

Statistical Parametric Speech Synthesis: From HMM to LSTM-RNN

Heiga Zen Google

July 29th, 2015

Outline

Basics of HMM-based speech synthesis

Background HMM-based speech synthesis

Advanced topics in HMM-based speech synthesis

Flexibility
Improve naturalness

Neural network-based speech synthesis

Feed-forward neural network (DNN & DMDN)
Recurrent neural network (RNN & LSTM-RNN)
Results

Conclusion

Lecturer

- Heiga Zen
- PhD from Nagoya Institute of Technology, Japan (2006)
- Intern, IBM T.J. Watson Research, New York (2004–2005)
- Research engineer, Toshiba Research Europe, Cambridge (2009–2011)
- Research scientist, Google, London (2011–Present)

Outline

Basics of HMM-based speech synthesis

Background HMM-based speech synthesis

Advanced topics in HMM-based speech synthesis

Flexibility
Improve naturalness

Neural network-based speech synthesis

Feed-forward neural network (DNN & DMDN)
Recurrent neural network (RNN & LSTM-RNN)
Results

Conclusion

Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

 $\mathsf{Speech} \; (\mathsf{real}\text{-}\mathsf{valued} \; \mathsf{time} \; \mathsf{series}) \to \mathsf{Text} \; (\mathsf{discrete} \; \mathsf{symbol} \; \mathsf{sequence})$

Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

Speech (real-valued time series) → Text (discrete symbol sequence)

Statistical machine translation (SMT)

Text (discrete symbol sequence) → Text (discrete symbol sequence)

Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

Speech (real-valued time series) → Text (discrete symbol sequence)

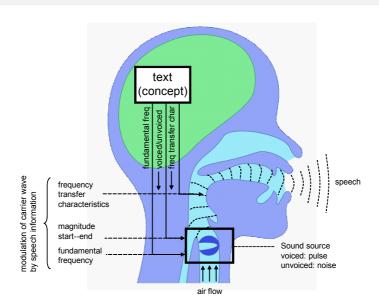
Statistical machine translation (SMT)

Text (discrete symbol sequence) → Text (discrete symbol sequence)

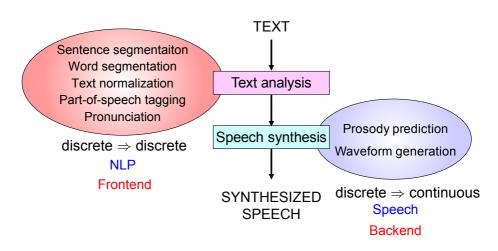
Text-to-speech synthesis (TTS)

Text (discrete symbol sequence) → Speech (real-valued time series)

Speech production process

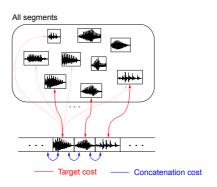


Typical flow of TTS system



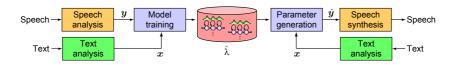
This presentation mainly talks about backend

Concatenative, unit selection speech synthesis



- Concatenate actual instances of speech from database
- Large data + automatic learning
 - → High-quality synthetic voices can be built automatically
- ullet Single inventory per unit o diphone synthesis [1]
- Multiple inventory per unit → unit selection synthesis [2]

Statistical parametric speech synthesis (SPSS) [3]

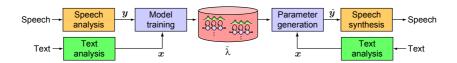


Training

- ullet Extract linguistic features x & acoustic features y
- ullet Train acoustic model λ given $(oldsymbol{x},oldsymbol{y})$

$$\hat{\lambda} = \arg \max p(\boldsymbol{y} \mid \boldsymbol{x}, \lambda)$$

Statistical parametric speech synthesis (SPSS) [3]



Training

- ullet Extract linguistic features x & acoustic features y
- ullet Train acoustic model λ given (x,y)

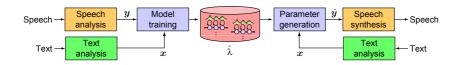
$$\hat{\lambda} = \arg \max p(\boldsymbol{y} \mid \boldsymbol{x}, \lambda)$$

