
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Εισαγωγή στα Δίκτυα
Υπηρεσιών

Assisting Lecture 5 - Restful Web Services

Μύρων Παπαδάκης

Τμήμα Επιστήμης Υπολογιστών

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

1

CS592: Introduction to Service
Networks - Spring 2015

 Assisting Lecture: Rest Web Services

Myron Papadakis (myrpap@gmail.com)

References

• Several slides copied from course:INFOH 511 WEB SERVICES

– LECTURE 2: REST & ROA:
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-
rest.pdf

http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf

Introduction to Rest

• REST describes a set of architectural principles for designing
distributed systems.

• REST principles could be applied to any distributed system,
but in practice it is used most often for web applications and
services, where clients and servers communicate using the
HTTP protocol.

3 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Introduction to Rest

• REST = REpresentational State Transfer.

• REST is a lightweight alternative to mechanisms like RPC (Remote
Procedure Calls) and Web Services (SOAP, WSDL, et al.)

• An important concept in REST is the existence of resources (sources of
specific information), each of which is referenced with a global identifier
(e.g., a URI in HTTP).

• In order to manipulate these resources, components of the network (user
agents and origin servers) communicate via a standardized interface (e.g.,
HTTP) and exchange representations of these resources (the actual
documents conveying the information).

9/12/2014 4 4

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

SOAP Vs Rest: A first look

• Querying a phonebook application for the details of a given
user. All we have is the user's ID.

• Using SOAP and Web Services

• Using Rest

– http://www.acme.com/phonebook/UserDetails/12345

– It is just a URL..
5 CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345

SOAP Vs Rest Usage

• Who’s using REST?

– All of Yahoo’s web services use REST, including Flickr,
del.icio.us API uses it, pubsub, bloglines, technorati, and
both eBay, and Amazon have web services for both REST
and SOAP.

• Who’s using SOAP?

– Google seams to be consistent in implementing their web
services to use SOAP, with the exception of Blogger, which
uses XML-RPC. You will find SOAP web services in lots of
enterprise software as well.

6 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://www.google.com/finance?q=NASDAQ:YHOO
http://www.google.com/finance?q=NASDAQ:EBAY
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC

SOAP Vs Rest

Source:

http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-

simple-object-access-protocol-soap

7 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap

Why Rest?

• Less overhead (no SOAP envelope to wrap every call in)

• Less duplication (HTTP already represents operations like DELETE, PUT,
GET, etc. that have to otherwise be represented in a SOAP envelope).

• More standardized - HTTP operations are well understood and operate
consistently. Some SOAP implementations can get finicky.

• More human readable and testable (harder to test SOAP with just a
browser).

• Don't need to use XML (well, you kind of don't have to for SOAP either

 but it hardly makes sense since you're already doing parsing of the
envelope).

• Libraries have made SOAP (kind of) easy. But you are abstracting away a
lot of redundancy underneath as I have noted. Yes, in theory, SOAP cango
over other transports so as to avoid riding atop a layer doing similar
things, but in reality just about all SOAP work you'll ever do is over HTTP.

8 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

SOAP Vs Rest

9 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest Vs Soap Design Methodology

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

10

http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&col

or=green&addr=Notes/REST_II.pdf

http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf
http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf

Rest Vs SOAP

• SOAP is verbose: large overhead of metadata and boilerplate
text

• For more information see:

– http://www.petefreitag.com/item/431.cfm

11 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://www.petefreitag.com/item/431.cfm

Rest > Key Concepts

• Key Concepts:

– Resources (things)

– Resource names (URIs)

– Resource Representations

– Links between resources

• And 4 key properties:

– Addressability

– Statelessness

– Connectedness

– The Uniform Interface

12 CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

Rest in a nutshell (Key Concepts)

• Representational State Transfer (REST) is an “architectural style” defined
by Roy Fielding.
– The concepts of REST are independent of the web, but the web is well-

suited to REST

• Rest Key Concepts. Simplistically, a “RESTful architecture” includes:
– Resources (things) with
– Unique ids (URLS) that can come in many
– Representations (text, html, json) that you operate on with
– Verbs (GET, PUT, DELETE, POST)

• Every object manipulated by the Web Service (or web application)

should be identified and exposed as a resource

• Here the focus is on interacting with resources rather than messages or
operations
 13 CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

Rest in a nutshell

• Urls must name resources. They are nouns

– http://cnn.com/story/hawaii/fireworks

• Not verbs:

– http://cnn.com/addComment?name=fireworks

• Use operators (verbs) such as GET, PUT, POST, DELETE to operate on
resources (nouns)

– GET http://cnn.com/story/hawaii/fireworks

– PUT http://cnn.com/story/hawaii/explosion

– POST http://cnn.com/story/hawaii/nye/comments

– ..

