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Human Speech Production System

The human speech production system is a complicated system.
However, it can be roughly divided into three parts:

I The vocal folds, which is the source of the system.

I The vocal tract, which is the path from the vocal folds to the
lips.

I The lips, which is the final bound before speech output.
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Source-Filter model

I Based on this simplification, voiced speech can be modeled as
a linear filtering operation:

s(t) = g(t) ? v(t) ? l(t)↔ S(z) = G (z)V (z)L(z)

where ? denotes convolution and

I g(t) the glottal airflow velocity waveform.
I v(t) the vocal tract filter.
I l(t) the lip radiation filter.
I s(t) the output speech waveform.
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(Glottal) Inverse Filtering - IF
What is inverse filtering?

I Inverse Filtering is a technique for obtaining the source of voiced speech: the glottal airflow velocity
waveform.

I How does the glottal flow look like?
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Figure: Phases of the glottal flow and its derivative.
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(Glottal) Inverse Filtering - IF: Why is it important?

Inverse filtering is extensively used in:

I Basic research of speech production

I Applications to speech analysis, synthesis, and modification
I Increased interest is risen in:

I Environmental voice care
I Voice pathology detection
I Analysis of the emotional content of speech
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(Glottal) Inverse Filtering - IF: How is it performed?

Basic idea:

I Form a computational model for the vocal tract filter, V̂ (z).

I Cancel its effect from the speech waveform by filtering the
speech signal through the inverse of the model.

I It is obvious that the heart of an IF system is the vocal tract
filter estimation.
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Evaluation of IF techniques

Problem: the actual glottal flow waveform is NOT available!

I ...at least in a non-invasive manner.

I Approaches:

I ”Optical” inspection of the resulting glottal flow waveform,
I Use of synthetic speech signals produced by a known artificial

excitation,
I Compare the results of different IF algorithms.

I None of the previous approaches is truly objective.
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Database of physically modeled speech

I A database of physically modeled speech signals was created
by Titze and Story[3]

I Time-varying waveforms of the glottal flow and radiated
acoustic pressure are simulated in the basis of a physiological
model of vocal folds and vocal tract.

I This model generates a glottal flow waveform that is expected
to provide a more firm and realistic test of IF methods than a
parametric flow model.

I In this case, both the speech pressure waveform and the
glottal flow are available.
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Database of physically modeled speech

I In detail, self sustained vocal fold vibration was simulated with three masses coupled to one another
through stiffness and damping elements.

Figure: Schematic diagram of the lumped-element vocal fold model. The cover-body structure of
each vocal fold is represented by three masses that are coupled to each other by spring and damping
elements. Bilateral symmetry was assumed for all simulations.
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Database of physically modeled speech

I The input parameters of this model are:

I the lung pressure,
I prephonatory glottal half-width (adduction),
I vocal fold length and thickness,
I and normalized activation levels of the cricothyroid (CT) and

thyroarytenoid (TA) muscles.

I These parameters were transformed into mechanical
parameters according to Titze and Story[3].
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Database of physically modeled speech

I Four different sustained vowels (/aa/, /ae/, /eh/, /ih/) with
eight different fundamental frequencies
(105, 115, 130, 145, 205, 210, 230, and 255 Hz) were used in
this work.

I In summary, the model is a simplified but physically motivated
representation of a speaker.

I It generates both the signal on which inverse filtering is
typically performed (microphone signal) and the signal that is
seeked to be determined (glottal flow).

I This provides an idealized test case for inverse filtering
algorithms.
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Example
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Figure: Upper panel: Speech waveform.
Lower panel: Glottal flow waveform.
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Vocal tract estimation techniques

A number of techniques have been developed to robustly estimate the vocal
tract filter.

I Most of them are based on Linear Prediction (LP).

I LP is used to produce an all-pole model of the system filter, H(z), which turns out to be a model of the
vocal tract and its resonances or formants.

