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Introduction

Sinusoidal modeling of speech

Dates back to the early 80ies
o (Almeida et al, Quatieri et al, Xerra et al)

Modeling of speech as a sum of sinusoids

Parameters: amplitude, frequency, and phase

Essential assumption: local stationarity!

e Speech is considered stationary in short time intervals
o (it is not, but it is a convenient assumption :-) )
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Sinusoidal modeling - Quatieri, McAulay, 1986

Each frame is modeled as a sum of sinusoids:

K

s(t) = Z 2,/ it)

k=—K

ax: complex amplitudes of the k" sinusoid

fi.: frequency of the k" sinusoid

e Estimation of the sinusoidal parameters: FFT + peak picking
e Various improvements (e.g. quadratic interpolation)

Highlight: no distinction between voiced and unvoiced
frames
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Sinusoidal model - Quatieri, McAulay, 1986

Signal reconstruction:
o Overlap Add method: 3(t) = 32K, 3,e/27ht

e Frame by frame parameter interpolation (Pl):

e Linear amplitude interpolation
o Cubic phase interpolation
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Sinusoidal model - Quatieri, McAulay, 1986

@ Pros:
o Fast
e Good signal reconstruction
e Cons:
o Local stationarity assumption holds
o Not good modifications
e Requires large windows
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Harmonic + Noise model - Stylianou, 1993-1996

@ Separate signal into periodic (deterministic) and aperiodic
(stochastic) components:

o s(t) = sq(t)+ ss(t)
@ Highlight: In voiced frames, fy = kfp : deterministic —

harmonic
K

sa(t) = Y ake> bty (1)
k=—K
@ Least Squares method for finding amplitudes and phases (f; is
considered as known)
@ Window length in HNM < Window length in SM
@ Reconstruction:

e OLA or PI for harmonic part
e OLA for stochastic part
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Harmonic + Noise model - Stylianou, 1993-1996

@ Pros:
e Pitch synchronous analysis
e Smaller window lengths
e Convenient for modifications

o Cons:
e Local stationarity assumption holds

e Depends on good fy estimation
e Speech is not purely harmonic (fi = kfp)

@ ...this last observation is the motivation for the following
model...
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Quasi-Harmonic model - Pantazis, Stylianou, Rosec,

2007-2010

K
sd(t) = Z (ak + thy )2 tw(t)
k=—K
ak, by are complex numbers

usually f, = kfg, where fy is considered as known
w(t) is the analysis window

Again: Least Squares method for finding amplitudes
Window length = 3 pitch periods

Reconstruction:

K A~
§d(t) = Z (ﬁk + tBk)ej%rfkt (1)

k=—K
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Quasi-Harmonic model

Time domain properties:
@ Inst. amplitude:
Mi(t) = |aic + thi] = \/(af + tb)2 + (al, + tb])?
_1 af( + tbf(
af + tbf
e Inst. frequency: Fi(t) = %Cb’(t) = Fi + ;W

o where x®, x! denote the real and imaginary part of x

o Inst. phase: ®,(t) = 27ht + tan



QHM

Quasi-Harmonic model

HM vs QHM on frequency tracks - pure tone @ 100 Hz:

105 T T
—o6— True Freq.
Estimated Freq.
— — — QHM Inst. Freq.
1004 <€
— P - - N h ~
N P ~
g > ~
5 - O
g o5 -7 R
=} - ~
o
L
w
90
85 . . . . . . .
-20 -15 -10 -5 0 5 10 15 20

Time (ms)

e Highlight: frequency correction mechanism



QHM

Quasi-Harmonic model

HM vs QHM on frequency tracks - pure tone @ 100 Hz:
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e Highlight: frequency correction mechanism
o Let's discuss a bit on that...
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Frequency mismatch correction

Frequency domain view:
@ Fourier Transform of the model:
@ Reminder:
xi(t) = age/®™ " tw(t) + thee> *tw(t)

s b, oa
Xi(F) = aW(f — ) + i W'(f — ) (2
o where W(f) = FT{w(t)} and W'(f) = dW(f)/df.
@ Projecting by to ag:
bk = p1.kak + p2,kjak (3)
@ Then,