– More on these in next slides

14 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://cnn.com/story/hawaii/fireworks
http://cnn.com/addComment?name=fireworks
http://cnn.com/story/hawaii/fireworks

Rest > 1. Resources

• Each resource has a unique name.

15 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest > 2. URIs (Naming resources)

• In the context of the web (and the HTTP protocol), each resource is
named by a URL.

• A URI is the name of a resource

• Guidelines

– Every resource must be assigned at least one URI. This ensure it is
addressable

– A URI should never represent more than one resource

– Resources can have multiple URIs, but should have as few URIs as
possible

• Examples

9/12/2014 CS-452 Fall 2014 - Myron Papadakis
Transformation Systems Laboratory

16 16 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest > 2. URIs (Naming resources)

• The URLs specify the server and "path" of the resource.

– The server part of the URL specifies which server to contact to access
the resource.

– The path part of the URL names the resource to distinguish it from
other resources on the same server.

17 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest > 2. URIs (Naming resources)

• One important kind of resource is the kinds of fruit that are available. For
example, the business might make the list of the kinds of fruit it sells
available at the URL

– http://ycpfruit.com/fruit

• More information about specific kinds of fruit could be made available
through URLs like

– http://ycpfruit.com/fruit/Apples

– http://ycpfruit.com/fruit/Oranges

• It is common to organize resource URLs in a directory-like scheme: for
example, we can think of the

– path /fruit as naming fruit in general, and more specific paths such as

– /fruit/Apples as naming specific kinds of fruit.

9/12/2014 18 18
CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

Introduction to Rest > 3.
Representations

• There are representations of resources.

• For any resource, a web application might present it in a variety of
formats.

– For example, the same resource could be represented using
HTML and CSS for presentation in a web browser, and also by
XML or JSON for use by programs.

– There are verbs which clients can use to create, access, and
modify resources. In the context of the web, the verbs are the
HTTP request methods.

– The most common HTTP methods are GET, PUT, POST, DELETE.

9/12/2014 19 19

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest in a nutshell >
Representations (3)

• Representations (how resources get manipulated)
– A representation is a description (of some part) of the resource
– As an external user, you cannot manipulate resources directly.
– Instead you manipulate “representations” of that resource.

• Many people can “get” a representation of that single resource
• The same resource can be represented in many different ways

• Example
– Resource: person (Todd)
– Service: contact information (GET)
– Representation

• Name, address, phone number
• JSON or XML format

• Example:
– http:// www.example.org/newspapers/belgium could support both

HTML and JSON

20 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://www.example.org/newspapers/belgium
http://www.example.org/newspapers/belgium

Sidenote: JSON, that other XML

• JSON =JavaScript Object Notation

• A syntactical fragment of JavaScript for describing data

• Due to its increased popularity, libraries for reading & writing
JSON exist for virtually every programming language

• Sometimes more compact than XML, but since it does not
specify a schema, XML-like data-binding tools (JAXB, …) are
not available

• Mainly used in conjunction with AJAX

21 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Example of XML-formatted data

The below XML document contains data about a book: its title,
authors, date of publication, and publisher.

<Book>
 <Title>Parsing Techniques</Title>
 <Authors>
 <Author>Dick Grune</Author>
 <Author>Ceriel J.H. Jacobs</Author>
 </Authors>
 <Date>2007</Date>
 <Publisher>Springer</Publisher>
</Book>

22 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Same data, JSON-formatted

{
 "Book":
 {
 "Title": "Parsing Techniques",
 "Authors": ["Dick Grune", "Ceriel J.H. Jacobs"],
 "Date": "2007",
 "Publisher": "Springer"
 }
}

23 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

XML and JSON, side-by-side

<Book>
 <Title>Parsing Techniques</Title>
 <Authors>
 <Author>Dick Grune</Author>
 <Author>Ceriel J.H.
Jacobs</Author>
 </Authors>
 <Date>2007</Date>
 <Publisher>Springer</Publisher>
</Book>

{
 "Book":
 {
 "Title": "Parsing Techniques",
 "Authors": ["Dick Grune", "Ceriel J.H.
Jacobs"],
 "Date": "2007",
 "Publisher": "Springer"
 }
}

More on JSON in next lectures…

24 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Verbs (1/2)

• In a RESTful web service, the HTTP actions (a.k.a. methods)
are used as verbs to create, access, and modify resources.

• The GET verb accesses a resource: in other words, it requests
that the web service return a representation of the named
resource.

• The POST verb creates a resource.

– For example, a POST request to the path /fruit, where the
body of the request contains a representation of a fruit
resource (perhaps in XML or JSON format), would create a
new fruit resource (which could then be accessed by
subsequent requests).

25 25

CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Verbs (2/2)

• The PUT verb creates a new resource or replaces an existing
resource. Use PUT to create a new resource when you know
the URI for the new resource

– For example, a PUT request to the path /fruit/Apples
would replace the Apples resource with the one contained
in the request body (assuming that a resource named
Apples existed previously).

