Sinusoidal Models for Text-to-Speech Synthesis

... or ...

Development of Ahocoder, an HNM-based vocoder

Daniel Erro - derro@aholab.ehu.es

Bilbao, Spain

Outline

- Introduction
- Ahocoder, an HNM-based vocoder
 - F0 estimation
 - MVF estimation
 - Spectral analysis
 - Speech waveform reconstruction
 - Evaluation
- Conclusions

- Role of sinusoidal models in TTS:
 - Concatenative speech synthesis: prosodic modification and smoothing of boundary effects (Y. Stylianou, 2001)

- Role of sinusoidal models in TTS:
 - Statistical parametric speech synthesis: vocoders

- Role of sinusoidal models in TTS:
 - Statistical parametric speech synthesis: vocoders

- A typical vocoder extracts info at 3 levels
 - F0 (log): get_f0, RAPT, YIN, Tempo, PRAAT, SRH...
 - Spectral envelope: SPTK, <u>STRAIGHT</u>+MCEP (Kawahara, 1999), <u>GlottHMM</u>+LSF (Raitio et al., 2011)...
 - Degree of harmonicity: BAP, HNR, MVF...

- Sinusoids(+noise) based vocoder?
 - HQ resynthesis and modification, but...
 - Variable dimension
 - Not very tractable, complicated dependencies

- Sinusoids(+noise) based vocoder?
 - Use them as an intermediate stage between waveforms and parameters
 - Sinusoidal frequencies $\rightarrow \log$ FO
 - Sinusoidal amplitudes \rightarrow MCEP, MGC, LSF...
 - Sinusoidal phases \rightarrow RPS, PD... or nothing!
 - Noise \rightarrow HNR, MVF...

- Sinusoids(+noise) based vocoder?
 - Use them as an intermediate stage between waveforms and parameters
 - Sinusoidal frequencies $\rightarrow \log$ FO
 - Sinusoidal amplitudes \rightarrow MCEP, MGC, LSF...
 - Sinusoidal phases \rightarrow RPS, PD... or nothing!
 - Noise \rightarrow HNR, MVF...
 - Enables intermediate modifications (Thursday)

Outline

- Ahocoder, an HNM-based vocoder
 - F0 estimation
 - MVF estimation
 - Spectral analysis
 - Speech waveform reconstruction
 - Evaluation
- Conclusions

• Every 5ms, fs=16kHz

- F0 estimation
 - Praat / external, every 5ms starting at n=0
 QHM refinement

$$s(t) = \sum_{i=1}^{I} (a_i + tb_i) \exp(j2\pi f_i t)$$
$$\Delta f_i = \frac{\operatorname{Re}\{a_i\}\operatorname{Im}\{b_i\} - \operatorname{Im}\{a_i\}\operatorname{Re}\{b_i\}}{2\pi |a_i|^2}$$
$$\Delta f_0 = \frac{\sum_{i=1}^{I} w_i \cdot \Delta f_i / i}{\sum_{i=1}^{I} w_i}$$

- F0 estimation
 - Praat / external, every 5ms starting at n=0
 QHM refinement

$$s(t) = \sum_{i=1}^{I} (a_i + tb_i) \exp(j2\pi f_i t)$$

$$\Delta f_i = \frac{\operatorname{Re}\{a_i\}\operatorname{Im}\{b_i\} - \operatorname{Im}\{a_i\}\operatorname{Re}\{b_i\}}{2\pi |a_i|^2}$$

$$\Delta f_0 = \frac{\sum_{i=1}^{I} w_i \cdot \Delta f_i / i}{\sum_{i=1}^{I} w_i}$$
Analysis band?
$$Analysis band?
$$IkHz? 2? 4? 8?$$

$$Constant weights?$$

$$deginary for the second second$$$$

- F0 estimation
 - Experiment: more accurate F0 → more accurate harmonic reconstruction of signals

- F0 estimation
 - Experiment: more accurate F0 → more accurate harmonic reconstruction of signals

Constant: wi-1	Weighting, Band	0-1kHz	1-2kHz	2-4kHz	4-8kHz	Total
By ampl.: wi=sqrt(Ai)	Constant, MVF	2.1%	-14.2%	-28.0%	-14.4%	-4.5%
	By ampl., MVF	-8.1%	-15.5%	-21.5%	-8.5%	-10.9%
	By ampl., 4kHz	-6.7%	-16.1%	-23.5%	-12.6%	-10.4%
	By ampl., 2kHz	-10.1%	-15.1%	-3.2%	4.2%	-9.8%
	By ampl., 1kHz	-14.8%	2.1%	17.5%	12.7%	-7.7%
$\sum_{i=1}^{I} w_i \cdot \Delta f_i / i$						

$$\Delta f_0 = \frac{\sum_{i=1}^{I} w_i \cdot \Delta f_i / i}{\sum_{i=1}^{I} w_i}$$

Analysis band? 1kHz? 2? 4? 8? Constant weights? Amplitude-related weights?