Synthesis

- ullet Extract x from text to be synthesized
- ullet Generate most probable y from $\hat{\lambda}$ then reconstruct waveform

$$\hat{\boldsymbol{y}} = \arg \max p(\boldsymbol{y} \mid \boldsymbol{x}, \hat{\lambda})$$

Statistical parametric speech synthesis (SPSS) [3]

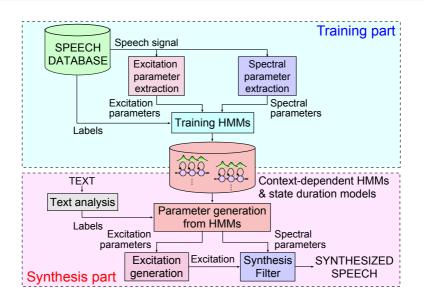


- Vocoded speech (buzzy or muffled)
- Small footprint

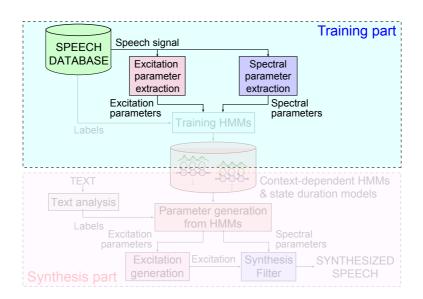
Hidden Markov model (HMM) as its acoustic model

 \rightarrow HMM-based speech synthesis system (HTS) [4]

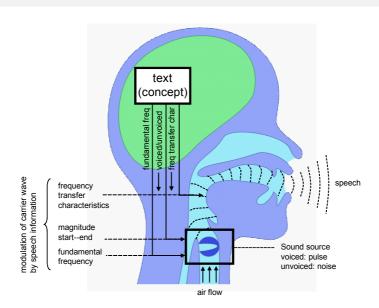
HMM-based speech synthesis [4]



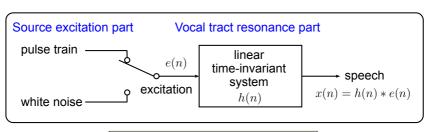
HMM-based speech synthesis [4]



Speech production process



Source-filter model



$$x(n) = h(n) * e(n)$$

$$\downarrow \text{Fourier transform}$$

$$X(e^{j\omega}) = H(e^{j\omega})E(e^{j\omega})$$

 $H\left(e^{j\omega}\right)$ should be defined by HMM state-output vectors e.g., mel-cepstrum, line spectral pairs

Parametric models of speech signal

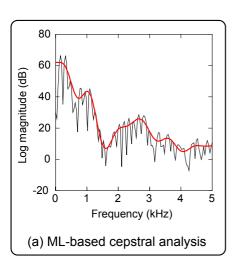
Autoregressive (AR) model	Exponential (EX) model
$H(z) = \frac{K}{1 - \sum_{m=0}^{M} c(m)z^{-m}}$	$H(z) = \exp \sum_{m=0}^{M} c(m)z^{-m}$

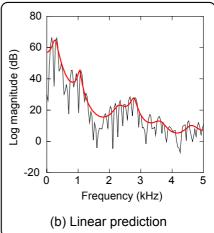
Estimate model parameters based on ML

$$c = \arg \max_{c} p(x \mid c)$$

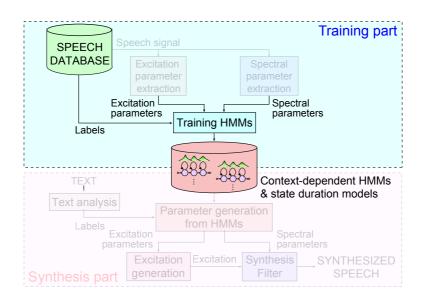
- $p(x \mid c)$: AR model \rightarrow Linear predictive analysis [5]
- $p(x \mid c)$: EX model \rightarrow (ML-based) cepstral analysis [6]

