AAHNIKH AHMOKPATIA
ANENIZTHMIO KPHTHZ

Eicaywyn ota AikTud
YITNPEoIWV

Assisting Lecture 5 - Restful Web Services

Mupwv lNatraddakng
TuAnua Emotiung YTToAoyIoTWY

CS592: Introduction to Service
Networks - Spring 2015

Assisting Lecture: Rest Web Services
Myron Papadakis (myrpap@gmail.com)

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

References

e Several slides copied from course:INFOH 511 WEB SERVICES

— LECTURE 2: REST & ROA:
http://cs.ulb.ac.be/public/ media/teaching/infoh511/2-
rest.pdf

http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf

Introduction to Rest

e REST describes a set of architectural principles for designing
distributed systems.

e REST principles could be applied to any distributed system,
but in practice it is used most often for web applications and
services, where clients and servers communicate using the
HTTP protocol.

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Introduction to Rest

e REST = REpresentational State Transfer.

e REST is a lightweight alternative to mechanisms like RPC (Remote
Procedure Calls) and Web Services (SOAP, WSDL, et al.)

e Animportant concept in REST is the existence of resources (sources of
specific information), each of which is referenced with a global identifier
(e.g., a URl in HTTP).

e In order to manipulate these resources, components of the network (user
agents and origin servers) communicate via a standardized interface (e.g.,
HTTP) and exchange representations of these resources (the actual
documents conveying the information).

CS-592 Spring 2015 - Myron Papadakis 4

9/12/2014 Transformation Systems Laboratory

SOAP Vs Rest: A first look

e Querying a phonebook application for the details of a given
user. All we have is the user's ID.

e Using SOAP and Web Services

<?xml wversion="1.0"32?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/s30ap-envelope™
soap:encodingStyle="http://www.w3.0rg/2001/12/30ap-encoding™>
<zoap:body pb="http://www.acme.com/phonebook™>
<pb:GetUserDetail=>
<pb:UserID>12345</pb:UserID>
< /pb:GetUserDetailss>
< /soap:Body>
</so0ap:Envelope>

e Using Rest
— http://www.acme.com/phonebook/UserDetails/12345
— Itisjusta URL..

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345

SOAP Vs Rest Usage

e Who’s using REST?

— All of Yahoo's web services use REST, including Flickr,
del.icio.us APl uses it, pubsub, bloglines, technorati, and
both eBay, and Amazon have web services for both REST
and SOAP.

e Who's using SOAP?

— Google seams to be consistent in implementing their web
services to use SOAP, with the exception of Blogger, which
uses XIMIL-RPC. You will find SOAP web services in lots of
enterprise software as well.

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://www.google.com/finance?q=NASDAQ:YHOO
http://www.google.com/finance?q=NASDAQ:EBAY
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC

SOAP Vs Rest

Consider "Martin Lawrence" as your data

SOAP

Client Server
Data + SOAP Your data sent to SERVER
Standards would become huge as Big mama
<-->
- Server
Client Rest is like sending the DATA as such

Source:
http://stackoverflow.com/questgsea/ 8hHng Q015 Mo Pdpadakisll-state-transfer-rest-and-

simple-object-access-protocol-Hansfpormation Systems Laboratory

7

http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap

Why Rest?

Less overhead (no SOAP envelope to wrap every call in)

Less duplication (HTTP already represents operations like DELETE, PUT,
GET, etc. that have to otherwise be represented in a SOAP envelope).

More standardized - HTTP operations are well understood and operate
consistently. Some SOAP implementations can get finicky.

More human readable and testable (harder to test SOAP with just a
browser).

Don't need to use XML (well, you kind of don't have to for SOAP either

but it hardly makes sense since you're already doing parsing of the
envelope).

Libraries have made SOAP (kind of) easy. But you are abstracting away a
lot of redundancy underneath as | have noted. Yes, in theory, SOAP cango
over other transports so as to avoid riding atop a layer doing similar
things, but in reality just about all SOAP work you'll ever do is over HTTP.

