EAAHNIKH AHMOKPATIA
NANENIZTHMIO KPHTHz2

&L

Wnorakn Enséepyaocio Pwvic

AwGAegn: Nept Avtiotpodou QNtpapiopatog
ZAnatog Owvng

MNapouciaon: Nwpyog Kadevtlng

YtuAlavou lwavvng

Tunua Emotung YmoAoylotwv



On the Inverse Filtering of Speech

George Kafentzis

CS578-November 2012

George Kafentzis On the Inverse Filtering of Speech



Outline

Introduction

Database of physically modeled speech waveforms
Inverse Filtering Techniques

Inverse Filtering Procedure

Results

Conclusions and Future Work

George Kafentzis On the Inverse Filtering of Speech



Introduction

Outline

Introduction

George Kafentzis On the Inverse Filtering of Speech



Introduction

Human Speech Production System

The human speech production system is a complicated system.
However, it can be roughly divided into three parts:

» The vocal folds, which is the source of the system.
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Introduction

Human Speech Production System

The human speech production system is a complicated system.
However, it can be roughly divided into three parts:

» The vocal folds, which is the source of the system.

» The vocal tract, which is the path from the vocal folds to the
lips.

» The lips, which is the final bound before speech output.
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Introduction

Source-Filter model

» Based on this simplification, voiced speech can be modeled as
a linear filtering operation:

s(t) = g(t) x v(t) x I(t) <> S(z) = G(z)V(z)L(z)

where % denotes convolution and
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Introduction

Source-Filter model

» Based on this simplification, voiced speech can be modeled as
a linear filtering operation:

s(t) = g(t) x v(t) x I(t) <> S(z) = G(z)V(z)L(z)

where % denotes convolution and

v

g(t) the glottal airflow velocity waveform.
v(t) the vocal tract filter.

I(t) the lip radiation filter.

s(t) the output speech waveform.

vV vVvYy
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Introduction

(Glottal) Inverse Filtering - IF

What is inverse filtering?

Inverse Filtering is a technique for obtaining the source of voiced speech: the glottal airflow velocity

waveform.

P> How does the glottal flow look like?

Flow

Flow Derivative
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Phases of the glottal flow and its derivative.
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(Glottal) Inverse Filtering - IF: Why is it important?

Inverse filtering is extensively used in:

» Basic research of speech production
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Introduction

(Glottal) Inverse Filtering - IF: Why is it important?

Inverse filtering is extensively used in:
» Basic research of speech production
» Applications to speech analysis, synthesis, and modification

» Increased interest is risen in:

» Environmental voice care
» Voice pathology detection
> Analysis of the emotional content of speech
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Introduction

(Glottal) Inverse Filtering - IF: How is it performed?

Basic idea:

» Form a computational model for the vocal tract filter, \7(2)
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(Glottal) Inverse Filtering - IF: How is it performed?

Basic idea:
» Form a computational model for the vocal tract filter, \7(2)

» Cancel its effect from the speech waveform by filtering the
speech signal through the inverse of the model.
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Introduction

(Glottal) Inverse Filtering - IF: How is it performed?

Basic idea:
» Form a computational model for the vocal tract filter, \7(2)

» Cancel its effect from the speech waveform by filtering the
speech signal through the inverse of the model.

> It is obvious that the heart of an IF system is the vocal tract
filter estimation.
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Introduction

Evaluation of IF techniques

Problem: the actual glottal flow waveform is NOT available!

» ...at least in a non-invasive manner.
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Introduction

Evaluation of IF techniques

Problem: the actual glottal flow waveform is NOT available!
» ...at least in a non-invasive manner.

» Approaches:

» "Optical” inspection of the resulting glottal flow waveform,

» Use of synthetic speech signals produced by a known artificial
excitation,

» Compare the results of different IF algorithms.

» None of the previous approaches is truly objective.
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Database of physically modeled speech

» A database of physically modeled speech signals was created
by Titze and Story[3]
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» A database of physically modeled speech signals was created
by Titze and Story[3]

» Time-varying waveforms of the glottal flow and radiated
acoustic pressure are simulated in the basis of a physiological
model of vocal folds and vocal tract.