Examples of speech spectra

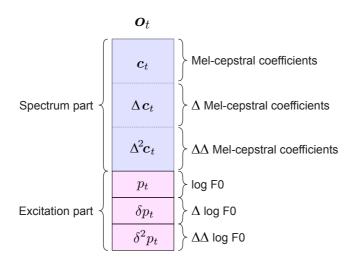




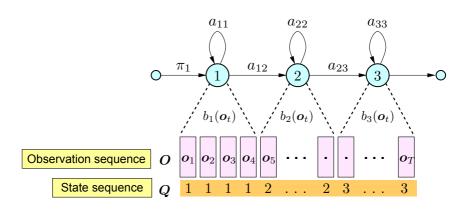
HMM-based speech synthesis [4]



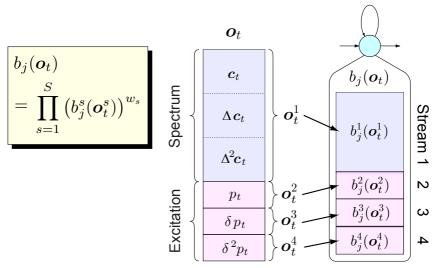
Structure of state-output (observation) vectors



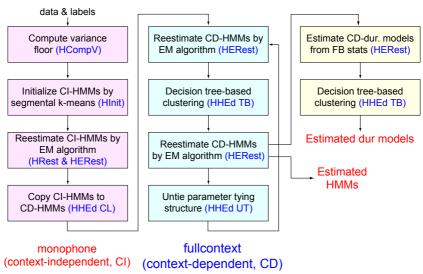
Hidden Markov model (HMM)



Multi-stream HMM structure



Training process



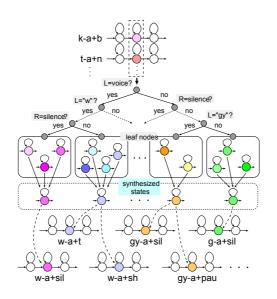
Context-dependent acoustic modeling [4]

- {preceding, succeeding} two phonemes
- Position of current phoneme in current syllable
- # of phonemes at {preceding, current, succeeding} syllable
- {accent, stress} of {preceding, current, succeeding} syllable
- Position of current syllable in current word
- # of {preceding, succeeding} {stressed, accented} syllables in phrase
- ullet # of syllables {from previous, to next} {stressed, accented} syllable
- Guess at part of speech of {preceding, current, succeeding} word
- # of syllables in {preceding, current, succeeding} word
- Position of current word in current phrase
- ullet # of {preceding, succeeding} content words in current phrase
- # of words {from previous, to next} content word
- # of syllables in {preceding, current, succeeding} phrase

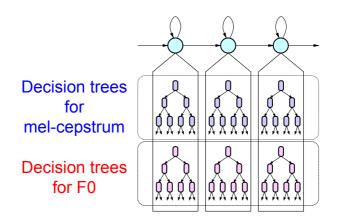
. . .

Impossible to have all possible models

Decision tree-based state clustering [7]

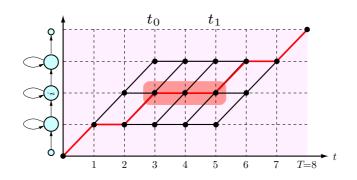


Stream-dependent tree-based clustering



Spectrum & excitation can have different context dependency → Build decision trees individually

State duration models [8]

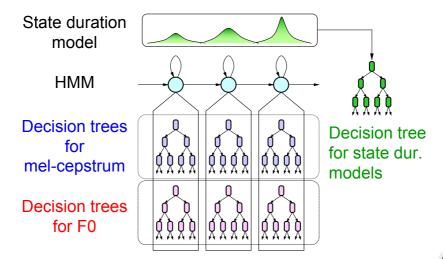


Probability to enter state i at t_0 then leave at $t_1 + 1$

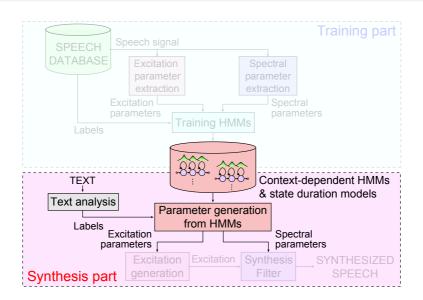
$$\chi_{t_0,t_1}(i) \propto \sum_{j \neq i} \alpha_{t_0-1}(j) a_{ji} a_{ii}^{t_1-t_0} \prod_{t=t_0}^{t_1} b_i(\boldsymbol{o}_t) \sum_{k \neq i} a_{ik} b_k(\boldsymbol{o}_{t_1+1}) \beta_{t_1+1}(k)$$