V (z) =
1∑p

k=1
(αk z

−k )
,

I In general, LP minimizes the mean squared error over a region R

E =
∑
R

e2[n], where e[n] = s[n]−
p∑

k=1

ak s[n − k],

where p is the prediction order and ak are the prediction coefficients.

I The selection of this region leads to different approaches.
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Linear Prediction variants

I In this work, we will discuss the performance of four vocal
tract estimation techniques, all based on LP:

I Autocorrelation-based Linear Prediction,
I Closed Phase Covariance-based Linear Prediction,
I Stabilised Weighted Linear Prediction,
I Closed Phase (CP) Covariance-based Linear Prediction with

Mathematical Constraints.
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Linear Prediction - Autocorrelation method

I Assuming that the speech signal s[n] is zero outside an interval
0 ≤ n ≤ N − 1

I the total error minimization leads to the matrix equation

Φ~a = ~r , (1)

I where the matrix Φ is called the autocorrelation matrix and its elements

are given by Φi,j = R(|i − j |) =
N−1∑
n=i

s[n]s[n − |i − j |], 0 ≤ i ≤ p, and

the other two vectors are given by

~a = [a1, a2, a3, ..., ap]T ,~r = [R(1),R(2),R(3), ...,R(p)]T . (2)

I A tapered window (e.g. Hanning) is often used to eliminate beggining
and end effects.
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Linear Prediction - CP Covariance method

I Assuming that the speech signal s[n] is zero outside an interval
−p ≤ n ≤ N − 1

I the total error minimization leads to the matrix equation

Φ~a = ~ψ, (3)

I where the matrix Φ has the properties of a covariance matrix and its
elements are given by

φi,j =
N−1∑
n=0

s[n − i ]s[n − j ], (4)

where 1 ≤ i , j ≤ p, and the other two vectors are given by

~a = [a1, a2, a3, ..., ap]T , ~ψ = [φ0,1, φ0,2, φ0,3, ..., φ0,p]T . (5)

I However, in CP analysis, the total error is minimized over a region where
the glottis is closed.
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Stabilised Weighted Linear Prediction

Stabilized Weighted Linear Prediction (SWLP)[1], is an all-pole modeling
method based on Weighted Linear Prediction (WLP).

I SWLP uses time domain weighting of the square of the prediction error
signal.

I Short Time Energy (STE) Weighting function: wn =
∑M−1

i=0 x2[n − i − 1],
where x [n] is the signal and M is the duration of the STE window.

I The prediction error energy E in the SWLP method is

E =

N+p∑
n=1

(en)2wn = aT ( N+p∑
n=1

wnx[n]xT [n])a = aTRa, (6)

where wn is the weight imposed on sample n, N is the length of the signal
x [n], and

R =

N+p∑
n=1

wnx[n]xT [n].
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Stabilised Weighted Linear Prediction

I Constrained minimization problem:

minimize E subject to aTu = 1,

where u is the vector defined as u = [1 0 ... 0]T .

I It can be shown that a satisfies the linear equation

Ra = σ2u, (7)

where σ2 = aTRa is the error energy.

I Finally, the SWLP all-pole model is obtained as
H(z) = 1/A(z), where A(z) is the z-transform of vector a.
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Stabilised Weighted Linear Prediction

I STE function emphasizes the speech samples of large
amplitude, which typically occur during the closed phase
interval.

I It is well-known that applying LP analysis on speech samples
that belong to the glottal closed phase interval will generally
result in a more robust spectral representation of the vocal
tract.

I By emphasizing on these samples that occur during the glottal
closed phase, it is likely to yield more robust acoustical cues
for the formants.

I A high value of M increases the sharpness of the resonances
of the spectrum, whereas a low value of M increases the
smoothness of the spectrum.
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Stabilised Weighted Linear Prediction
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Figure: Upper panel: time domain waveforms of speech (vowel /a/ produced by male speaker) and short-time
energy (STE) weight function (M=8).
Lower panel: Glottal flow waveform of the vowel /a/ together with the STE weight function (M=8).
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Stabilised Weighted Linear Prediction

I Stability is ensured by the following formula:

I
R = YT Y, (8)

where
Y = [y0 y1 · · · yp] ∈ <(N+p)x(p+1)

and
y0 = [

√
w1x[1] · · · √wN x[N] 0 · · · 0]T .