- F0 estimation
 - Experiment: more accurate F0 → more accurate harmonic reconstruction of signals

Constant: wi=1		Weighting, Band	0-1kHz	1-2kHz	2-4kHz	4-8kHz	Total
By ampl.: wi=sqrt(Ai)	ſ	Constant, MVF	2.1%	-14.2%	-28.0%	-14.4%	-4.5%
		By ampl., MVF	-8.1%	-15.5%	-21.5%	-8.5%	-10.9%
		By ampl., 4kHz	-6.7%	-16.1%	-23.5%	-12.6%	-10.4%
		By ampl., 2kHz	-10.1%	-15.1%	-3.2%	4.2%	-9.8%
		By ampl., 1kHz	-14.8%	2.1%	17.5%	12.7%	-7.7%

– What about quasi-harmonic reconstruction?

Apparently QHM	Weighting, Band	0-1kHz	1-2kHz	2-4kHz	4-8kHz	Total
HM, with or without	No refinement	-45.8%	-59.1%	-63.2%	-55.5%	-50.3%
F0 refinement	By ampl., MVF	-47.1%	-61.9%	-66.3%	-57.9%	-52.0%

Outline

Introduction

• Ahocoder, an HNM-based vocoder

– FO estimation

- MVF estimation
- Spectral analysis
- Speech waveform reconstruction
- Evaluation
- Conclusions

• MVF estimation

Freq. (Hz)

- MVF estimation
 - Sinusoidal likeness measure (SLM) (Rodet, 1997)

Freq. (Hz)

- MVF estimation
 - Sinusoidal likeness measure (SLM)
 - Probability of voicing of each "peak"

- MVF estimation
 - Sinusoidal likeness measure (SLM)
 - Probability of voicing of each "peak"
 - Local decision
 - Median filter over t

- MVF estimation
 - Experiments:
 - Baseline method: prediction from c₀

$$v^{(k)} = v^{(\max)} \cdot rac{c_0^{(k)} - c_0^{(\min)}}{c_0^{(\max)} - c_0^{(\min)}}$$
~4.5kHz in "normal" voices

- Subjective preference in resynthesis: 38% vs 17%
- Subjective preference in synthesis: 29-30% vs 17-22%

Outline

Introduction

• Ahocoder, an HNM-based vocoder

– FO estimation

- MVF estimation
- Spectral analysis
- Speech waveform reconstruction
- Evaluation
- Conclusions

• Spectral analysis

- Spectral analysis
 - HM instead of HNM

How can we combine spectral info below the MVF with spectral info above the MVF?

 Spectral analysis Its harmonic reconstruction HM instead of HNM Original frame k $\{A_i^{(k)}, \varphi_i^{(k)}\} = \arg \min \sum w^2[n] \left(s[n+kN] - h^{(k)}[n]\right)^2$ $I^{(k)}$ $h^{(k)}[n] = \sum_{i=1}^{k} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right)$ Ampl. (dB) Freq. (Hz)

- Spectral analysis
 - HM instead of HNM

- Spectral analysis
 - HM instead of HNM

• Spectral analysis

– HM instead of HNM

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0

$$\hat{A}_i = \frac{A_i}{2\sqrt{f_0}}$$

Crucial to separate F0 from spectrum and allow signal reconstruction at different F0 and voicing contours

- Spectral analysis
 - HM instead of HNM

- Normalize by FO $X[m] = \frac{1}{N} FFT_N \{x[n]\} \iff x[n] = N FFT_N^{-1} \{X[m]\}$

- Spectral analysis
 - HM instead of HNM

- Normalize by F0 $X[m] = \frac{1}{\sqrt{Nf_s}} FFT_N\{x[n]\} \iff x[n] = \sqrt{Nf_s} FFT_N^{-1}\{X[m]\}$

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

F0-normalized log-amplitude envelope

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

F0-normalized amplitudes \rightarrow spectral envelope \rightarrow MCEP coeffs

F0-normalized amplitudes \rightarrow MCEP coeffs

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

Unvoiced:
$$S^{(k)}[m] = \log\left(\frac{1}{\sqrt{Lf_s}} |FFT_N\{s[n] \cdot w[n-n_k]\}|\right)$$

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

(Tokuda et al., 1994)