» This model generates a glottal flow waveform that is expected
to provide a more firm and realistic test of IF methods than a
parametric flow model.
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Database of physically modeled speech waveforms

Database of physically modeled speech

>

A database of physically modeled speech signals was created
by Titze and Story[3]

» Time-varying waveforms of the glottal flow and radiated
acoustic pressure are simulated in the basis of a physiological
model of vocal folds and vocal tract.

» This model generates a glottal flow waveform that is expected
to provide a more firm and realistic test of IF methods than a
parametric flow model.

> In this case, both the speech pressure waveform and the
glottal flow are available.
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Database of physically modeled speech waveforms

Database of physically modeled speech

P In detail, self sustained vocal fold vibration was simulated with three masses coupled to one another
through stiffness and damping elements.

body I cover

cartilaginous

boundary glottis

= spring &
damper

Flgu €. Schematic diagram of the lumped-element vocal fold model. The cover-body structure of
each vocal fold is represented by three masses that are coupled to each other by spring and damping
elements. Bilateral symmetry was assumed for all simulations.
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» The input parameters of this model are:

» the lung pressure,
» prephonatory glottal half-width (adduction),
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Database of physically modeled speech

» The input parameters of this model are:

» the lung pressure,
prephonatory glottal half-width (adduction),

>
» vocal fold length and thickness,
» and normalized activation levels of the cricothyroid (CT) and

thyroarytenoid (TA) muscles.
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Database of physically modeled speech

» The input parameters of this model are:

» the lung pressure,
prephonatory glottal half-width (adduction),

>
» vocal fold length and thickness,
» and normalized activation levels of the cricothyroid (CT) and

thyroarytenoid (TA) muscles.

> These parameters were transformed into mechanical
parameters according to Titze and Story[3].
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Database of physically modeled speech

» Four different sustained vowels (/aa/, /ae/, /eh/, /ih/) with
eight different fundamental frequencies
(105,115, 130, 145, 205, 210, 230, and 255 Hz) were used in
this work.
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» Four different sustained vowels (/aa/, /ae/, /eh/, /ih/) with
eight different fundamental frequencies
(105,115, 130, 145, 205, 210, 230, and 255 Hz) were used in
this work.

» In summary, the model is a simplified but physically motivated
representation of a speaker.

> It generates both the signal on which inverse filtering is
typically performed (microphone signal) and the signal that is
seeked to be determined (glottal flow).
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Database of physically modeled speech waveforms

Database of physically modeled speech

» Four different sustained vowels (/aa/, /ae/, /eh/, /ih/) with
eight different fundamental frequencies
(105,115, 130, 145, 205, 210, 230, and 255 Hz) were used in
this work.

» In summary, the model is a simplified but physically motivated
representation of a speaker.

> It generates both the signal on which inverse filtering is
typically performed (microphone signal) and the signal that is
seeked to be determined (glottal flow).

» This provides an idealized test case for inverse filtering
algorithms.
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Database of physically modeled speech waveforms

Example

Vowel /aa/, 105 Hz, speech signal
1 T T T

. . . . . .
200 250 300 350 400 450 500 550 600
Samples

Vowel /aa/, 105 Hz - Glottal flow
T

n h . \ n .
200 250 300 350 400 450 500 550 600
Samples

FIgU €. Upper panel: Speech waveform.
Lower panel: Glottal flow waveform.
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Inverse Filtering Techniques

Vocal tract estimation techniques

A number of techniques have been developed to robustly estimate the vocal
tract filter.
P Most of them are based on Linear Prediction (LP).

P> LPis used to produce an all-pole model of the system filter, H(z), which turns out to be a model of the
vocal tract and its resonances or formants.

1

Viz)= ————,
@ Sy (euz=H)

> In general, LP minimizes the mean squared error over a region R

p
E= Z ez[n], where e[n] = s[n] — Z ags[n — k],
R k=1

where p is the prediction order and aj are the prediction coefficients.