→ estimate state duration models

Stream-dependent tree-based clustering



HMM-based speech synthesis [4]



Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words

$$\begin{split} \hat{o} &= \arg\max_{o} p(o \mid w, \hat{\lambda}) \\ &= \arg\max_{o} \sum_{\forall q} p(o, q \mid w, \hat{\lambda}) \\ &\approx \arg\max_{o} \max_{q} p(o, q \mid w, \hat{\lambda}) \\ &= \arg\max_{o} \max_{q} p(o \mid q, \hat{\lambda}) P(q \mid w, \hat{\lambda}) \end{split}$$

Speech parameter generation algorithm [9]

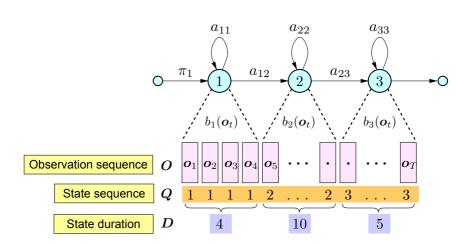
Generate most probable state outputs given HMM and words

$$\begin{split} \hat{o} &= \arg\max_{o} p(o \mid w, \hat{\lambda}) \\ &= \arg\max_{o} \sum_{\forall q} p(o, q \mid w, \hat{\lambda}) \\ &\approx \arg\max_{o} \max_{q} p(o, q \mid w, \hat{\lambda}) \\ &= \arg\max_{o} \max_{q} p(o \mid q, \hat{\lambda}) P(q \mid w, \hat{\lambda}) \end{split}$$

Determine the best state sequence and outputs sequentially

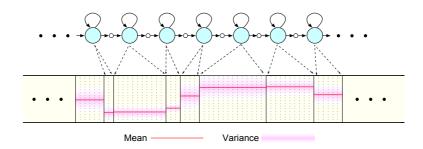
$$\begin{split} \hat{q} &= \arg\max_{\boldsymbol{q}} P(\boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda}) \\ \hat{\boldsymbol{o}} &= \arg\max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda}) \end{split}$$

Best state sequence



Best state outputs

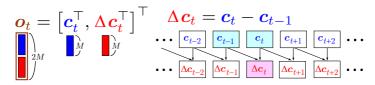
w/o dynamic features



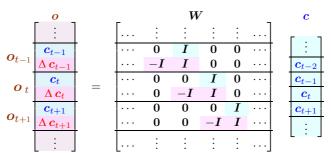
\hat{o} becomes step-wise mean vector sequence

Using dynamic features

State output vectors include static & dynamic features



Relationship between static and dynamic features can be arranged as



Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

$$\hat{o} = \arg\max_{o} p(o \mid \hat{q}, \hat{\lambda}) \quad \text{subject to} \quad o = Wc$$

Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

$$\hat{o} = \arg \max_{o} p(o \mid \hat{q}, \hat{\lambda})$$
 subject to $o = Wc$

If state-output distribution is single Gaussian

$$p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda}) = \mathcal{N}(\boldsymbol{o}; \hat{\boldsymbol{\mu}}_{\hat{\boldsymbol{q}}}, \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{q}}})$$

Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

$$\hat{o} = \arg \max_{o} p(o \mid \hat{q}, \hat{\lambda})$$
 subject to $o = Wc$