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

SOAP Vs Rest

| oow e

1 A XML-based message protocol An architectural style protocol

2 Uses WSDL for communication between Uses XML or JSON to send and receive data
consumer and provider

3 Invokes services by calling RPC method Simply calls services via URL path
4 Does not return human readable result Result is readable which is just plain XML or JSON
5 Transfer is over HTTP. Also uses other Transfer is over HTTP only
protocols such as SMTP, FTP, etc.
6 JavaScript can call SOAP, but it is difficult to Easy to call from JavaScript
implement
7 Performance is not great compared to REST Performance is much better compared to SOAP -

less CPU intensive, leaner code etc.

CS-592 Spring 2015 - Myron Papadakis 9
Transformation Systems Laboratory

Rest Vs Soap Design Methodology

Identify resources to be exposed
as services (e.g., book catalog,
purchase order

Define “nice” URLs to address
them

Distinguish read-only and side-
effects free resources GET from
modifiable resources (

PUT, DELETE)

Relatmnsmg (e.g., containment,
reference) between resources
cc:-rrespc:nd to hyperlinks that can
be followed to get more details

Implement and deploy on Web
server

List what are the service
operations (the “verbs”) into the
service's WSDL document

Define a data model for the
content of the messages
exchanged by the service (XML
Schema data types)

Choose an appropriate transport
protocol to bind the operation
messages and define the
corresponding QosS, security,
transactional pnln:les

Implement and deploy on the Web
service container ﬁm e the
corresponding SOAP engine end-
point)

http://webapps.cse.unsw.edu.au/webcms?2/course/showfile.php?cid=2366&col

or=green&addr=Notes/REST Il.pdf

CS-592 Spring 2015 - Myron Papadakis 10
Transformation Systems Laboratory

http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf
http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf

Rest Vs SOAP

e SOAP is verbose: large overhead of metadata and boilerplate
text

e For more information see:
— http://www.petefreitag.com/item/431.cfm

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

11

http://www.petefreitag.com/item/431.cfm

Rest > Key Concepts

Key Concepts:

— Resources (things)

— Resource names (URIs)

— Resource Representations
— Links between resources
And 4 key properties:

— Addressability

— Statelessness

— Connectedness
— The Uniform Interface

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

12

Rest in a nutshell (Key Concepts)

Representational State Transfer (REST) is an “architectural style” defined
by Roy Fielding.
— The concepts of REST are independent of the web, but the web is well-
suited to REST

Rest Key Concepts. Simplistically, a “RESTful architecture” includes:
— Resources (things) with
— Unigque ids (URLS) that can come in many
— Representations (text, html, json) that you operate on with
— Verbs (GET, PUT, DELETE, POST)

Every object manipulated by the Web Service (or web application)
should be identified and exposed as a resource

Here the focus is on interacting with resources rather than messages or
operations

CS-592 Spring 2015 - Myron Papadakis 13
Transformation Systems Laboratory

Rest in a nutshell

Urls must name resources. They are nouns
— http://cnn.com/story/hawaii/fireworks

Not verbs:
— http://cnn.com/addComment?name=fireworks

Use operators (verbs) such as GET, PUT, POST, DELETE to operate on
resources (nouns)

— GET http://cnn.com/story/hawaii/fireworks

— PUT http://cnn.com/story/hawaii/explosion
— POST http://cnn.com/story/hawaii/nye/comments

— More on these in next slides

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

14

http://cnn.com/story/hawaii/fireworks
http://cnn.com/addComment?name=fireworks
http://cnn.com/story/hawaii/fireworks

{

Rest > 1. Resources

Each resource has a unique name.

The key abstraction of information in REST is a resource. Any information that can be
named can be a resource: a document or image, a temporal service (e.q., “today’s
weather in Los Angeles”), a collection of other resources, a nonvirtual object (e.g., a
person), a concept and so on.