P The selection of this region leads to different approaches.
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Linear Prediction variants

> In this work, we will discuss the performance of four vocal
tract estimation techniques, all based on LP:
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Inverse Filtering Techniques

Linear Prediction variants

> In this work, we will discuss the performance of four vocal
tract estimation techniques, all based on LP:
» Autocorrelation-based Linear Prediction,
» Closed Phase Covariance-based Linear Prediction,
» Stabilised Weighted Linear Prediction,
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Inverse Filtering Techniques

Linear Prediction variants

> In this work, we will discuss the performance of four vocal
tract estimation techniques, all based on LP:
» Autocorrelation-based Linear Prediction,
Closed Phase Covariance-based Linear Prediction,
Stabilised Weighted Linear Prediction,
Closed Phase (CP) Covariance-based Linear Prediction with
Mathematical Constraints.

vV vy
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Inverse Filtering Techniques

Linear Prediction - Autocorrelation method

> Assuming that the speech signal s[n] is zero outside an interval
0<n<N-1

> the total error minimization leads to the matrix equation
di=7, (1)
> where the matrix ¢ is called theNaiutocorrelation matrix and its elements
are given by ®; ; = R(|i — j|) = Zs[n]s[n —|i—jl], 0<i<p,and

n=i
the other two vectors are given by

3i=[a,a,a3,....,3) ,7F=[R(1),R(2),RA3),...R(P)]". (2

> A tapered window (e.g. Hanning) is often used to eliminate beggining
and end effects.
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Inverse Filtering Techniques

Linear Prediction - CP Covariance method

> Assuming that the speech signal s[n] is zero outside an interval
—-p<n<N-1

> the total error minimization leads to the matrix equation
®3 =1, 3)
> where the matrix ® has the properties of a covariance matrix and its
elements are given by

N—-1

;= sln—ilsln - J, (4)

n=0
where 1 < i, j < p, and the other two vectors are given by
- T e T
d=la,a,a3,.,3] ¥ =[001,002, 03, P0,p] " - (5)

> However, in CP analysis, the total error is minimized over a region where
the glottis is closed.
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

Stabilized Weighted Linear Prediction (SWLP)[1], is an all-pole modeling
method based on Weighted Linear Prediction (WLP).
» SWLP uses time domain weighting of the square of the prediction error
signal.
> Short Time Energy (STE) Weighting function: w, = >-M° 0 'X2[n—i—1],
where x[n] is the signal and M is the duration of the STE window.
» The prediction error energy E in the SWLP method is

N+p N+p
E=Y (en)’wa=a" (D) _wix[n]x"[n])a=a’Ra, (6)
n=1 n=1
where w, is the weight imposed on sample n, N is the length of the signal
x[n], and
N+p
R= Z wax[n]x" [n].
n=1
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» Constrained minimization problem:
minimize E subject toa’u =1,

where u is the vector defined asu=1[10...0]".
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» Constrained minimization problem:
minimize E subject toa’u =1,
where u is the vector defined asu=1[10...0]".

> It can be shown that a satisfies the linear equation

Ra = o°u, (7)

2

where 02 = a’ Ra is the error energy.
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» Constrained minimization problem:
minimize E subject toa’u =1,
where u is the vector defined asu=1[10...0]".

> It can be shown that a satisfies the linear equation

Ra = ¢°u, (7)

2

where 02 = a’ Ra is the error energy.

» Finally, the SWLP all-pole model is obtained as
H(z) = 1/A(z), where A(z) is the z-transform of vector a.
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» STE function emphasizes the speech samples of large
amplitude, which typically occur during the closed phase
interval.

George Kafentzis On the Inverse Filtering of Speech



Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» STE function emphasizes the speech samples of large
amplitude, which typically occur during the closed phase
interval.

> It is well-known that applying LP analysis on speech samples
that belong to the glottal closed phase interval will generally
result in a more robust spectral representation of the vocal
tract.
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Stabilised Weighted Linear Prediction

» STE function emphasizes the speech samples of large
amplitude, which typically occur during the closed phase
interval.

> It is well-known that applying LP analysis on speech samples
that belong to the glottal closed phase interval will generally
result in a more robust spectral representation of the vocal
tract.

» By emphasizing on these samples that occur during the glottal
closed phase, it is likely to yield more robust acoustical cues
for the formants.
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» STE function emphasizes the speech samples of large
amplitude, which typically occur during the closed phase
interval.

> It is well-known that applying LP analysis on speech samples
that belong to the glottal closed phase interval will generally
result in a more robust spectral representation of the vocal
tract.

» By emphasizing on these samples that occur during the glottal
closed phase, it is likely to yield more robust acoustical cues
for the formants.