Xd(f) = a [W(F = F0) = ZEw/(F )

(4)
.P1,k / ~
EW(F -

o (f — )
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Frequency mismatch correction

e Taylor series expansion of W(f — f — Dk

~ P2 k 2> P2,k / s
W(f —f, — =)= W(f—-1Ff)— =—WI(f-f
(f — 27r) (f — ) 5 (f — fi)+ %)
O(p3 W' (f — f))

o If the value of term W' (f) at f; is small, then for small values
of po, itis:
]

s P2,k s P2,k / s
W(f - — 25~ wiF—F) - ZEw/(r -4
(f == 52) = W(F = fi) = S=W/(F =) (6)

~ P2.k .P1.k / -
Xi(F) = ap [W(f —F — 2 W -
W)~ a [W(F =R = 25 jBEwi(r - 5)] @)
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Frequency mismatch correction

@ which goes back in time domain as...

xi(t) ~ ax [ej(z’r?”p”)t—i—pl,ktejz”?kt w(t)  (8)
@ Then, po /27 can be an estimator of the frequency error 7y:

1 afbl — al bl
a o= — k “k k~k 9
Tk p2,k/ o ‘ak’2 ( )
@ In other words, QHM suggests a frequency correction to the
input frequencies f (or a frequency estimator). This
suggestion is however conditional on the magnitude of pj x
and the value of term W’ (f) at f;

@ Also, the correction term depends on the window mainlobe
width
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iterative QHM - Pantazis, Stylianou, Rosec, 2007-2010

@ This frequency updating mechanism provides frequencies
which can be used in the model iteratively and result in better
parameter estimation (ag, by)

@ This iterative parameter estimation is referred to as the
iterative QHM
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HM versus iQHM in frequency estimation - speech signal:
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Noise robustness:

MSE(,)
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Figure: Noise Robustness
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iterative QHM

@ Pros:

e Linear amplitude evolution

e Frequency mismatch correction: n, = f, — fi
@ Cons:
o Needs larger analysis window
o And what about...

o local stationarity??

@ Speech is non stationary even in very short time intervals
@ iQHM still holds the local stationary assumption
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Adaptive Quasi-Harmonic Model

@ Adaptive models tackle the problem of local non
stationarity[5] - How?
e By projecting the signal onto non-stationary basis functions
i Pk(t)]

' K
@ Model: Sd(t) _ Z (ak+ tbk)<ej¢k(t)>w(t)

k=—K
@ complex amplitudes ay, by: estimated via Least Squares

m — (E"WHWE) "' EH WH Ws (10)

o where E = [Eg|E]:
o (Eo)os =)e/os(t)
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@ Adaptive models tackle the problem of local non
stationarity[5] - How?
e By projecting the signal onto non-stationary basis functions
i Pk(t)]
Model: al
SN gt = Y (ke tbk)<e/¢k(t)>w(t)

k=—K
@ complex amplitudes ay, by: estimated via Least Squares

m — (E"WHWE) "' EH WH Ws (10)

o where E = [Eg|E]:
o (Ep)yi =)o)
e (El)n,k - tnej¢k(tn) = tn(EO)n,k
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Adaptive Quasi-Harmonic Model

@ Definition of phase:

t

oi(t) = du(ti—1) +/ 2k (u)du

tj—1

@ where lA‘k(t) is the estimated instantaneous frequency

e Estimation error due to non stationarity is reduced [5]
@ Signal is reconstructed using its instantaneous components

Ak(t), (1), dr(t):

K
o X(t)= > Al(t)e™®
k=—K
e Adaptation algorithm can be found in [5]
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Adaptive Quasi-Harmonic model