Resource examples

— A historical building

— The newspaper “le soir”

— The newspaper “le soir” at a particular date
— The collection of all Belgian newspapers

— The Belgian prime minister

— The preferre&l_gbgggmgplg[l\q{)fomgpeﬂgliigne minister

Transformation Systems Laboratory

15

Rest > 2. URIs (Naming resources)

e In the context of the web (and the HTTP protocol), each resource is
named by a URL.

e A URIis the name of a resource
e G@Guidelines

— Every resource must be assigned at least one URI. This ensure it is
addressable

— A URI should never represent more than one resource

— Resources can have multiple URIs, but should have as few URIs as
possible

e Examples
— http://www.lesoir.be

— http:// www.lesoir.be/edition/20-01-2012
— http:// www.example.org/newspapers/belgium

9/12/2014 — http:// wvawexamphs,orglns

Transformation Systems Laboratory

wshgpers?country=belgium .

Rest > 2. URIs (Naming resources)

e The URLs specify the server and "path" of the resource.

— The server part of the URL specifies which server to contact to access
the resource.

— The path part of the URL names the resource to distinguish it from
other resources on the same server.

GET /news/ HTTP/1.1

Host: example.org
Accept-Encoding: compress, gzip
User-Agent: Python-httplib2

Resource = http://example.org/news/

CS-592 Spring 2015 - Myron Papadakis 17
Transformation Systems Laboratory

Rest > 2. URIs (Naming resources)

e Oneimportant kind of resource is the kinds of fruit that are available. For
example, the business might make the list of the kinds of fruit it sells
available at the URL

— http://ycpfruit.com/fruit

e More information about specific kinds of fruit could be made available
through URLs like

— http://ycpfruit.com/fruit/Apples
— http://ycpfruit.com/fruit/Oranges

e Itis common to organize resource URLs in a directory-like scheme: for
example, we can think of the

— path /fruit as naming fruit in general, and more specific paths such as
— [fruit/Apples as naming specific kinds of fruit.

CS-592 Spring 2015 - Myron Papadakis
9/12/2014 Transformation Systems Laboratory 18

Introduction to Rest > 3.
Representations

e There are representations of resources.

e For any resource, a web application might present it in a variety of
formats.

— For example, the same resource could be represented using
HTML and CSS for presentation in a web browser, and also by
XML or JSON for use by programs.

— There are verbs which clients can use to create, access, and
modify resources. In the context of the web, the verbs are the
HTTP request methods.

— The most common HTTP methods are GET, PUT, POST, DELETE.

CS-592 Spring 2015 - Myron Papadakis

9/12/2014 Transformation Systems Laboratory

19

Rest in a nutshell >
Representations (3)

Representations (how resources get manipulated)
— A representation is a description (of some part) of the resource
— As an external user, you cannot manipulate resources directly.
— Instead you manipulate “representations” of that resource.
e Many people can “get” a representation of that single resource
e The same resource can be represented in many different ways
Example
— Resource: person (Todd)
— Service: contact information (GET)
— Representation
e Name, address, phone number
e JSON or XML format
Example:

— http:// www.example.org/newspapers/belgium could support both
HTML and JSON

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

20

http://www.example.org/newspapers/belgium
http://www.example.org/newspapers/belgium

Sidenote: JSON, that other XML

JSON =JavaScript Object Notation
A syntactical fragment of JavaScript for describing data

Due to its increased popularity, libraries for reading & writing
JSON exist for virtually every programming language

Sometimes more compact than XML, but since it does not

specify a schema, XML-like data-binding tools (JAXB, ...) are
not available

Mainly used in conjunction with AJAX

{ “reportData”:
[
{ “year”: 2011, “profit”: 2000000 },
{ “year”: 2010, “deficit”: 1000 },

1

“author(’: “John Doe”
} 21

Example of XML-formatted data

The below XML document contains data about a book: its title,
authors, date of publication, and publisher.