I The column vectors are given by

yk+1 = Byk , k = 0, 1, · · · , p − 1, (9)

where

B =



0 0 · · · 0 0√
w2/w1 0 0 · · · 0

0
√

w3/w2 0 · · · 0

.

.

.
. . .

. . .
. . .

.

.

.

0 · · · 0
√

wN+p/wN+p−1 0


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Stabilised Weighted Linear Prediction

I Before forming the matrix Y, the elements of the secondary
diagonal of the matrix B are defined for all
i = 1, · · · ,N + p − 1 as

Bi+1,i =

{ √
wi+1/wi , if wi ≤ wi+1

1, if wi > wi+1

I This method of computing matrix R is called the Stabilized
Weighted Linear Prediction model, and the stability of the
all-pole filter is ensured.
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Sources of Distortion in conventional CP Covariance LP

I Conventional CP Covariance LP suffers from certain
shortcomings.

I Short CP length (especially for high pitched speakers).
I Sensitivity to the position of the covariance frame.
I Vocal tract filter may not be stable.

George Kafentzis On the Inverse Filtering of Speech



Outline
Introduction

Database of physically modeled speech waveforms
Inverse Filtering Techniques
Inverse Filtering Procedure

Results
Conclusions and Future Work

Sources of Distortion in conventional CP Covariance LP

I Conventional CP Covariance LP suffers from certain
shortcomings.

I Short CP length (especially for high pitched speakers).

I Sensitivity to the position of the covariance frame.
I Vocal tract filter may not be stable.

George Kafentzis On the Inverse Filtering of Speech



Outline
Introduction

Database of physically modeled speech waveforms
Inverse Filtering Techniques
Inverse Filtering Procedure

Results
Conclusions and Future Work

Sources of Distortion in conventional CP Covariance LP

I Conventional CP Covariance LP suffers from certain
shortcomings.

I Short CP length (especially for high pitched speakers).
I Sensitivity to the position of the covariance frame.

I Vocal tract filter may not be stable.

George Kafentzis On the Inverse Filtering of Speech



Outline
Introduction

Database of physically modeled speech waveforms
Inverse Filtering Techniques
Inverse Filtering Procedure

Results
Conclusions and Future Work

Sources of Distortion in conventional CP Covariance LP

I Conventional CP Covariance LP suffers from certain
shortcomings.

I Short CP length (especially for high pitched speakers).
I Sensitivity to the position of the covariance frame.
I Vocal tract filter may not be stable.

George Kafentzis On the Inverse Filtering of Speech



Outline
Introduction

Database of physically modeled speech waveforms
Inverse Filtering Techniques
Inverse Filtering Procedure

Results
Conclusions and Future Work

Sources of Distortion in conventional CP Covariance LP
Sensitivity of the covariance frame position:
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Figure: Covariance Frame Misalignment and Glottal Flow Distortion.
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Sources of Distortion in conventional CP Covariance LP

I The effect of an inverse filter root which is located on the
positive real axis has the properties of a first order
differentiator, when the root approaches the unit circle.

I A similar effect is also produced by a pair of complex
conjugate roots at low frequencies.

I This distortion is more apparent at the time instants where the
glottal flow changes more rapidly, that is, near glottal closure.

I The presence of such roots are in contrast to the source-filter
suggested theory from Fant[5].

I The removal of such roots results in less dependency on the
covariance frame location.
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Figure: Distortion caused by non-minimum phase filter.
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Sources of Distortion in conventional CP Covariance LP

I The inverse filter 1/V (z) might not be minimum phase.

I It can become minimum phase by replacing each zero by its
mirror image partner.

I That leaves the amplitude spectrum unchanged.