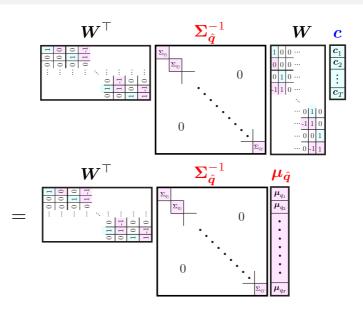
If state-output distribution is single Gaussian

$$p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda}) = \mathcal{N}(\boldsymbol{o}; \hat{\boldsymbol{\mu}}_{\hat{\boldsymbol{q}}}, \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{q}}})$$

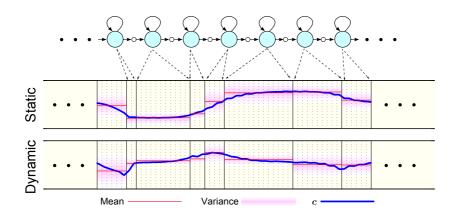
By setting
$$\partial \log \mathcal{N}(Wc;\hat{\mu}_{\hat{q}},\hat{\Sigma}_{\hat{q}})/\partial c = 0$$

$$oldsymbol{W}^{ op} \hat{oldsymbol{\Sigma}}_{\hat{oldsymbol{q}}}^{-1} oldsymbol{W} oldsymbol{c} = oldsymbol{W}^{ op} \hat{oldsymbol{\Sigma}}_{\hat{oldsymbol{q}}}^{-1} \hat{\mu}_{\hat{oldsymbol{q}}}$$

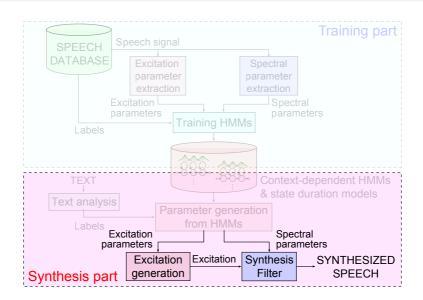
Speech parameter generation algorithm [9]



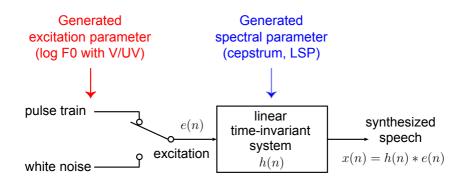
Generated speech parameter trajectory



HMM-based speech synthesis [4]



Waveform reconstruction



Synthesis filter

- ullet Cepstrum o LMA filter
- ullet Generalized cepstrum o GLSA filter
- Mel-cepstrum → MLSA filter
- Mel-generalized cepstrum → MGLSA filter
- LSP → LSP filter
- PARCOR → all-pole lattice filter
- ullet LPC o all-pole filter

Any questions?

Outline

Basics of HMM-based speech synthesis

Background HMM-based speech synthesis

Advanced topics in HMM-based speech synthesis

Flexibility
Improve naturalness

Neural network-based speech synthesis

Feed-forward neural network (DNN & DMDN) Recurrent neural network (RNN & LSTM-RNN) Results

Conclusion

Advantages

- Flexibility to change voice characteristics
- Small footprint
- More data

Adaptation (mimicking voice) [10]

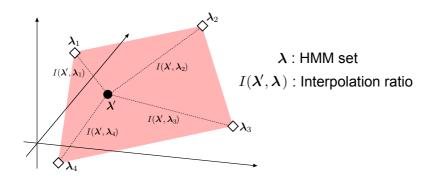
- Train average voice model (AVM) from training speakers using SAT
- Adapt AVM to target speakers
- Requires small data from target speaker/speaking style
 - → Small cost to create new voices

Adaptation demo

- Speaker adaptation
 - VIP voice: GWB ♥ BHO ♥
 - Child voice:
- Style adaptation (in Japanese)
 - Joyful 🖈
 - Sad 🗐
 - Rough 📢

From http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/demo.html

Interpolation (mixing voice) [11, 12, 13, 14]



- Interpolate representive HMM sets
- Can obtain new voices w/o adaptation data
- Eigenvoice / CAT / multiple regression
 - \rightarrow estimate representative HMM sets from data

Interpolation demo (1)

- Speaker interpolation (in Japanese)
 - Male & Female

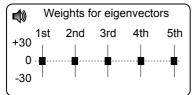
- · Style interpolation
 - Neutral → Angry 🖏
 - Neutral → Happy 🖏