<Book>
<Title>Parsing Techniques</Title>
<Authors>
<Author>Dick Grune</Author>
<Author>Ceriel J.H. Jacobs</Author>
</Authors>
<Date>2007</Date>
<Publisher>Springer</Publisher>
</Book>

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

22

Same data, JSON-formatted

"Book":
{
"Title": "Parsing Techniques",
"Authors": ["Dick Grune", "Ceriel J.H. Jacobs"],
"Date": "2007",
"Publisher": "Springer"

}

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

23

XML and JSON, side-by-side

{

<Book> "Book":

<Title>Parsing Techniques</Titlem

<Authors>

"Title": "Parsing Techniques",

<Author>Dick Grune</Author> "Authors": ["Dick Grune", "Ceriel J.H.

<Author>Ceriel J.I:/..],
JaCObS</Auth0r> /amnDateu: ll2007ll’

</Authors>

<Date>2007</Date> }

<Publisher>Springer</Publisher> }
</Book>

"Publisher": "Springer"

More on JSON in next lectures...

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

24

Verbs (1/2)

e |n a RESTful web service, the HTTP actions (a.k.a. methods)
are used as verbs to create, access, and modify resources.

e The GET verb accesses a resource: in other words, it requests
that the web service return a representation of the named

resource.
e The POST verb creates a resource.

— For example, a POST request to the path /fruit, where the
body of the request contains a representation of a fruit
resource (perhaps in XML or JSON format), would create a
new fruit resource (which could then be accessed by
subsequent requests).

CS-592 Spring 2015 - Myron Papadakis o5
Transformation Systems Laboratory

Verbs (2/2)

e The PUT verb creates a new resource or replaces an existing
resource. Use PUT to create a new resource when you know
the URI for the new resource

— For example, a PUT request to the path /fruit/Apples
would replace the Apples resource with the one contained
in the request body (assuming that a resource named
Apples existed previously).

e The DELETE verb deletes the resource named by a resource.
For example, a DELETE request specifying the path
/fruit/Kumquats would delete Kumquats as a fruit, and no
further requests to access that resource would succeed.

CESIBEPpeh@@D45 Miyhooridapdalakis 26
Transformation Systems Laboratory

Rest in a nutshell > The Web and
REST

The web’s primary protocol (HTTP) is tailor-made for RESTful
architectures.

— Unique IDs for resources (URIs)
— Verbs (HTTP operators)
— Multiple representations (Media types)

The web has a uniform and constrained interface.

— HTTP, for example, has a small number of methods. Use these to
manipulate resourses.

But many (most) web applications do not implement REST!
— Use of GET for everything
— URLS that indicate actions, not things.
— Many other subtle ways to violate REST

CS-592 Spring 2015 - Myron Papadakis 27
Transformation Systems Laboratory

Rest Example > The World Wide
Web

e The largest known implementation of a system conforming
to the REST architectural style is the World Wide Web

e A web page is a representation of a resource ...

— The representation is not the resource (we can have
several representations)

9/12/2014 CESIBEPpeh@@D45 Miyhooridapdalakis 28
Transformation Systems Laboratory

Rest Requests > How Simple is
Rest?

Querying a phonebook application for the details of a given user. All we

have is the user's ID.

Using SOAP and Web Services Exposing operations vs exposing resources

<?xml wversion="1.0"32>
<soap:Envelope

sSoap:encodingStyle="http:///www.w3.0rg/2001/12/30ap-encoding™>
<goap:body pb="http://www.acme.com/phonebook">
<pb:GetlU=zerDetails>
<pb:UserID>12345</pb:UserID>
</pbi:GetlUserDetailss>
</so0ap:Body>
</soap:Envelope>

Using Rest
— http://www.acme.com/phonebook/UserDetails/12345
— Itisjust a URL..

Despite being simple, REST is fully-featured; there's basically nothing you

can do in Web Services that can't be done with a RESTful architecture.

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

29

http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345

More Complex Rest Requests

First Example: one parameter

http://www.acme.com/phonebook/UserDetails?firstName=Jo
hn&lastName=Doe

If you need to pass long parameters, or binary ones, you'd
normally use HTTP POST requests, and include the
parameters in the POST bodly.

As a rule, GET requests should be for read-only queries;

— they should not change the state of the server and its
data.

For creation, updating, and deleting data, use POST requests.

