DECISION AND RECONSTRUCTION LEVEL

if x[n] — px(x) we determine the optimal decision level, x; and the
reconstruction level, X, by minimizing:
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— [ P (% — x)?x
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OPTIMAL DECISION AND RECONSTRUCTION LEVEL

if x[n] — px(x) we determine the optimal decision level, x; and the
reconstruction level, X, by minimizing:

D = E[(%—x)
— %, pa(x)(% - x)2dx

and assuming M reconstruction levels X = Q[x]:

M X;
D = Z = / 1 pX(X)()?,' — X)2dX
i=1 Xij—

i

So:

9 = 0, 1<k<M
5
O — 0 1<k<M-1



OPTIMAL DECISION AND RECONSTRUCTION LEVEL,
cont.

@ The minimization of D over decision level, xx, gives:

Xk:M, 1<k<M-—1



OPTIMAL DECISION AND RECONSTRUCTION LEVEL,
cont.

@ The minimization of D over decision level, xx, gives:

RS S VR

@ The minimization of D over reconstruction level, X, gives:
~ _ ka px(x)

Xk—1 fk px(ss

= ka 1Px( )XdX

xdx



EXAMPLE WITH LAPLACIAN PDF

| Il |
4 3 2 -

X_g=—c0

%

=




PRINCIPLE OF COMPANDING

x[n]

Encoder —— c[n]

(b)

Nonlinearity | 9[N] | Uniform gln] -
il Quantizer
(a)
g'ln] ity
¢'[N] —|  Decoder - Nonlinearity

T—1

L X[N]




COMPANDING EXAMPLES

Companding examples:

@ Transformation to a uniform density:

gln] = Txln) = [Wp(s)ds—3, ZL<gln<i
= 0 elsewhere



COMPANDING EXAMPLES

Companding examples:

@ Transformation to a uniform density:

gl = T = ST p(s)ds—1, 5 <gln<l

=0 elsewhere
o p-law:

log (1 + u'j:m[zy

msign(x[n])

T(x[n]) = Xmax



ADAPTIVE QUANTIZATION

x[n] = Q[ ] x[n] i PR —
A
- Vzr?zgle Quantization- gy
Estimation o2n] Encoder
(a)
cin]

—  Decoder = X[n]

A

caln]

(b)



DIFFERENTIAL AND RESIDUAL QUANTIZATION

ofln]
x[n] +/:r> r[n] o r[n] Eods c[n]
x[n] W x[n] Jé
(a)
lof[n]
<L Decoder Al @ il
T P@)
X1 L]



OUTLINE

@ VECTOR QUANTIZATION

@ The k-means algorithm
@ The LBG algorithm



MOTIVATION FOR VQ

Vocal Tract Reflection Coefficients

Frequency Responses
ST ASE Ki | ke | ks | ke

Hi()
/\/\oo Wl | |
Ha(0) ¢
S cle|e|«
Ha(o) ©
./‘-/L Lo &l || &
Ha(0) ¢
\/\,\ n K|k | k| K
- o
| | | |
2 Bits 2Bits 2Bits 2Bits 2 Bits
el R

8 Bits



COMPARING SCALAR AND VECTOR QUANTIZATION

Max quantizer (1-D) Vector quantizer (2-D)
x=Q[x] X=VQ[x]
X X2
7/ o ?
o[~
rq \ !@
\ | | | |
Xy X2 [X3 [xq4 X \ X
Decision region
(M-Dimensional boundary)
| | | | |
X4 Xo X3 Xa X
e = Centroid over the decision interval e = Centroid over the decision region

D=E[(Xx-x)?3 D = E [(X - X)%(X — X)]



DISTORTION IN VQ

Here we have a multidimensional pdf py(x):

D

E[(x - X)T(X — x)]
f f 2o (&= x) T (% — %) pe(x)dx
I 1 f fxEC ’ f ri— X)T(I’,' - x)px(x)dx



DISTORTION IN VQ
Here we have a multidimensional pdf py(x):

D~ Elfi—)(k )
= f f [T (& = x) T (& — x)pe(x)dx

= I 1 ffxec ’ f ri— X)T(I’,' - x)px(x)dx

Two constraints:

@ A vector x must be quantized to a reconstruction level r; that
gives the smallest distortion:

Ci = {x: HX—I’,-H2 < Hx—r,”27V/: 1,2, ,M}

@ Each reconstruction level r; must be the centroid of the
corresponding decision region, i.e., of the cell C;:

> Xm o,
= XG0 M

ZXmGC,' 1



THE K-MEANS ALGORITHM

e SI:
1 N—1
D = N kz_:o(ﬁk — Xk)T()?k — Xk)

e S2: Pick an initial guess at the reconstruction levels {r;}

@ S3: For each xj elect an r; closest to x,. Form clusters
(clustering step)

@ S4: Find the mean of x in each cluster which gives a new r;.
Compute D.

@ Sb: Stop when the change in D over two consecutive
iterations is insignificant.
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e Set an initial codebook C(%) with one codevector which is set
as the average of the entire training sequence,
Xk, k=1,2,--- N.

@ Split the codevector into two and get an initial new codebook
¢,
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THE LBG ALGORITHM

@ Set the desired number of cells: M = 28

e Set an initial codebook C(%) with one codevector which is set
as the average of the entire training sequence,
Xk, k=1,2,--- N.