> A high value of M increases the sharpness of the resonances
of the spectrum, whereas a low value of M increases the
smoothness of the spectrum.
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

STE Weight function and Signal with p = 10 and M = 8

Amplitude
°

Lk
I ‘l { ! |
‘ ——— STE Weight Function
—— Signal

-3
0 0005 001 0015 002 0025 003 0035 004 0045
Time (sec)

STE Weight function and Glottal Flow with p = 10 and M = 8

Amplitude

—— STE Weight Function
Glottal Flow

"0 0005 001 0015 002 0025 003 0035 004 0045
Time (sec)

FIgU €. Upper panel: time domain waveforms of speech (vowel /a/ produced by male speaker) and short-time
energy (STE) weight function (M=8).
Lower panel: Glottal flow waveform of the vowel /a/ together with the STE weight function (M=8).
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

P Stability is ensured by the following formula:

| 4
R=YTY, ®
where
Y =lypyr - yp] € ROVFOETY
and T
yo = [vwix[1] - - - y/wyx[N] 0---0]".
P The column vectors are given by
Yk+1 = Byx, k=0,1,---,p—1, 9)
where
0 0 s 0 0
wa /wy 0 0 0

0 \ ws/wy 0 0

0 e 0 \/WNip/Wnip—1 O
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» Before forming the matrix Y, the elements of the secondary
diagonal of the matrix B are defined for all
i=1--- ,N+p—1as

B. __{ VWirt/wp, ifw; <wigg
i+1, —

1, if w; > Wit1
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Inverse Filtering Techniques

Stabilised Weighted Linear Prediction

» Before forming the matrix Y, the elements of the secondary
diagonal of the matrix B are defined for all
i=1--- ,N+p—1as

B. __{ VWirt/wp, ifw; <wigg
i+1, —

1, if w; > Wit1

» This method of computing matrix R is called the Stabilized
Weighted Linear Prediction model, and the stability of the
all-pole filter is ensured.
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Inverse Filtering Techniques

Sources of Distortion in conventional CP Covariance LP

» Conventional CP Covariance LP suffers from certain
shortcomings.
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Sources of Distortion in conventional CP Covariance LP

» Conventional CP Covariance LP suffers from certain
shortcomings.

» Short CP length (especially for high pitched speakers).
» Sensitivity to the position of the covariance frame.
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Inverse Filtering Techniques

Sources of Distortion in conventional CP Covariance LP

» Conventional CP Covariance LP suffers from certain
shortcomings.
» Short CP length (especially for high pitched speakers).
» Sensitivity to the position of the covariance frame.
» Vocal tract filter may not be stable.
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Inverse Filtering Techniques

Sources of Distortion in conventional CP Covariance LP

Sensitivity of the covariance frame position:

5

) 1
08 € o9
06 g © ©
2 04 g o o 0
[ =
02 5
0 E % &
-0.2 -1
100 200 300 2 a0 i 2
Samples Real part
Pl ® p
1
05 €
] SR
5 o g o o X0 o
[ =
g
05 E o) &
-1
100 200 300 2 4 o0 1 2
Samples © Real part
1 e ! o
05 g & ©
i §o o %0
[ =
0 E o
£
05 £ B9 fe)
0 100 200 300 2 4 o0 1 2
Samples Real part

Figure: Covariance Frame Misalignment and Glottal Flow Distortion.
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Inverse Filtering Techniques

Sources of Distortion in conventional CP Covariance LP

» The effect of an inverse filter root which is located on the
positive real axis has the properties of a first order
differentiator, when the root approaches the unit circle.

George Kafentzis On the Inverse Filtering of Speech



Inverse Filtering Techniques

Sources of Distortion in conventional CP Covariance LP

» The effect of an inverse filter root which is located on the
positive real axis has the properties of a first order
differentiator, when the root approaches the unit circle.

» A similar effect is also produced by a pair of complex
conjugate roots at low frequencies.
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Sources of Distortion in conventional CP Covariance LP

» The effect of an inverse filter root which is located on the
positive real axis has the properties of a first order
differentiator, when the root approaches the unit circle.

» A similar effect is also produced by a pair of complex
conjugate roots at low frequencies.

» This distortion is more apparent at the time instants where the
glottal flow changes more rapidly, that is, near glottal closure.
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Sources of Distortion in conventional CP Covariance LP

» The effect of an inverse filter root which is located on the
positive real axis has the properties of a first order
differentiator, when the root approaches the unit circle.

» A similar effect is also produced by a pair of complex
conjugate roots at low frequencies.