CS-592 Spring 2015 - Myron Papadakis 30
Transformation Systems Laboratory

http://www.acme.com/phonebook/UserDetails?firstName=John&lastName=Doe
http://www.acme.com/phonebook/UserDetails?firstName=John&lastName=Doe

SOAP and Rest: The letter analogy

A nice analogy for REST vs. SOAP is mailing a letter:
— with SOAP, you're using an envelope;

— with REST, it's a postcard.

e Postcards are easier to handle (by the receiver), waste less paper
(i.e., consume less bandwidth), and have a short content. (Of
course, REST requests aren't really limited in length, esp. if they
use POST rather than GET.)

But don't carry the analogy too far:
— unlike letters-vs.-postcards, REST is every bit as secure as SOAP. In
particular,

e REST can be carried over secure sockets (using the HTTPS
protocol), and content can be encrypted using any mechanism you

see fit.
e Without encryption, REST and SOAP are both insecure; with
proper encryption in place, both are equally secure.

CS-592 Spring 2015 - Myron Papadakis 31
Transformation Systems Laboratory

Rest Constraints (in a nutshell)

(1/2)

The formal REST constraints are:
Client-Server

— Assume a disconnected system
— Uniform interface is the link between the two..
Stateless

— Each message (request) is self-descriptive, the message has
enough info for the server to process the msg

— The uri should contain all the state for the given state (use a
framework)

Cache
— server responses/what comes back are/must be cacheable

CS-592 Spring 2015 - Myron Papadakis 32
Transformation Systems Laboratory

http://whatisrest.com/rest_constraints/client_server
http://whatisrest.com/rest_constraints/client_server
http://whatisrest.com/rest_constraints/client_server
http://whatisrest.com/rest_constraints/stateless
http://whatisrest.com/rest_constraints/cache

Rest Constraints (in a nutshell)

(2/2)

Interface / Uniform Contract
— Defines the interface between client and server
— We use the http spec with uris being our resource names

— WE use the http verbs (post, delete, put, post, some others
too..) as the actions we are going to take on these resources

Layered System
— Software, hardware intermediaries between client and server
— Client can’t assume direct connection to the server
Code-On-Demand (optional constraint)
— Transfer logic to client
— Client executes code (e.g. javascript)

Violating any constraint other than Code-on-Demand means that
the service is not strictly restful

CS-592 Spring 2015 - Myron Papadakis 33
Transformation Systems Laboratory

http://whatisrest.com/rest_constraints/interface_uniform_contract
http://whatisrest.com/rest_constraints/layered_system
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand

The Uniform Interface

All access to resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS).

All information necessary to understand the request must be
contained in the request message.

Guideline:

— Specify, for every URI (and hence, resource): the HTTP
methods supported (e.g., GET and POST, but not DELETE,
PUT)

— Allow querying of these operations by supporting OPTIONS

CS-592 Spring 2015 - Myron Papadakis 34
Transformation Systems Laboratory

Why the Uniform interface matters

Consider a GET of
— http://api.del.icio.us/posts/delete

This misuses GET and does not adhere to the uniform interface

But software programs don’t know this. Programs that follow a link by
GETTing it may hence (inadvertly) delete data.[e.g.,Google Web
Accelerator]

Guideline: Use the HTTP methods correctly when designing web
services.

CS-592 Spring 2015 - Myron Papadakis 35
Transformation Systems Laboratory

http://api.del.icio.us/posts/delete

Connecting Resources

e Server response representations should include links to other
relevant resources

e This makes a web service self-documenting (the

representation can be parsed to see what other resources can
be accessed).

CS-592 Spring 2015 - Myron Papadakis 36
Transformation Systems Laboratory

The Uniform Interface > Safety and
indempotency

e All access to the resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS)

CRUD REST

CREATE POST Create a (sub)resource

RETRIEVE GET Retrieve a representation of a resource

UPDATE PUT Modify a resource/create a new resource

DELETE DELETE delete a resource

ool 9 Discover what HTTP methods are supported
by the resource

HEAD requests headers only (similar to GET but
omits representation)

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface > Safety and
indempotency

GET, HEAD, OPTIONS are read-only operations but PUT, POST,
DELETE are read-write operations with side effects.