• The DELETE verb deletes the resource named by a resource.
For example, a DELETE request specifying the path
/fruit/Kumquats would delete Kumquats as a fruit, and no
further requests to access that resource would succeed.

CS-452 Fall 2014 - Myron Papadakis
Transformation Systems Laboratory

26 26 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest in a nutshell > The Web and
REST

• The web’s primary protocol (HTTP) is tailor-made for RESTful
architectures.
– Unique IDs for resources (URIs)
– Verbs (HTTP operators)
– Multiple representations (Media types)

• The web has a uniform and constrained interface.

– HTTP, for example, has a small number of methods. Use these to
manipulate resourses.

• But many (most) web applications do not implement REST!
– Use of GET for everything
– URLS that indicate actions, not things.
– Many other subtle ways to violate REST

27 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest Example > The World Wide
Web

• The largest known implementation of a system conforming
to the REST architectural style is the World Wide Web

• A web page is a representation of a resource …

– The representation is not the resource (we can have
several representations)

9/12/2014 CS-452 Fall 2014 - Myron Papadakis
Transformation Systems Laboratory

28 28 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest Requests > How Simple is
Rest?

• Querying a phonebook application for the details of a given user. All we
have is the user's ID.

• Using SOAP and Web Services

• Using Rest

– http://www.acme.com/phonebook/UserDetails/12345

– It is just a URL..

• Despite being simple, REST is fully-featured; there's basically nothing you
can do in Web Services that can't be done with a RESTful architecture.

Exposing operations vs exposing resources

29 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345
http://www.acme.com/phonebook/UserDetails/12345

More Complex Rest Requests

• First Example: one parameter

• http://www.acme.com/phonebook/UserDetails?firstName=Jo
hn&lastName=Doe

• If you need to pass long parameters, or binary ones, you'd
normally use HTTP POST requests, and include the
parameters in the POST body.

• As a rule, GET requests should be for read-only queries;

– they should not change the state of the server and its
data.

• For creation, updating, and deleting data, use POST requests.

30 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://www.acme.com/phonebook/UserDetails?firstName=John&lastName=Doe
http://www.acme.com/phonebook/UserDetails?firstName=John&lastName=Doe

SOAP and Rest: The letter analogy

• A nice analogy for REST vs. SOAP is mailing a letter:
– with SOAP, you're using an envelope;
– with REST, it's a postcard.

• Postcards are easier to handle (by the receiver), waste less paper
(i.e., consume less bandwidth), and have a short content. (Of
course, REST requests aren't really limited in length, esp. if they
use POST rather than GET.)

• But don't carry the analogy too far:

– unlike letters-vs.-postcards, REST is every bit as secure as SOAP. In
particular,

• REST can be carried over secure sockets (using the HTTPS
protocol), and content can be encrypted using any mechanism you
see fit.

• Without encryption, REST and SOAP are both insecure; with
proper encryption in place, both are equally secure.

31 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Rest Constraints (in a nutshell)
(1/2)

• The formal REST constraints are:

• Client-Server

– Assume a disconnected system

– Uniform interface is the link between the two..

• Stateless

– Each message (request) is self-descriptive, the message has
enough info for the server to process the msg

– The uri should contain all the state for the given state (use a
framework)

• Cache

– server responses/what comes back are/must be cacheable

32 CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

http://whatisrest.com/rest_constraints/client_server
http://whatisrest.com/rest_constraints/client_server
http://whatisrest.com/rest_constraints/client_server
http://whatisrest.com/rest_constraints/stateless
http://whatisrest.com/rest_constraints/cache

Rest Constraints (in a nutshell)
(2/2)

• Interface / Uniform Contract
– Defines the interface between client and server
– We use the http spec with uris being our resource names
– WE use the http verbs (post, delete, put, post, some others

too..) as the actions we are going to take on these resources
• Layered System

– Software, hardware intermediaries between client and server
– Client can’t assume direct connection to the server

• Code-On-Demand (optional constraint)
– Transfer logic to client
– Client executes code (e.g. javascript)

• Violating any constraint other than Code-on-Demand means that

the service is not strictly restful
 33 CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

http://whatisrest.com/rest_constraints/interface_uniform_contract
http://whatisrest.com/rest_constraints/layered_system
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand
http://whatisrest.com/rest_constraints/code_on_demand

The Uniform Interface

• All access to resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS).

• All information necessary to understand the request must be
contained in the request message.

• Guideline:

– Specify, for every URI (and hence, resource): the HTTP
methods supported (e.g., GET and POST, but not DELETE,
PUT)

– Allow querying of these operations by supporting OPTIONS

 34 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Why the Uniform interface matters

• Consider a GET of

– http://api.del.icio.us/posts/delete

• This misuses GET and does not adhere to the uniform interface

• But software programs don’t know this. Programs that follow a link by
GETTing it may hence (inadvertly) delete data.[e.g.,Google Web
Accelerator]

• Guideline: Use the HTTP methods correctly when designing web
services.