@ Split the codevector into two and get an initial new codebook
¢,

@ Perform a k-means algorithm to optimize the codebook and
get the final (V)

@ Split the final codevectors into four and repeat the above
process until the desired number of cells is reached.



OUTLINE

@ MoODEL-BASED CODING
@ Basic Linear Prediction, LPC
e Mixed Excitation LPC (MELP)
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BAsic copING SCHEME IN LPC

@ Vocal tract system function:

where ,
P(z) = Z axz !
k=1

e Input is binary: impulse/noise excitation.

o If frame rate is 100 frames/s and we use 13 parameters
(p =10, 1 for Gain, 1 for pitch, 1 for voicing decision) we
need 1300 parameters/s, instead of 8000 samples/s for
fs = 8000Hz.



SCALAR QUANTIZATION WITHIN LPC

For 7200 bps:
@ Voiced/unvoiced decision: 1 bit
e Pitch (if voiced): 6 bits (uniform)
e Gain: 5 bits (nonuniform)

e Poles d;: 10 bits (nonuniform) [5 bits for frequency and 5 bits
for bandwidth] x 6 poles = 60 bits



SCALAR QUANTIZATION WITHIN LPC

For 7200 bps:
@ Voiced/unvoiced decision: 1 bit
e Pitch (if voiced): 6 bits (uniform)
e Gain: 5 bits (nonuniform)

e Poles d;: 10 bits (nonuniform) [5 bits for frequency and 5 bits
for bandwidth] x 6 poles = 60 bits

So: (14+6+ 5+ 60) x 100 frames/s = 7200 bps
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REFINEMENTS TO THE BASIC LPC CODING SCHEME

@ Companding in the form of a logarithmic operator on pitch
and gain

o Instead of poles use the reflection (or the PARCOR)
coefficients k;,(nonuniform)

o Companding of k;:

g = TI[ki
= og (135)
o Coefficients g; can be coded at 5-6 bits each! (which results

in 4800 bps for an order 6 predictor, and 100 frames/s)

o Reduce the frame rate by a factor of two (50 frames/s) gives
us a bit rate of 2400 bps




VQ N LPC cobpING

> A 10-bit codebook (1024 codewords), 800 bps VQ provides a
comparable quality to a 2400 bps scalar quantizer.
> A 22-bit codebook (4200000 codewords), 2400 bps VQ provides

a higher output speech quality.

Transmitter
s[n] LPC Codebook

k
Analysis T
b
v Bnoder {eeme
Q NeOder I pattern
Pitch Scalar

Voicing Quantization|
Receiver Codebook | K &[]
Bit | Ji Lattice s
1
— Decoder |
Pattern

Pitch/Voicing



UNIQUE COMPONENTS OF MELP

Mixed pulse and noise excitation
Periodic or aperiodic pulses

Adaptive spectral enhancements

e 6 o

Pulse dispersion filter



LINE SPECTRAL FREQUENCIES (LSFs) iINn MELP

LSFs for a pth order all-pole model are defines as follows:

@ Form two polynomials:

P(z) = A(z)+z (PtDA(z™1)
Q(z) = A(z)—z (PtDA(z ™)

@ Find the roots of P(z) and Q(z), w; which are on the unit
circle.

© Exclude trivial roots at w; = 0 and w; = .



MELP cobpING

For a 2400 bps:
@ 34 bits allocated to scalar quantization of the LSFs
@ 8 bits for gain
@ 7 bits for pitch and overall voicing
@ b bits for multi-band voicing
o 1 bit for the jittery state

which is 54 bits. With a frame rate of 22.5 ms, we get an 2400 bps
coder.
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Xpnuotodotnon

To mapov ekmalSeUTIKO UAKO £xelL avamtuxBei ota mAaiola Tou
ekmaldeutikol £pyou Tou Stédokovta.

To épyo «Avoikta Akadnuaikd Madnpata oto Naveniotipo Kptneg»
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TOL AUTOTEAN €pya TpiTWV TL.X. Pwrtoypadieg, Staypaupata KA., Ta onoia EUNEPLEXOVTAL OE
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EUTOPLKA XPHON, EPOoOV aUTO Tou INTNOEL.
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= 10 Inueiwpa Avadopag

= 10 Inueilwpa Adeloddtnong

= 1Tn 6nAwon Alatnpnong ZNUELWUATWY

= 10 Inuelwpa Xpnong Epywv Tpitwv (edpodoov umtapxel)

pall pe Toug cUVOSEUOUEVOUG UTIEPOUVOEGHIOUC.



2npeiwpa Xpnoneg Epywv Tpitwv

To Epyo auTto KAVEL Xprion Twv akoAouBwv Epywv:

Ewoveg/Zxfuata/Aaypappata/Pwroypadisg
Ewdvec/oxnuata/Saypaupata/dwtoypadies mou mePLEXOVTAL OE AUTO TO OPXELO TIPOEPXOVTAL ATtO TO
BuBAio:

TitAog: Discrete-time Speech Signal Processing: Principles and Practice
Prentice-Hall signal processing series, ISSN 1050-2769

Suyypadéac: Thomas F. Quatieri

Ek&0tng: Prentice Hall PTR, 2002

ISBN: 013242942X, 9780132429429

MéyeBog: 781 oehibeg

KaL avarnapdyovtal LeTtd and ddela tou ek8oTn.
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