An operation f is called idempotent if
— f(f(x)) = f(x)
PUT and DELETE are idempotent.

Idempotent and read-only operations can safely be re-
executed multiple times (e.g., network timeouts) without
risking errors

POST is not idempotent nor read-only, and is not safe to re-
execute

CS-592 Spring 2015 - Myron Papadakis 38
Transformation Systems Laboratory

The Uniform Interface

e |dempotent: can be made several times

HTTP Method CRUD Desc.
POST CREATE Create -
GET RETRIEVE Retrieve Safe,ldempotent,Cacheable
PUT UPDATE Update l[dempotent
DELETE DELETE Delete |dempotent
CS-592 Spring 2015 - Myron Papadakis 39

Transformation Systems Laboratory

On Post and PUT

The key difference between PUT and POST is that PUT
IS iIdempotent while POST is not.

— No matter how many times you send a PUT request,
the results will be same.

POST is not an idempotent method.

Making a POST multiple times may result in multiple
resources getting created on the server.

CS-592 Spring 2015 - Myron Papadakis 40
Transformation Systems Laboratory

On Post and PUT

Another difference is that, with PUT, you must always
specify the complete URI of the resource.

This implies that the client should be able to construct
the URI of a resource even if it does not yet exist on the
server.

This Is possible when it is the client's job to choose a
unique name or ID for the resource, just like creating a

user on the server requires the client to choose a user
ID.

If a client is not able to guess the complete URI of the
resource, then you have no option but to use POST.

CS-592 Spring 2015 - Myron Papadakis 41
Transformation Systems Laboratory

The Uniform Interface

RESOURCE RETRIEVAL

HTTP Client

1

GET /books?isbn=122

Web Server Database

HTTP/1.1 200 OK

{ “title™: “REST",
“authors™:
[“Authl™, “Auth2™]
}

SELECT * FROM BOOKS
WHERE ISBN=122

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface

RESOURCE CREATION

HTTP Client Web Server Database

u Factory URI
POST /order
>

HTTP/1.1 201 CREATED
Location: /orders/4569

=
R -

INSERT INTO ORDERS

€

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface

HTTP Client

PUT /orders/4569

RESOURCE UPDATE

<item id="A", count="10"/>

€
HTTP/1.1 200 OK

Web Server

Database

UPDATE ORDERS
SET COUNT= 10

AND ITEMID="A"

WHERE ORDER=4569

€

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

44

The

HTTP Client

1

RESOURCE DELETION

DELETE /orders/4569

Uniform Interface

Web Server Database

DELETE FROM ORDERS

HTTP/1.1 200 OK

> WHERE ORDER=4569

GET /orders/4569

€

HTTP/1.1 404 NOT FOUND

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

45

Summary: REST = Resource-based
API

Request HTTP REQUEST
(GET, PUT, POST, DELETE)

Procedure

Procedure

Client

HTTP RESPONSE
(standardized/propietary -
media type OR HTTP response Procedure
code) Response ‘ ’

In a resource based API all procedures instances of domain data and files
are given a URI.

HTTP is used as a complete application protocol to define standard service
behavior.

Information is exchanged based on standardized media types
(JSON,XML,...) and HTTP response codes where possible

Clients manipulate the state of resources through representations (e.g., a
database table row may be represented as XHTML, XML, or JSON).