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

$$S(\omega) = c_0 + 2 \sum_{q=1}^{p} c_q \cos q \widetilde{\omega}$$

$$1 \quad 2 \cos \widetilde{\omega}_1 \quad \cdots \quad 2 \cos p \widetilde{\omega}_1$$

$$1 \quad 2 \cos \widetilde{\omega}_2 \quad \cdots \quad 2 \cos p \widetilde{\omega}_2$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots$$

$$1 \quad 2 \cos \widetilde{\omega}_I \quad \cdots \quad 2 \cos p \widetilde{\omega}_I$$

$$\mathbf{c} = \begin{bmatrix} \log \hat{A}_1 \\ \log \hat{A}_2 \\ \vdots \\ \log \hat{A}_I \end{bmatrix}$$

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

$$S(\omega) = c_0 + 2 \sum_{q=1}^{p} c_q \cos q \widetilde{\omega}$$

$$\begin{bmatrix} 1 & 2\cos\widetilde{\omega}_1 & \cdots & 2\cos p\widetilde{\omega}_1 \\ 1 & 2\cos\widetilde{\omega}_2 & \cdots & 2\cos p\widetilde{\omega}_2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 2\cos\widetilde{\omega}_I & \cdots & 2\cos p\widetilde{\omega}_I \end{bmatrix} \mathbf{c} + Reg. Term. = \begin{bmatrix} \log \hat{A}_1 \\ \log \hat{A}_2 \\ \vdots \\ \log \hat{A}_I \end{bmatrix}$$

$$\underbrace{\mathsf{Mel Regularized}}_{\mathsf{Discrete Cepstrum}} = \begin{bmatrix} \log \hat{A}_1 \\ \log \hat{A}_2 \\ \vdots \\ \log \hat{A}_I \end{bmatrix}$$

(Cappé et al., 1995)

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0

- Spectral analysis
 - HM instead of HNM
 - Normalize by F0
 - MCEP

$$A_{i}^{(k)}, \varphi_{i}^{(k)}\} = \arg \min \sum_{n} w^{2}[n] \Big(s[n+kN] - h^{(k)}[n] \Big)^{2}$$

$$h^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_{i}^{(k)} \cos \left(i\omega_{0}^{(k)}n + \varphi_{i}^{(k)} \right)$$

- FFT-based harmonic analysis
 - Much faster and less accurate, BUT when MCEP coeffs are involved the difference is hard to perceive!!

- Spectral analysis
 - Experiments:
 - Resynthesis quality MOS predicted by PESQ, ITU-T/P.862 (keeping uv frames and measured phases)

- Spectral analysis
 - Experiments:
 - Resynthesis quality MOS predicted by PESQ, ITU-T/P.862 (keeping uv frames and measured phases)

- Spectral analysis
 - Experiments:
 - Resynthesis quality MOS predicted by PESQ, ITU-T/P.862 (keeping uv frames and measured phases)

- Spectral analysis
 - Experiments:
 - Resynthesis quality MOS predicted by PESQ, ITU-T/P.862 (keeping uv frames and measured phases)

- Spectral analysis
 - Experiments:
 - Resynthesis quality MOS predicted by PESQ, ITU-T/P.862 (keeping uv frames and measured phases)
 - Accuracy of statistical modeling: average log-probability per frame given by HTS (v2.1.1)

Method \ Voice	Female	Male
Sinc interp. + MCEP	$1.0095 \cdot 10^2$	$1.1034 \cdot 10^2$
Mel-RDC	$1.0339 \cdot 10^2$	$1.1176 \cdot 10^2$
f_0 ref. + Mel-RDC	$1.0446 \cdot 10^2$	$1.1519 \cdot 10^2$

Again, Mel-RDC slightly superior to interpolation of envelope + MCEP, and F0 refinement helps

Outline

Introduction

• Ahocoder, an HNM-based vocoder

– FO estimation

- MVF estimation
- Spectral analysis
- Speech waveform reconstruction
- Evaluation
- Conclusions

• Speech waveform reconstruction

Only part that will take part in the TTS process!!

Not pitch-synchronous but constant frame length of 10ms (from nk-5ms to nk+5ms)