QHM vs aQHM:

f A —o— Original frequency
QHM's analysis frequency
— — —aQHM’s analysis frequency
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Adaptation algorithm for aQHM

o Let Ak(t)), fi(t;), di(t)) denote the inst. amplitude, frequency,
and phase at time instant t; of the k" component, with
I=1,---,L, where L is the number of frames:
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Adaptation algorithm for aQHM

o Let Ak(t)), fi(t;), di(t)) denote the inst. amplitude, frequency,
and phase at time instant t; of the k" component, with
I=1,---,L, where L is the number of frames:

e Initialization: (QHM)

1) 7(t1) = F(ti—1) + 03, /2w
2) A1) = |ag), H(n) =24}
3) B (ti1) = F2(11)
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o Let Ak(t)), fi(t;), di(t)) denote the inst. amplitude, frequency,
and phase at time instant t; of the k" component, with
I=1,---,L, where L is the number of frames:

e Initialization: (QHM)
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e FOR adaptation i =1,2,---
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Adaptation algorithm for aQHM

o Let ,2\k(t,), ?k(t,),ék(t/) denote the inst. amplitude, frequency,
and phase at time instant t; of the k" component, with
I=1,---,L, where L is the number of frames:

e Initialization: (QHM)

1) B(tr) = B2 (ti1) + p3 4 /27
2) A0(t) = ). BY(1) = 2af
3) (1) = £2(t)
o FOR adaptation i =1,2,---
FOR frame /| =1,2,--- . L
@ Compute a}, b, using ¢} *(t) and (10)
@ Update /() using (9)
© Compute A () and i (t)
END
@ Interpolation of the parameters {/Z\Q((t), Ak"(t), &L(t)}
END
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Adaptive Quasi-Harmonic model

Synthetic signal:
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Adaptive Quasi-Harmonic model

Real Signal:
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@ Pros:
e Phase adaptation, non-parametric approach
e Local nonstationarity is partially solved
e High signal-to-reconstruction error ratio (SRER):
SRER = 20log, — )
T%(t)—x(t)
e Cons:
o Needs larger analysis window (as iQHM)
o Amplitudes are not adapted to the signal
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Outline

© extended aQHM
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Extended Adaptive Quasi-Harmonic model - Kafentzis,

Pantazis, Stylianou, Rosec, 2011

o Adaptation is allowed for amplitude as well as phase

o Projection of the signal onto non-stationary basis functions
()< [6]!

o Model:
sa(t) = Z (ak + the) (a (/%) ) w(2)
k=—K
@ complex amplitudes ay, by: estimated via Least Squares

m — (E"WHWE) "' EH WH Ws (11)

o where E = [Eg|E]:
° (EO)n,k = Otk(tn)ej‘ﬁk.(fn)
o (E)nk = tae(tn) () = to(Eo)o
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Extended Adaptive Quasi-Harmonic model

Synthetic signal:
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Extended Adaptive Quasi-Harmonic model

Synthetic signal:
@ Robustness in noise is demonstrated:
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Extended Adaptive Quasi-Harmonic model

Synthetic signal:
@ Robustness in noise is demonstrated:

M
MAE{0} = % > 109 — 9|
i=1

where 0() is the estimated parameter at the i*" simulation,
and M is the number of Monte Carlo simulations.
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Extended Adaptive Quasi-Harmonic model

Synthetic signal:
@ Robustness in noise is demonstrated:

°
1 M
no— H(i) _
MAE{#} = M.Zw 9|
i=1
where 0() is the estimated parameter at the i*" simulation,
and M is the number of Monte Carlo simulations.
MAE scores and SRER
SNR][ Model [ a(t) | a(t) | FA(t) | F(t) [SRER(dB)
o o aQHM 0.2380 0.1842 7.6105 9.1731 22.6

eaQHM | 0.0889 | 0.0949 | 5.9217 | 7.0505 42.0

aQHM | 0.2317 | 0.1860 | 8.6071 | 9.0302 10.7

10 dB— QAM 10.1490 | 0.1476 | 8.0513 | 8.1022 | 10.9

Table: MAE scores and SRER for aQHM and eaQHM for 10* Monte
Carlo simulations.
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Extended Adaptive Quasi-Harmonic model