I The phase characteristics change, though.
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Constrained CP Covariance Linear Prediction

Concept:

I Modification of the conventional CP covariance analysis in
order to provide more realistic root locations, in the acoustic
sense.

I How?

I Not allow mean square error to locate the roots freely on the
z-plane.

I Impose mathematical restrictions in a form of concise
mathematical equations.

I Two suggestions: DC-constraint and/or π-constraint.
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DC-Constrained CP Covariance Linear Prediction

I DC-constraint:

V (e j0) =

p∑
k=0

αke
−j0n =

p∑
k=0

αk = lDC . (10)

I Why DC-constraint?

I Amplitude response of voiced sounds approaches unity at zero
frequency[5]

I A short and misplaced covariance frame might lead to a
response with higher gain at DC than at formants.

I With such a constraint, one might expect a better match of
the amplitude response to Fant’s source-filter theory.
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DC-Constrained CP Covariance Linear Prediction

Formulation:
I minimize aTΦa subject to ΓTa = b,

I where a = [a0, · · · , ap]T is the filter coefficient vector with a0 = 1, Φ is
the covariance matrix, b = [1, lDC ]T , and Γ is a (p + 1) by 2 constraint
matrix defined as

Γ =


1 1
0 1
...

...
0 1

 (11)

I Using Lagrange multipliers (convex problem), we have the filter
coefficients:

I

a = Φ−1Γ(ΓTΦ−1Γ)−1b (12)
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DC-π-Constrained CP Covariance Linear Prediction
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Figure: Examples of all-pole spectra computed in the closed phase covariance
analysis by the conventional LP and by the DC-π constrained LP.
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Inverse Filtering Procedure - Flowchart

Voiced/Unvoiced

     Detection

speech
   Sinusoidal 

Pitch Estimator

Pitch Synchronous

   Covariance LP

Excitation

Covariance based LP Autocorrelation based LP

      Closed Phase 

Interval Identification

Autocorrelation based 

       LP analysis

Glottal Flow Estimate

Lip Radiation 

   Removal

Lip Radiation 

   Removal

Covariance based

    LP analysis

Glottal Flow Estimate

Figure: Inverse Filtering Procedure.George Kafentzis On the Inverse Filtering of Speech
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Inverse Filtering Procedure - Details

I Sampling Frequency: fs = 8kHz.

I Order of LP Analysis: p = 10.

I The lip radiation effect was canceled by a first order all-pole filter with its pole at z = 0.999.

I Autocorrelation approaches:

I Analysis window: hanning type, 250 ms duration.
I M-parameter for SWLP: M = 8, M = 24.

I Covariance approaches:

I Analysis window: rectangular type,
I Duration determined by the detected closed phase interval[6].
I Analysis frame rate: one pitch period

I Inverse filtered speech signals were computed in a frame by frame basis.

I Two local pitch periods and a frame rate of one pitch period was applied.

I The overall glottal flow was synthesized using the Overlap-Add (OLA) method.
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Metrics for evaluating the IF techniques

I Signal to Reconstruction Error Ratio - SRER

I SRER is a standard index for measuring the effectiveness of modeling a waveform and is defined as:

SRER = 20log10
( σs[n]

σe[n]

)
(13)

where s[n] is the original (or true) glottal flow signal in our case, e[n] is the modeling (or
reconstruction) error, e[n] = s[n]− ŝ[n], and σ denotes the corresponding standard deviation.

I SRER was computed from the overall glottal flow waveforms.

I Difference between the first two harmonics - H1-H2

I H1-H2 is an index of the spectral decay (or spectral tilt) of the glottal spectrum.
I

ERH1H2 =
∣∣∣RefH1H2 − EstH1H2

∣∣∣ (14)

where RefH1H2 and EstH1H2 denote the H1-H2 metric for the true (or reference) and the
estimated glottal airflow, respectively.