• Speech waveform reconstruction

Speech waveform reconstruction

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$

Speech waveform reconstruction

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$

F0 denorm

 $e^{(k)}[n] = \sqrt{Nf_s} \operatorname{FFT}_N^{-1} \{ E^{(k)}[m] \}$

Speech waveform reconstruction

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$
F0 denorm
$$e^{(k)}[n] = \sqrt{Nf_s} \operatorname{FFT}_N^{-1} \{E^{(k)}[m]\}$$

$$\int_{\mathbb{T}}^{\log -A} \int_{\mathbb{T}}^{\log -A} \int_{\mathbb{T}}^{$$

f

Speech waveform reconstruction

е

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$
F0 denorm
$$e^{(k)}[n] = \sqrt{Nf_s} \operatorname{FFT}_N^{-1} \{E^{(k)}[m]\}$$

$$for e^{(k)}[n] = \sqrt{Nf_s} \operatorname{FFT}_N^{-1} \{E^{(k)}[m]\}$$

Speech waveform reconstruction

F0 d

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$

=0 denorm
$$e^{(k)}[n] = \sqrt{Nf_s} \operatorname{FFT}_N^{-1} \{E^{(k)}[m]\}$$

$$\int_{-20}^{A [dB]} 20 \log_{10} H_n(f)$$

$$\int_{-20}^{-20} \int_{-32}^{A [dB]} 0.8 \text{MVF MVF}$$

Speech waveform reconstruction

Speech waveform reconstruction

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$
F0 denorm
$$e^{(k)}[n] = \sqrt{Nf_s} \operatorname{FFT}_N^{-1} \{E^{(k)}[m]\}$$

$$\int_{-20}^{-20} + \frac{1}{32} \int_{-32}^{-20} + \frac{1}{32} \int_{-32}^{10} \int_{-32}^{10} + \frac{1}{32} \int_{-32}^{10} + \frac{1}$$

Compensate

0.8MVF MVF

Speech waveform reconstruction

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$

Speech waveform reconstruction

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$

Speech waveform reconstruction

$$s^{(k)}[n] = \sum_{i=1}^{I^{(k)}} A_i^{(k)} \cos\left(i\omega_0^{(k)}n + \varphi_i^{(k)}\right) + \rho \cdot r^{(k)}[n] \cdot e^{(k)}[n]$$

(McAulay & Quatieri, 1995)

- Speech waveform reconstruction
 - Phase info is discarded by Ahocoder
 - There are attempts to model the non-linear nonminimum part of phase (Degottex & Erro, 2014)

Outline

Introduction

• Ahocoder, an HNM-based vocoder

– FO estimation

- MVF estimation
- Spectral analysis
- Speech waveform reconstruction
- Evaluation
- Conclusions

• Evaluation

– Comparison with STRAIGHT, 30 listeners

Outline

- Introduction
- Ahocoder, an HNM-based vocoder
 - FO estimation
 - MVF estimation
 - Spectral analysis
 - Speech waveform reconstruction
 - Evaluation
- Conclusions

Conclusions

- HM/HNM good framework for vocoder development
- QHM-based pitch refinement (0-MVF band, amplituderelated weights) helps
- Explicit MVF analysis and modeling helps
- Mel-RDC slightly better than log-amplitude envelope intepolation + MCEP
- Don't discard the FFT-based harmonic analysis approach
- Don't forget to normalize amplitudes by F0!
- Be careful with QHM + Mel-RDC!!
- Overall, the result is comparable with STRAIGHT

Outline

- Introduction
- Ahocoder, an HNM-based vocoder
 - FO estimation
 - MVF estimation
 - Spectral analysis
 - Speech waveform reconstruction
 - Evaluation
- Conclusions

Acknowledgements

Iñaki Sainz Eva Navas Inma Hernáez

"Una manera de hacer Europa"

References

- D. Erro et al., "Harmonics Plus Noise Model Based Vocoder for Statistical Parametric Speech Synthesis", IEEE J STSP, 2014
- Y. Stylianou, "Applying the Harmonic Plus Noise Model in Concatenative Speech Synthesis", IEEE T SAP, 2001
- H. Kawahara et al., "Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F0 extraction (...)", Speech Commun., 1999
- T. Raitio et al., "HMM-based speech synthesis utilizing glottal inverse filtering", IEEE T ASLP, 2011
- Y. Pantazis et al., "Iterative Estimation of Sinusoidal Signal Parameters", IEEE SPL, 2010
- X. Rodet, "Musical sound signals analysis/synthesis: Sinusoidal + residual and elementary waveform models", Appl. Signal Process., 1997
- K. Tokuda et al., "Mel-generalized cepstral analysis a unified approach to speech spectral estimation", Proc. ICSLP, 1994
- O. Cappé et al., "Regularized estimation of cepstrum envelope from discrete frequency points," Proc. IEEE WASPAA, 1995
- G. Degottex, D. Erro, "A uniform phase representation for the harmonic model in speech synthesis applications", EURASIP J ASMP, 2014
- R. McAulay, T. Quatieri, "Sinusoidal Coding", chapter in "Speech Coding and Synthesis", Elsevier, 1995

Sinusoidal Models for Text-to-Speech Synthesis

... or ...

Development of Ahocoder, an HNM-based vocoder

Daniel Erro - derro@aholab.ehu.es

Bilbao, Spain