» This distortion is more apparent at the time instants where the
glottal flow changes more rapidly, that is, near glottal closure.

» The presence of such roots are in contrast to the source-filter
suggested theory from Fant[5].
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Inverse Filtering Techniques

Sources of Distortion in conventional CP Covariance LP

» The effect of an inverse filter root which is located on the
positive real axis has the properties of a first order
differentiator, when the root approaches the unit circle.

» A similar effect is also produced by a pair of complex
conjugate roots at low frequencies.

» This distortion is more apparent at the time instants where the
glottal flow changes more rapidly, that is, near glottal closure.

» The presence of such roots are in contrast to the source-filter
suggested theory from Fant[5].

» The removal of such roots results in less dependency on the
covariance frame location.
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Sources of Distortion in conventional CP Covariance LP
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Figure: Distortion caused by non-minimum phase filter.
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Sources of Distortion in conventional CP Covariance LP

» The inverse filter 1/V/(z) might not be minimum phase.
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Sources of Distortion in conventional CP Covariance LP

» The inverse filter 1/V/(z) might not be minimum phase.

» It can become minimum phase by replacing each zero by its
mirror image partner.
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Sources of Distortion in conventional CP Covariance LP

» The inverse filter 1/V/(z) might not be minimum phase.

» It can become minimum phase by replacing each zero by its
mirror image partner.

» That leaves the amplitude spectrum unchanged.
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Sources of Distortion in conventional CP Covariance LP

>

The inverse filter 1/V/(z) might not be minimum phase.

v

It can become minimum phase by replacing each zero by its
mirror image partner.

v

That leaves the amplitude spectrum unchanged.

v

The phase characteristics change, though.
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Constrained CP Covariance Linear Prediction

Concept:

» Modification of the conventional CP covariance analysis in
order to provide more realistic root locations, in the acoustic
sense.
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Constrained CP Covariance Linear Prediction

Concept:
» Modification of the conventional CP covariance analysis in
order to provide more realistic root locations, in the acoustic

sense.
» How?
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Constrained CP Covariance Linear Prediction

Concept:
» Modification of the conventional CP covariance analysis in
order to provide more realistic root locations, in the acoustic
sense.

» How?
> Not allow mean square error to locate the roots freely on the

z-plane.
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Constrained CP Covariance Linear Prediction

Concept:

» Modification of the conventional CP covariance analysis in
order to provide more realistic root locations, in the acoustic
sense.

» How?

> Not allow mean square error to locate the roots freely on the

z-plane.
» Impose mathematical restrictions in a form of concise

mathematical equations.
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Constrained CP Covariance Linear Prediction

Concept:

» Modification of the conventional CP covariance analysis in
order to provide more realistic root locations, in the acoustic
sense.

» How?

> Not allow mean square error to locate the roots freely on the

z-plane.
» Impose mathematical restrictions in a form of concise

mathematical equations.
» Two suggestions: DC-constraint and/or m-constraint.
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DC-Constrained CP Covariance Linear Prediction

» DC-constraint:

p p
V(ejo) = Zake—jOn = Zak = Ipc. (10)
k=0 k=0
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DC-Constrained CP Covariance Linear Prediction

» DC-constraint:
. p . p
V() =) aue™ =) " = Ipc. (10)
k=0 k=0

» Why DC-constraint?
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DC-Constrained CP Covariance Linear Prediction

» DC-constraint:
. p . p
V() =) aue™ =) " = Ipc. (10)
k=0 k=0

» Why DC-constraint?

» Amplitude response of voiced sounds approaches unity at zero
frequency|[5]
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DC-Constrained CP Covariance Linear Prediction

» DC-constraint:
. p . p
V() =) aue™ =) " = Ipc. (10)
k=0 k=0

» Why DC-constraint?
» Amplitude response of voiced sounds approaches unity at zero
frequency|[5]
» A short and misplaced covariance frame might lead to a
response with higher gain at DC than at formants.
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DC-Constrained CP Covariance Linear Prediction

» DC-constraint:
. p . p
V() =) aue™ =) " = Ipc. (10)
k=0 k=0

» Why DC-constraint?

» Amplitude response of voiced sounds approaches unity at zero
frequency|[5]

» A short and misplaced covariance frame might lead to a
response with higher gain at DC than at formants.