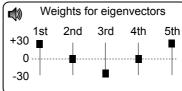
From http://www.sp.nitech.ac.jp/

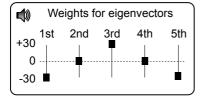
& http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/demo.html

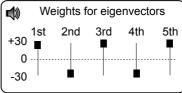
Interpolation demo (2)

Speaker characteristics modification





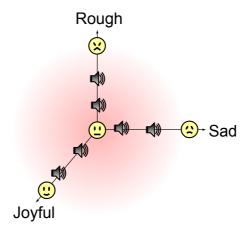




From http://www.sp.nitech.ac.jp/~demo/synthesis_demo_2001/

Interpolation demo (3)

Style-control



From http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/demo.html

Drawbacks

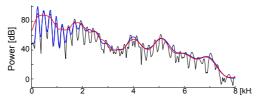
- Quality buzzy, muffled synthetic speech
- Major factors for quality degradation [3]
 - Vocoder (speech analysis & synthesis)
 - Acoustic model (HMM)
 - Oversmoothing (parameter generation)

Vocoding issues

Simple pulse / noise excitation
 Difficult to model mix of V/UV sounds (e.g., voiced fricatives)

• Spectral envelope extraction

Harmonic effect often cause problem

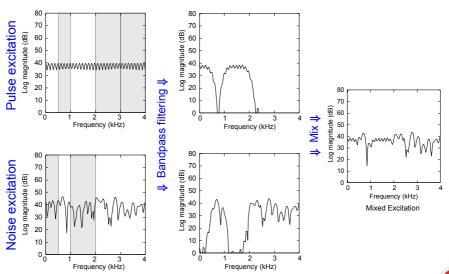


Phase Important but usually ignored

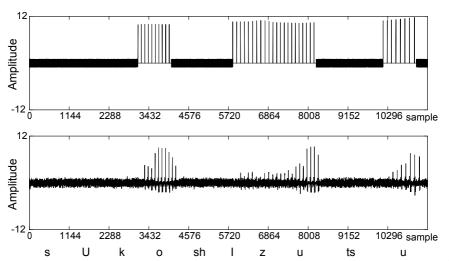
Better vocoding

- Mixed excitation linear prediction (MELP)
- STRAIGHT
- Multi-band excitation
- Harmonic + noise model (HNM)
- Harmonic / stochastic model
- IF model
- Glottal waveform
- Residual codebook
- ML excitation

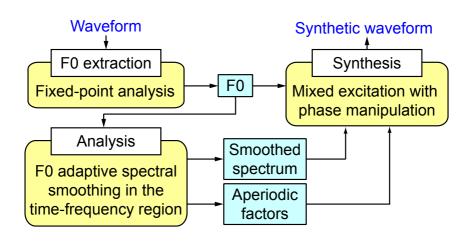
MELP-style mixed excitation [15]



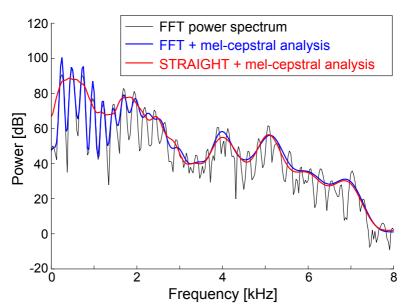
MELP-style mixed excitation [15]



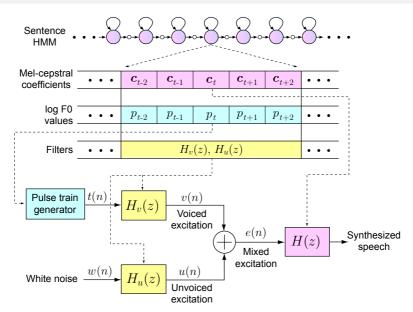
STRAIGHT [16]



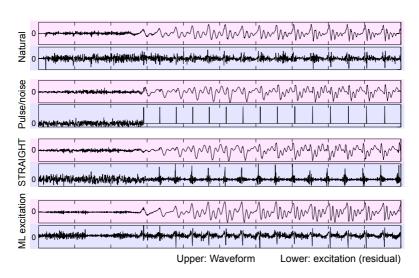
STRAIGHT [16]