35 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://api.del.icio.us/posts/delete

Connecting Resources

• Server response representations should include links to other
relevant resources

• This makes a web service self-documenting (the
representation can be parsed to see what other resources can
be accessed).

36 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface > Safety and
indempotency

• All access to the resources happens through HTTP uniform
interface (GET, POST, PUT, DELETE, HEAD, OPTIONS)

37 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface > Safety and
indempotency

• GET, HEAD, OPTIONS are read-only operations but PUT, POST,
DELETE are read-write operations with side effects.

• An operation f is called idempotent if

– f(f(x)) = f(x)

• PUT and DELETE are idempotent.

• Idempotent and read-only operations can safely be re-
executed multiple times (e.g., network timeouts) without
risking errors

• POST is not idempotent nor read-only, and is not safe to re-
execute

38 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface

• Idempotent: can be made several times

39 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

On Post and PUT

• The key difference between PUT and POST is that PUT

is idempotent while POST is not.

– No matter how many times you send a PUT request,

the results will be same.

• POST is not an idempotent method.

• Making a POST multiple times may result in multiple

resources getting created on the server.

40 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

On Post and PUT

• Another difference is that, with PUT, you must always

specify the complete URI of the resource.

• This implies that the client should be able to construct

the URI of a resource even if it does not yet exist on the

server.

• This is possible when it is the client's job to choose a

unique name or ID for the resource, just like creating a

user on the server requires the client to choose a user

ID.

• If a client is not able to guess the complete URI of the

resource, then you have no option but to use POST.

41 CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

The Uniform Interface

42 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface

43 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface

44 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

The Uniform Interface

45 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Summary: REST = Resource-based
API

• In a resource based API all procedures instances of domain data and files
are given a URI.

• HTTP is used as a complete application protocol to define standard service
behavior.

• Information is exchanged based on standardized media types
(JSON,XML,…) and HTTP response codes where possible

• Clients manipulate the state of resources through representations (e.g., a
database table row may be represented as XHTML, XML, or JSON).

46 CS-592 Spring 2015 - Myron Papadakis

Transformation Systems Laboratory

Rest in the real world

• Twitter

– http://developer.twitter.com/doc

• Facebook

– http://developers.facebook.com/docs/api

• Amazon (http://aws.amazon.com/)

– Amazon has both SOAP and REST interfaces to their web services, and
85% of their usage is of the REST interface (2003)

– http://oreilly.com/pub/wlg/3005

• Paypal

– https://developer.paypal.com/docs/api/

• Others (Google, Yahoo, eBay, Rally, etc)

47 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

http://developer.twitter.com/doc
http://developers.facebook.com/docs/api
http://aws.amazon.com/
http://oreilly.com/pub/wlg/3005
https://developer.paypal.com/docs/api/

Java API for RESTful Web Services

JAX-RS

48 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Netbeans Restful Example

Import a Sample Project (Also uploaded to
moodle for those who have not downloaded the

Sample Projects)

49 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Example 2: Import Sample Project

50 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Deploying and Testing

• Right click the project and deploy the application

• Right click and select “Test Restful Services”

51 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

52 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Test the Sample Project

53 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

Test the Sample Project > Put a
value and get back the response

 1

2

3

54 CS-592 Spring 2015 - Myron Papadakis
Transformation Systems Laboratory

References

• http://webapps.cse.unsw.edu.au/webcms2/course/showfile.
php?cid=2366&color=green&addr=Notes/REST_II.pdf

• http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-
rest.pdf

http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf
http://webapps.cse.unsw.edu.au/webcms2/course/showfile.php?cid=2366&color=green&addr=Notes/REST_II.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh511/2-rest.pdf

Τέλος Ενότητας

Χρηματοδότηση
•Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
έργου του διδάσκοντα.

•Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει
χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

•Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος
«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την
Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα αδειοδότησης
• Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 [1] ή
μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ.
φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία
αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

•Ως Μη Εμπορική ορίζεται η χρήση:
–που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του
έργου και αδειοδόχο
–που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο
–που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις)
από την προβολή του έργου σε διαδικτυακό τόπο

•Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το
έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Κρήτης, Μύρων Παπαδάκης. «Εισαγωγή στα Δίκτυα
Υπηρεσιών. Διάλεξη 10η: Assisting Lecture 5 - Restful Web Services».
Έκδοση: 1.0. Ηράκλειο/Ρέθυμνο 2015. Διαθέσιμο από τη δικτυακή διεύθυνση:
https://elearn.uoc.gr/course/view.php?id=416/