» With such a constraint, one might expect a better match of
the amplitude response to Fant’s source-filter theory.
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DC-Constrained CP Covariance Linear Prediction

Formulation:
> minimize a’ ®a subject to F"a =b,
> where a = [a, - ,a,]  is the filter coefficient vector with ap = 1, ® is
the covariance matrix, b = [1, Ipc]”, and T is a (p + 1) by 2 constraint
matrix defined as

11
01

r=1{. . (11)
01

> Using Lagrange multipliers (convex problem), we have the filter
coefficients:

>
a=o'rre'r~'v (12)

George Kafentzis On the Inverse Filtering of Speech



Inverse Filtering Techniques

DC-m-Constrained CP Covariance Linear Prediction

Constr. at® = 0 and = = CP Covariance
Conventional CP Covariance

Magnitude (dB)

; ; ;
0.1 02 03 04 05 06 07 08 09 1
Normalized Frequency (x rad/sample)

Figure: Examples of all-pole spectra computed in the closed phase covariance
analysis by the conventional LP and by the DC-7 constrained LP.
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Inverse Filtering Procedure

Outline

Inverse Filtering Procedure
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Inverse Filtering Procedure

Inverse Filtering Procedure - Flowchart

speech - -
Voiced/Unvoiced Sinusoidal Pitch Synchronous

Detection Pitch Estimator Covariance LP

- o
Excitation <

Covariance based LP | | Autocorrelation based LP
Y
Closed Phase Lip Radiation
Interval Identification Removal

Autocorrelation based
LP analysis

Lip Radiation
Removal
Covariance based l

LP analysis Glottal Flow Estimate

Glottal Flow Estimate
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Inverse Filtering Procedure

Inverse Filtering Procedure - Details

>
>
>

Sampling Frequency: f; = 8kHz.
Order of LP Analysis: p = 10.

The lip radiation effect was canceled by a first order all-pole filter with its pole at z = 0.999.

Autocorrelation approaches:
> Analysis window: hanning type, 250 ms duration.
»  M-parameter for SWLP: M = 8, M = 24.
Covariance approaches:

> Analysis window: rectangular type,
> Duration determined by the detected closed phase interval[6].
P Analysis frame rate: one pitch period

Inverse filtered speech signals were computed in a frame by frame basis.
Two local pitch periods and a frame rate of one pitch period was applied.

The overall glottal flow was synthesized using the Overlap-Add (OLA) method.
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Outline

Results
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Results

Metrics for evaluating the IF techniques

P Signal to Reconstruction Error Ratio - SRER

P> SRER is a standard index for measuring the effectiveness of modeling a waveform and is defined as:

SRER = ZOIOgIO(m) (13)
elr]

where s[n] is the original (or true) glottal flow signal in our case, e[n] is the modeling (or
reconstruction) error, e[n] = s[n] — §[n], and o denotes the corresponding standard deviation.
> SRER was computed from the overall glottal flow waveforms.

P Difference between the first two harmonics - H1-H2
: H1-H2 is an index of the spectral decay (or spectral tilt) of the glottal spectrum.
ERp1H2 = |Refrinz — Estyipn (14)
where Refy1s and Estyyy o denote the H1-H2 metric for the true (or reference) and the

estimated glottal airflow, respectively.
P For a good estimation ERpy1p should be close to zero.
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Results

Examples

Actual glottal flow — vowel /a/ — 100 Hz
1

0.5
0
200 250 300 350 400
Covariance-LPC Autocorr-LPC
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
200 250 300 350 400 200 250 300 350 400
SW-LPC, M=8 SW-LPC, M=24
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
200 250 300 350 400 200 250 300 350 400

FIgU Fe€. Glottal flow estimates for vowel /aa/ of fy = 105 Hz. Upper panel: Original glottal flow. Middle
panel: Covariance (left) and Autocorrelation (right) based glottal flow estimates. Lower panel: SWLP with M = 8
and M = 24 glottal flow estimates. In all panels, time is indicated in samples.