Trainable excitation model [17]



Trainable excitation model [17]



Limitations of HMMs for acoustic modeling

- Piece-wise constatnt statistics
 Statistics do not vary within an HMM state
- Conditional independence assumption
 State output probability depends only on the current state
- Weak duration modeling
 State duration probability decreases exponentially with time

None of them hold for real speech

Better acoustic modeling

- $\bullet \ \ \textbf{Piece-wise constatnt statistics} \rightarrow \ \textbf{Dynamical model} \\$
 - Trended HMM, autoregressive HMM (ARHMM)
 - Polynomial segment model, hidden trajectory model (HTM)
 - Trajectory HMM
- Conditional independence assumption → Graphical model
 - Buried Markov model, ARHMM, linear dynamical model (LDM)
 - HTM, Gaussian process (GP)
 - Trajectory HMM
- Weak duration modeling → Explicit duration model
 - Hidden semi-Markov model

Trajectory HMM [18]

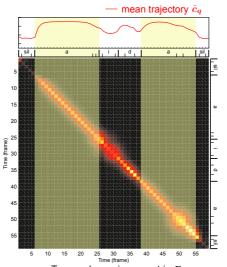
- Derived from HMM by imposing dynamic feature constraints
- Underlying generative model in HMM-based speech synthesis

$$\begin{split} p(\boldsymbol{c} \mid \boldsymbol{\lambda}) &= \sum_{\forall \boldsymbol{q}} p(\boldsymbol{c} \mid \boldsymbol{q}, \boldsymbol{\lambda}) P(\boldsymbol{q} \mid \boldsymbol{\lambda}) \\ p(\boldsymbol{c} \mid \boldsymbol{q}, \boldsymbol{\lambda}) &= \mathcal{N}\left(\boldsymbol{c}; \bar{\boldsymbol{c}}_{\boldsymbol{q}}, \boldsymbol{P}_{\boldsymbol{q}}\right) \end{split}$$

where

$$egin{aligned} P_q^{-1} &= R_q = W^ op \Sigma_q^{-1} W \ r_q &= W^ op \Sigma_q^{-1} \mu_q \ ar{c}_q &= P_q r_q \end{aligned}$$

Trajectory HMM [18]



Relation to HMM-based speech synthesis

Mean vector of trajectory HMM

$$\boldsymbol{W}^{\top}\boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1}\boldsymbol{W}\bar{\boldsymbol{c}}_{\boldsymbol{q}} = \boldsymbol{W}^{\top}\boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1}\boldsymbol{\mu}_{\boldsymbol{q}}$$

• Speech parameter trajectory used in HMM-based speech synthesis

$$\boldsymbol{W}^{\top}\boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1}\boldsymbol{W}\boldsymbol{c} = \boldsymbol{W}^{\top}\boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1}\boldsymbol{\mu}_{\boldsymbol{q}}$$

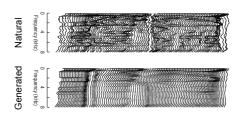
ML estimation of trajectory HMM

 \rightarrow Make training & synthesis consistent

Oversmoothing

Speech parameter generation algorithm

- Dynamic feature constraints make generated parameters smooth
- Often too smooth → sounds muffled



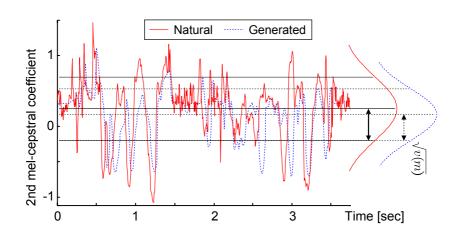
• Why?

