AAHNIKH AHMOKPATIA
ANENIZTHMIO KPHTHZ

Eicaywyn ota AikTud
YITNPEoIWV

Ai1aAegn 9n: RESTful Services

Xprotoc¢ NikoAdou
TuAnua Emotiung YTToAoyIoTWY



Introduction to Service Networks

RESTful Services

Christos Nikolaou
Mariana Karmazi
Transformation Services Laboratory
CSD/UoC

CS452 Fall 2010-2011



REpresentational State Transfer (REST)
Web Services

REST unlike SOAP, WSDL, UDDI, is not a spec, it is a set of principles and concepts
(similar to SOA, ESB, ...)

REST is the brainchild of Roy T. Fielding, cofounder of the Apache HTTP server project
and coauthor of the HTTP and URI standards. In 2000, he wrote a doctoral
dissertation for the University of California at Irvine called “Architectural Styles and
the Design of Network-based Software Architectures”, wherein he defined REST.

REST doesn’t build on the principles of the Web—the Web was built based on RESTful
principles. The idea of REST is essentially a reverse-engineering of how the Web
works. HTTP itself, and URIs themselves, are written with REST principles.

REST has a growing popularity, and it is often radically misunderstood. It seems that the
popular imagination has taken hold of the idea of REST as any web services that are
not SOAP with WS-*. Such designs are popular and abundant, and may have many
laudable qualities, but they are not an embodiment of REST just because they aren’t
SOAP.

Source: Eben Hewitt, Java SOA Cookbook, May 2009



What REST really is

Industry analysts have recently coined the term WOA, or Web Oriented
Architecture: SOA-lite, or a service architecture that uses XML,
JSON (JavaScript Object Notation), and HTTP. The term is generally
Intended to imply two things: an architecture that

1) does not use WS-* specifications and

2) 1s an application of RESTful principles that is much looser than Field-
ing’s dissertation actually allows (you can use cookies, etc.).



Principles of REST: Statelessness

REST Services are stateless:“each request from client to server
must contain all of the information necessary to understand the
request, and cannot take advantage of any stored context on the
server” Fielding, (pages 78—79).

Therefore, clients must store any state necessary.

Server sessions should not be used, since everything that you need to
process a request should be contained in that request.

Cookies violate REST, according to Fielding, since they typically
store information that encompasses a user’s interaction with an entire
site and not just the current request, which violates encapsulation.
Furthermore, cookies pass data without defining the semantics that
define that data, thereby raising concerns regarding both security and
privacy.



Principles of REST: Uniform Interface

There is no WSDL in REST. This constraint on the architectural style of
REST is gen erally understood as the interface provided by the
standard HTTP methods (PUT, GET, POST, DELETE, etc.), but
Fielding doesn’t say that. He actually stresses protocol in-
dependence, despite the popular reliance on HTTP.



Principles of REST: Resources are
manipulated through Representations

The components in the system exchange data (usually XML documents) that
represents the resource. For example, if you wanted to update customer
Information, you would post the XML document representing that resource
to its URI. A representation is simply a sequence of bytes and metadata in
the form of name/value pairs that describe the resource.

Resources have multiple representations. The resource is not the HTML page
that might be returned to a browser when you request it—that is simply one
out of many possible representations of the resource. You could return a
variety of formats repre- senting a given resource, as stated in section 5.2.1
of Fielding’s dissertation:

« XML
« JSON
* XHTML

* JPEG image



Principles of REST: Messages are self-
describing

No out-of-band negotiation can be required to determine how to
communicate with the service.



Principles of REST: RESTful
Architectures are built with Resources

RESTTful architectures are built through resources, each of which has its own unique
URI.

A resource is an item that “might be the target of an author’s hypertext reference”
(section 5.2.1.1). The URI serves as the ID of the resource. Any information item that
can be named can be a resource. This could be a stock price at a given point in time, a

purchase order, the current weather in Scottsdale, and so on. Here are some
examples:

* http://MyBusiness.com/customers
* http://MyBusiness.com/customers/1234
* http://MyBusiness.com/orders/456/customer

RESTTful identifiers may be long-lived and stable. Because of the use of URIs, everything
that matters to users in REST can be bookmarked, cut and pasted, or cataloged with
RDF (Resource Description Framework) in a metadata model. Every unit of
information carries its address, and is wholly independent of the underlying

framework or implementation producing the API. Clients simply act on the
representations they receive.



Principles of REST: Hypermedia is the
Engine of Application State

Hypertext is text that is interactive and nonlinear, that branches and gives the reader a set
of choices.

Fielding’s site defines hypertext as “the simultaneous presentation of information and
controls such that the information becomes the affordance through which the user (or
automaton) obtains choices and selects actions.”

This means that every document returned by the server will include all the URIs to any
next step. That is, all possible application states that the user can transition to from
the current state are represented as resource URIs (hypermedia links). Application
state is driven (transitioned to a next state) by selecting and following a URI.