I For a good estimation ERH1H2 should be close to zero.
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Examples
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Figure: Glottal flow estimates for vowel /aa/ of f0 = 105 Hz. Upper panel: Original glottal flow. Middle
panel: Covariance (left) and Autocorrelation (right) based glottal flow estimates. Lower panel: SWLP with M = 8
and M = 24 glottal flow estimates. In all panels, time is indicated in samples.
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Examples
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Figure: Glottal flow estimates for vowel /eh/ of f0 = 230 Hz. Upper panel: Original glottal flow. Middle
panel: Covariance (left) and Autocorrelation (right) based glottal flow estimates. Lower panel: SWLP with M = 8
and M = 24 glottal flow estimates. In all panels, time is indicated in samples.
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Results - SRER

SRER
Vowel SWLP8 SWLP24 LPC CovLPC CLPC
/aa/ 33.5 (±2.0)39.7 (±4.5)36.2 (±5.7)41.9 (±6.3)41.5 (±6.6)
/ae/ 32.7 (±4.4)35.2 (±2.9)37.8 (±3.0)40.4 (±6.4)40.9 (±6.9)
/eh/ 34.0 (±1.9)38.4 (±4.2)33.9 (±4.0)40.5 (±5.2)41.1 (±7.4)
/ih/ 32.3 (±1.5)37.6 (±3.1)35.3 (±4.6)39.2 (±5.6)40.8 (±8.7)

Table: Mean and standard deviation of the SRER value for each vowel
(all 8 frequencies) and method is illustrated. LPC stands for
autocorrelation LP, CovLPC for Closed Phase covariance LP, CLPC for
Constrained Closed Phase covariance LP, SWLP8 for SWLP with M = 8,
and SWLP24 for SWLP with M = 24
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Results - H1-H2

ERH1H2

Vowel SWLP8 SWLP24 LPC CovLPC CLPC
/aa/ 0.68 (±0.10)0.23 (±0.09)0.75 (±0.09)0.20 (±0.20)0.08(±0.28)
/ae/ 0.15 (±0.12)0.15 (±0.05)0.55 (±0.05)0.18 (±0.13)0.07(±0.30)
/eh/ 0.34 (±0.09)0.30 (±0.07)0.54 (±0.08)0.38 (±0.17)0.16(±0.30)
/ih/ 0.72 (±0.14)0.39 (±0.11)0.85 (±0.12)0.35 (±0.24)0.34(±0.50)

Table: Mean and the standard deviation of ERH1H2 for each vowel (all 8
frequencies) and each method is illustrated. LPC stands for
autocorrelation LP, CovLPC for CP covariance LP, CLPC for Constrained
Closed Phase covariance LP, SWLP8 for SWLP with M = 8, and
SWLP24 for SWLP with M = 24
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Conclusions

I For both metrics, it is obvious that SWLP24 outperforms
conventional autocorrelation LP.

I As expected, covariance methods prevails for both metrics.
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Future Work

I Furtherly investigate the role of M parameter of SWLP.

I Evaluation of other IF methods or closed phase detection
algorithms on the discussed database.

I Apply IF in databases produced by a more sophisticated
model of human production system.

I Real time system approach to IF.
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Time for Questions!

Any questions? (Hope not...)
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Χρηματοδότηση 
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του 

εκπαιδευτικού έργου του διδάσκοντα. 

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» 
έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.  

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος 
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την 
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς 
πόρους. 
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Σημείωμα αδειοδότησης 
• Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη 

Εμπορική Χρήση, Όχι Παράγωγο Έργο 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση.   Εξαιρούνται 
τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π.,  τα οποία εμπεριέχονται σε 
αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων 
Τρίτων». 

 

 

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/  
 

• Ως Μη Εμπορική ορίζεται η χρήση: 
– που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα 

του έργου και αδειοδόχο 

– που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο 

– που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. 
διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο 

 

• Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για 
εμπορική χρήση, εφόσον αυτό του ζητηθεί. 

.  
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Φωνής. Περί Αντίστροφου Φιλτραρίσματος Σήματος Φωνής». Έκδοση: 1.0. 
Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη δικτυακή διεύθυνση: http://
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