Real Signal:
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Adaptation algorithm for eaQHM

o Let ,2\k(t,), ?k(t,),ék(t/) denote the inst. amplitude, frequency,
and phase at time instant t; of the k" component, with
I=1,---,L, where L is the number of frames:

e Initialization: (QHM)

1) B(tr) = R (ti1) + p3 4 /27
2) Ao(t) = ). BY(1) = 2af
3) f2(trs1) = £2(t)
o FOR adaptation i =1,2,---
FOR frame /| =1,2,--- . L
@ Compute a}, b, using ¢} *(t) and (11)
@ Update /() using (9)
© Compute A () and i (t)
END
@ Interpolation of the parameters {/Z\Q((t), Ak"(t), &L(t)}
END
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Extended Adaptive Quasi-Harmonic model

Analysis-Synthesis System
@ Seperate speech into two parts: deterministic and stochastic
@ Deterministic part: a sum of non-stationary sinusoids
(ea/aQHM)
@ Stochastic part: time and frequency modulated (energy-based
envelope and AR modeling)

@ Very high quality of speech signal reconstruction
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Time for Questions!

Thank you for your attention!
Any questions? :-)
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Xpnuotodotnon

To Tapov ekmalSeUTIKO UAKO £xel avamtuxBei ota mAaiola Tou
ekmaldeutikol £pyou Tou Stédokovta.

To épyo «Avoikta Akadnuaikad Madnipata oto Naveniotipo Kptneg»
£XEL XPNHATOSOTAOEL LOVO T avadLlapopdwaon Tou eKmMAlSEUTIKOU UALKOU.

To £pyo uloroleital oto mAaiolo Tou Emixelpnotakol Mpoypaupotog
«Exmaideuon kat Al Biou MaBnon» kat ouyxpnuatodoteital oo tnv
Evpwnaikn Evwon (Eupwmaikd Kowvwvikd Tapeio) kat amod eBvikoug
ndépoug.

:‘ % *2 E&ir}'mevm‘m AIA‘ ém MAeleH EznA
* * - -

YNOYPTEIO N KAl BPHEIKEY
EvpwnaikiBvwon  EATKH YITHPELIA ATAXELF L
OO el .. i v e EMGSa kar iixiic Evwone
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Znpeiwpa aderodotnone

« To r(apov UAWKO SlatiBetal pe ToUg 6poug TNG aéstaq xpnonq Creative Commons Avadopd, Mn
Epmopikn Xpnon, O)(L MNapdaywyo Epyo 4.0 [1] i petayevéatepn, AleBVAG EK600n EEaLpouvtaL
TOL AUTOTEAN €pya TpiTWV TL.X. Pwrtoypadieg, Staypaupata KA., Ta onoia EUNEPLEXOVTAL OF
QUTO KaL Ta omoia avadEépovtat Hadl e Toug 6POUG XPHONG TOUG 0TOo «Znueiwpa Xpriong Epywv
Tpitwv».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/ @

* Q¢ Mn Epropukn opiletal n xprion:
— 1ou 8ev mepAapPAaveL AUECO 1) EUUECO OLKOVOULKO OdENOG QT TNV XProN TOU £pyOU, yLa TO Slavopéa
Tou épyou Kot adelodoxo
— mou Sev mepAapPavet otkovoptkr cuvaAlayr wg mpolndbeon yia tn xprion fi tpdopaacn oto £pyo
— Tou 8ev mpoomopilel oTo Slavopéa Tou £pyou Kal adelo80X0 EUUETO OLKOVOULKO OdeNOG (TT.X.
Sladnpioelg) anod tnv mpoPoAr Tou £pyou oe SLadKTUAKO TOTO

e O 8wkalolUyog Hrmopel va mapExet otov adelo80xo EexwpLotr dSeLa va XpNOLUOTIOLEL TO £pyO0 Yo
EUTOPLKA XPHoN, EpdooV auTo Tou INTnOEL.
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