CS-592 Spring 2015 - Myron Papadakis 46
Transformation Systems Laboratory

Rest in the real world

Twitter
— http://developer.twitter.com/doc

Facebook
— http://developers.facebook.com/docs/api

Amazon (http://aws.amazon.com/)

— Amazon has both SOAP and REST interfaces to their web services, and
85% of their usage is of the REST interface (2003)

— http://oreilly.com/pub/wlg/3005
Paypal

— https://developer.paypal.com/docs/api/

Others (Google, Yahoo, eBay, Rally, etc)

CS-592 Spring 2015 - Myron Papadakis 47
Transformation Systems Laboratory

http://developer.twitter.com/doc
http://developers.facebook.com/docs/api
http://aws.amazon.com/
http://oreilly.com/pub/wlg/3005
https://developer.paypal.com/docs/api/

Java API for RESTful Web Services

JAX-RS

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

48

Netbeans Restful Example

Import a Sample Project (Also uploaded to
moodle for those who have not downloaded the
Sample Projects)

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

49

Example 2: Import Sample Project

Steps Choose Project
;— Choose Project Q, Filter:
Categories: Projects:
=) Samples @ Calculator (Java EE &)
-1 Java | &) Secure Calculator (Java EE &)
U—f JavaFx @ REST: Hello World {Java EE &)
U_} HTMLS W/ REST: Customer Database (Java Bk 6)
: @ REST: Message Board (Java EE &)
[‘,|_, Web Services
[‘,L, Java EE
[‘,L, Maven
U_) PHP
[‘,|_, Groovy
~) Cfc++

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

50

Deploying and Testing

« Right click the project and deploy the application

+ Right click and select “Test Restful Services”

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

51

EStateless

BPath (v

greeting™)

puklic cla=s=s HelloWorldBesource {

BEJB

private HameStorageBean nameStorage;

&

* Betrieves represzentation of an instance of
* @retorn an instance of java.lang.S5tring
J = =
EGET
@Produces ("text/html™)
public 5tring getGreeting() {1
return "<html ><body><hl>Hello
}
* POT method for npdating an instance of Hellg
* @param content representation for the resoun
* @retuorn an HITP response with content of ths
@PUT

@EConsumes ("text/plain™)

publ

ic void =setName (String content) {
nameStorage.setName (content) ;

helloworld. HelloWorldResonroe

"tnameStorage.getNHame {(}+" </ hl></bodv>/html>";

#Singleton
pukbklic class HameStorageBean {
private 5S5tring name = "World"™;

public S5tring getNHame () {
return name;

public woid setName (String name) {

CS-592 Spring 2015 - Myron |

this=s.nams name ;
¥

Papadakis 52

Transformation Systems Lal]

yoratory

Test the Sample Project
VLT 11t /locahost 8030 HeloWoridresources/applicaton wad

Test RESTful Web Services

Eﬁ-" HelloWorld HelloWorld > greeting

@ greeting Resource: greeting
(hitp://localhost:8080/HelloWorld/resources/greeting)

Choose method to test: GET{tefohtg @Singleton
pukbklic class NHameStorageBean {

PUT (text/plai
Status: 200 (OK) // name field

private S5tring name = "World"™;

Response:

public S5tring getNHame () {
Tabular View Raw View Sub-Resource Headers return name;
H

Hello World! public void setName (String name) {

thi=.nams = name;

CS-592 Spring 2015 - Myron Papagakis 53

Transformation Systems Laboratory

Test the Sample Project > Put a
value and get back the response

Resource: greeting
(http /Mlocalhost:8080/HelloWorld/resources/greeting) 1

v

Choose method to test: PUT(iext/plain) |+ Test

Content: cs5-452

)
HelloWorld > greeting

Status: 200 (OK)
Resource: greeting

(http://localhost-8080/HelloWorld/resources/greeting) Response:

Tabular View Raw View Sub-Resource

Hello CS-452!

CS-592 Spring 2015 - Myron Papadakis 54
Transformation Systems Laboratory

Choose method to test: GET(text/html) Test

References

e http://webapps.cse.unsw.edu.au/webcms2/course/showfile.

php?cid=2366&color=green&addr=Notes/REST Il.pdf

e http://cs.ulb.ac.be/public/ media/teaching/infoh511/2-
rest.pdf

http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf
http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf

TEAog EvoTnTag

i EMIXEIPHEIAKO MPOrPAMMA
x M EKMAIAEYZH KAI AIA BIOY MABHEH

* *
* YNOYPTEIO MAIAEIAL & BPHEKEYMATAN, NOAITIZMOY & ABAHTIZMOY

EvpwnaikiEBvwon EIAIKH YMHPEZIA AIAXEIPIZHE
Evpwnaiké Kowvwvié Tapgio

Me tn ouyxpnpatodétnon e EAadag kai tng Evpwraikic Evwong

XpnuatodoTnon

*To TTapOV eKTTAIOEUTIKO UAIKO £XEI avaTTTuXOEi oTa TTAQiOIa TOU EKTTAIOEUTIKOU
EPyou Tou 0I10A0KOVTA.