George Kafentzi On the Inverse



Results

Examples

Actual glottal flow — vowel /eh/ — 235Hz

0.5
0
120 140 160 180 200 220 240
Covariance-LPC Autocorr-LPC
1 —_
0.5 05

0 L. - - - 1
120 140 160 180 200 220 240 ° 120 140 160 180 200 220 240
SW-LPC, M=8 SW-LPC, M=24

0.5 0.5

0
. i 120 140 160 180 200 220 240 ° 120 140 160 180 200 220 240
FIgU €. Glottal flow estimates for vowel /eh/ of fj = 230 Hz. Upper panel: Original glottal flow. Middle
panel: Covariance (left) and Autocorrelation (right) based glottal flow estimates. Lower panel: SWLP with M = 8
and M = 24 glottal flow estimates. In all panels, time is indicated in samples.
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Results - SRER

Results

SRER

Vowel

SWLPg

SWLPy,

LPC

CovLPC

CLPC

/aa/

335 (£2.0

39.7 (45

36.2 (£5.7

419 (£6.3

415 (+6.6

/ae/

32.7 (144

37.8 (£3.0

40.9 (£6.9

/eh/

)
)
340 (£1.9)

38.4 (£4.2

)
)
33.9 (£4.0)

40.5 (£5.2

411 (7.4

/ih/

32.3 (£1.5)

37.6 (£3.1

352 (£2.9
(
(

)
)
)
)

35.3 (£4.6)

40.4 (£6.4
(
(

39.2 (£5.6

)
)
)
)

)
)
)
40.8 (£8.7)

Table: Mean and standard deviation of the SRER value for each vowel
(all 8 frequencies) and method is illustrated. LPC stands for
autocorrelation LP, CovLPC for Closed Phase covariance LP, CLPC for

Constrained Closed Phase covariance LP, SWLPg for SWLP with M = 8,

and SWLP,, for SWLP with M = 24
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Results - H1-H2

Results

ERH1H2

Vowel

SWLPg

SWLP,,

LPC

CovLPC

CLPC

/aa/

0.68 (£0.10

0.23 (£0.09

0.75 (£0.09)

0.20 (£0.20

0.08(+0.28

/ae/

0.55 (£0.05)

/eh/

0.34 (£0.09

0.30 (£0.07

0.38 (£0.17

0.16(+0.30

/ih/

0.15 (£0.12
(
(

0.72 (£0.14

)
)
)
)

0.15 (£0.05
(
(

0.39 (£0.11

)
)
)
)

(
0.54 (+0.08)
0.85 (£0.12)

0.18 (£0.13
(
(

0.35 (+0.24

)
)
)
)

(
0.07(+0.30

(

(

0.34(£0.50

)
)
)
)

Table: Mean and the standard deviation of ERpy14, for each vowel (all 8
frequencies) and each method is illustrated. LPC stands for
autocorrelation LP, CovLPC for CP covariance LP, CLPC for Constrained
Closed Phase covariance LP, SWLPg for SWLP with M = 8, and

SWLP,4 for SWLP with M =24
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Outline

Conclusions and Future Work
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Conclusions and Future Work

Conclusions

» For both metrics, it is obvious that SWLP,4 outperforms
conventional autocorrelation LP.
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Conclusions and Future Work

Conclusions

» For both metrics, it is obvious that SWLP,4 outperforms
conventional autocorrelation LP.

» As expected, covariance methods prevails for both metrics.
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Future Work

> Furtherly investigate the role of M parameter of SWLP.

George Kafentzis On the Inverse Filtering of Speech
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Future Work

> Furtherly investigate the role of M parameter of SWLP.

» Evaluation of other IF methods or closed phase detection
algorithms on the discussed database.
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Conclusions and Future Work

Future Work

> Furtherly investigate the role of M parameter of SWLP.

» Evaluation of other IF methods or closed phase detection
algorithms on the discussed database.

» Apply IF in databases produced by a more sophisticated
model of human production system.
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Conclusions and Future Work

Future Work

> Furtherly investigate the role of M parameter of SWLP.

» Evaluation of other IF methods or closed phase detection
algorithms on the discussed database.

» Apply IF in databases produced by a more sophisticated
model of human production system.

» Real time system approach to IF.
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Time for Questions!

Any questions? (Hope not...)
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Xpnuotodotnon

To mapov ekmalSeUTIKO UAKO £xelL avamtuxBei ota mAaiola Tou
ekmaldeutikol £pyou Tou Stédokovta.

To épyo «Avoikta Akadnuaikd Madnpata oto Naveniotipo Kptneg»
£XEL XPNHATOSOTAOEL LOVO T avadLlapopdwaon Tou eKmalSeUTIKOU UALKOU.
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ndépoug.
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