On his website, Fielding recently restated the case that hypertext is a constraint: “if the
engine of application state (and hence the API) is not being driven by hypertext, then
it cannot be RESTful and cannot be a REST API. Period. Is there some broken
manual somewhere that needs to be fixed?” (http://roy.gbiv.com/untangled/2008/rest-
apis-must -be-hypertext-driven)



Hypermedia is the Engine...Cont.

REST really takes issue with cookies because they carry state and are intended to be sent to the
server in future requests. Because some state is set in the cookie, the application avoids
representing all possible next-state transition possibilities directly in the hypertext.

This constraint is frequently ignored, however, in “RESTful” framework implementations in the
real world, not the least of which is JSR 311, which includes the @CookieParam annotation
to allow a provider to extract information from cookies, as well as access to the Cookie
class. So there are competing degrees of “purity” among REST practitioners.

It’s fine to use cookies if you need to. There are loads of popular websites that use cookies. Just
don’t call that application RESTful.

So in REST, how do you keep state for something like a shopping cart? Fielding’s suggestion,
instead of using cookies to identify a set of cart products within a server-side database, is to
define the semantics of the products within hypermedia data formats, so that the user can
store selected items client-side and use a URI to check out. To restate the point, the URI
serves as the ID of the resource. Any information item that can be named can be a resource.

“Bob’s shopping cart on Tuesday at 9 a.m.” is a valid resource.



Advantages of REST

Benefits directly inherited from building on the architecture of the
Web In its static form, on the server side:

o ability to scale horizontally

« an easy and clear mechanism for caching,

« asimple failover strategy.

On the client side:

« ability to cache and bookmark representations,

. the flexibility to choose data formats that are most appropriate
for the use case.



The REST criticism of the WS* stack
(see also “Semantic Web Services”,
Fensel et al.)

The technical landscape around Web services is scattered—spanning
according to surveys more than 80 Web services standards, technologies
and specifications

This diversity is related to a high learning curve, which is required to get
familiar with the overall area, identify the most important developments, and
stay up-to-date with the latest advances.

The WS-* technology stack does not have much in common with the Web,
despite the fact that their very name suggests something else. They do not
necessarily follow the same design principles and do not rely on the same

core formats and protocols that have lead to the undeniable success of the
Web as a global medium for communication.

UC-01/CS-592 Spring 2011



The REST criticism of the WS* stack

In the Web, an information provider makes information
available by publishing it online, and this information is then
accessible to the intended readers.

In contrast, Web services are frequently geared towards
targeted messaging, with obvious consequences in terms of

scalability.

When sending and receiving SOAP messages, the content
being exchanged is hidden in the body of the message, and
not addressed as an explicit Web resource by its own URI.

UC-01/CS-592 Spring 2011



The REST criticism of the WS* stack

Consequently, all Web machinery involving caching and security is disabled since its use would require
parsing and understanding of all possible XML dialects that could be used to write a SOAP message.

referring to content via an explicit URI in an HTTP request would allow the content of a message to be treated just as
any other Web resource.

the Web service technology stack is oriented towards modeling stateful resources, in contradiction to the
REST (REpresentational State Transfer) architectural principles underlying the World Wide Web.

due to its stateless design, application integration and servers for this architecture are easy to build. Every
HTTP request for a URI should retrieve the same content independent of what has happened before in
other sessions, or in the history of the current session. This allows the use of thin servers that do not need
to store, manage and retrieve the earlier session history to process the current session.

When a stateful conversation is required, this should be explicitly modeled by different URIs.

Applying these principles to Web services-based communication means that there should not be a single
URI for a Web service, or hidden ways to model and exchange state information; instead, each potential
state of a Web service should be explicitly addressable by a different URI.

UC-01/CS-592 Spring 2011



WADL for RESTful services: an
example — yahoo news search

https://github.com/blackwinter/wadl/blob/master/exa
mple/YahooSearch.wadl

UC-01/CS-592 Spring 2011



TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong



XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [ npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong




2NUEIWMUATO



2nNUEiwpa adglodoTnong

* To mmapdv UAIKG diaTiBeTal Je TOUG OGpoug TNG adelag xprions Creative Commons
Ava@opd Anuioupyou - Mn Eutropikry Xprion - MNapduoia Aiavouri 4.0 [1]1 R
uetayevéoTepn, AleBvric ‘Ekdoorn. ECaipouvTtal Ta auTOTEAR £€pya TRITWYV TT.X.
PwTOYPAYIES, dlaypAPMATA K.A.TT., TA OTTOIO EUTTEPIEXOVTAI OE AUTO KAl TA OTTOIA
avagEpovtal padi he Toug OPOUG XProng Toug oTo «Znueiwpa Xpnons Epywv Tpitwvy.

@089

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.



2NUEIWNA Ava@popac

Copyright MNavemoTtiuio Kpritng, Xprioto¢ NikoAaou. « Eilcaywyn ota AikTua
Ymrnpeoiwv. AidAegn 9n: RESTful Services». 'Ekdoon: 1.0.
HpdkAeio/P£Bupuvo 2015. AiaBéaipo atrd tn diIKkTuakn dieuBuvon:
https://elearn.uoc.gr/course/view.php?id=416/