*To £pyo «AvolkTa Akadnuaika Madiupara oto Mavemmiotiio KpATNG» £XEI
XPNMUATOOOTNOEI HOVO TN AVAdIAUOPPWON TOU EKTTAIOEUTIKOU UAIKOU.

*To €pyo uAoTrolgiTal oTo TTAaiclo Tou ETixeipnoiakou Npoypduuatog
«EkTtTaideuon kai Aia Biou M&bnon» kai cuyxpnuaTtodoTeital atro TV
Eupwtraiki 'Evwon (EupwTtraikd Koivwviké Tapegio) kal atrd €Bvikoug TTOpOoUC.

EMIXEIPHXIAKO MPOIPAMMA
EKMAIAEYZH KAI AlA BIOY MAGHZH .= Ez nA

enévdyuen sTny Uowvia Tne yvuone
y EE= < [npdypopo v ow avimgn
YNOYPTEIO NMAIAEIAL KAl OPHEKEYMATAQN

Evpwmaikr ‘Evwon EIAIKH YNMHPEZIA AIAXEIPITHL

E 6 K 8 Tauei
PUNAIEOTONMIKO TAHE Me ™ cuyxpnhparodotnon ¢ EAAadag kat tng Evpwnaikig Evwong

2NUEIWMUATO

2nNUEiwpa adglodoTnong

* To mmapdv UAIKG diaTiBeTal Je TOUG OGpoug TNG adelag xprions Creative Commons
Ava@opd Anuioupyou - Mn Eutropikry Xprion - MNapduoia Aiavouri 4.0 [1]1 R
uetayevéoTepn, AleBvric ‘Ekdoorn. ECaipouvTtal Ta auTOTEAR £€pya TRITWYV TT.X.
PwTOYPAYIES, dlaypAPMATA K.A.TT., TA OTTOIO EUTTEPIEXOVTAI OE AUTO KAl TA OTTOIA
avagEpovtal padi he Toug OPOUG XProng Toug oTo «Znueiwpa Xpnons Epywv Tpitwvy.

@089

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

*()0¢ Mn Eptropikni opiletal n xprion:
—1ou d&v mep\aUBAVEL AUECO 1 EUUECO OLKOVOULKO OPEAOC QO TNV XPron Tou €pyou, yla To SLOVOUEN TOU
€pyou kot adelodoyo

—T1tou Hev epLAAUBAVEL OLKOVOLLLKY) cuvaAAayn wc poUnmoBeon yia tn xprnon r npocBacn oto €pyo

—mtou dev npooTopilel 0To SLavopEa Tou Epyou Kot adelod0X0 EUMECO OLKOVOLKO 0deAOG (m.x. Stadnuioeslg)
aro tnv npoBoAr Tou £pyou o€ SLASLKTUAKO TOTIO

*O JIKAIOUXOC UTTOPEI va TTAPEXEI OTOV ADEIODOXO EEXWPIOTH AdEIQ VA XPNOIMOTIOIEI TO
€PYO VIO EUTTOPIKN XPron, Epocov auto Tou {nTnoki.

2NUEIWNA Ava@popac

Copyright MNavemotiuio Kptng, Mupwv MNMatmmaddkng. «Eicaywyn ota AikTua
Ymrnpeoiwv. AidAegn 10n: Assisting Lecture 5 - Restful Web Services».
‘Ekdoon: 1.0. HpdakAe1o/P€Bupvo 2015. AiaBéoiuo atrd tn dikTuakn dieuBuvon:
https://elearn.uoc.gr/course/view.php?id=416/