- Details of spectral (formant) structure disappear
- Use of better AM relaxes the issue, but not enough

Oversmoothing compensation

- Postfiltering
 - Mel-cepstrum
 - LSP
- Nonparametric approach
 - Conditional parameter generation
 - Discrete HMM-based speech synthesis
- Combine multiple-level statistics
 - Global variance (intra-utterance variance)
 - Modulation spectrum (intra-utterance frequency components)

Global variance [19]



GVs of synthesized speech are typically narrower

Speech parameter generation with GV [19]

• Speech parameter generation

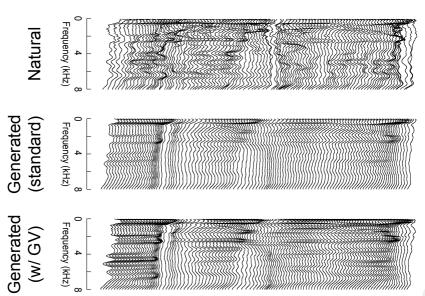
$$\hat{c} = \operatorname{arg\,max}_{c} \log \mathcal{N}\left(Wc; \mu_{q}, \Sigma_{q}\right)$$

• Speech parameter generation w/ GV

$$\hat{\boldsymbol{c}} = \operatorname{arg\,max}_{\boldsymbol{c}} \, \log \mathcal{N}\left(\boldsymbol{W}\boldsymbol{c}; \boldsymbol{\mu_q}, \boldsymbol{\Sigma_q}\right) + \omega \log \mathcal{N}\left(\boldsymbol{v}(\boldsymbol{c}); \boldsymbol{\mu_v}, \boldsymbol{\Sigma_v}\right)$$

2nd term works as a penalty for oversmoothing

Effect of GV



Any questions?

Outline

Basics of HMM-based speech synthesis

Background HMM-based speech synthesis

Advanced topics in HMM-based speech synthesis

Flexibility
Improve naturalness

Neural network-based speech synthesis

Feed-forward neural network (DNN & DMDN) Recurrent neural network (RNN & LSTM-RNN) Results

Conclusion

Characteristics of SPSS

Advantages

- Flexibility to change voice characteristics
 - Adaptation
 - o Interpolation / eigenvoice / CAT / multiple regression
- Small footprint
- Robustness

Drawback

- Quality
- Major factors for quality degradation [3]
 - Vocoder (speech analysis & synthesis)
 - Acoustic model (HMM) → Neural networks
 - Oversmoothing (parameter generation)

Linguistic → **acoustic** mapping

Training

Learn relationship between linguistic & acoustic features

Linguistic → **acoustic** mapping

- Training
 Learn relationship between linguistic & acoustic features
- Synthesis

 Map linguistic features to acoustic ones

Linguistic → **acoustic** mapping

• Training

Learn relationship between linguistic & acoustic features

Synthesis

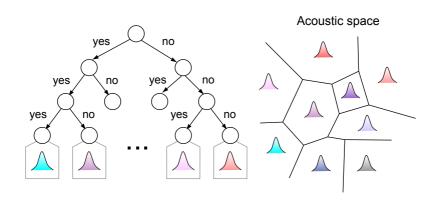
Map linguistic features to acoustic ones

• Linguistic features used in SPSS

- Phoneme, syllable, word, phrase, utterance-level features
- e.g., phone identity, POS, stress, # of words in a phrase
- Around 50 different types, much more than ASR (typically 3–5)

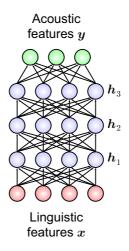
Effective modeling is essential

HMM-based acoustic modeling for SPSS [4]



Decision tree-clustered HMM w/ GMM state-output distributions

NN-based acoustic modeling for SPSS [20]



NN output $ightarrow \mathbb{E}\left[y_t \mid x_t
ight]
ightarrow$ replace decision trees & GMMs

Advantages of NN-based acoustic modeling for SPSS

- Integrating feature extraction
 - Efficiently model high-dimensional, highly correlated features
 - Layered architecture w/ non-linear operations
 - ightarrow Integrated linguistic feature extraction to acoustic modeling

Advantages of NN-based acoustic modeling for SPSS

Integrating feature extraction

- Efficiently model high-dimensional, highly correlated features
- Layered architecture w/ non-linear operations
 - ightarrow Integrated linguistic feature extraction to acoustic modeling

• Distributed representation

More efficient than localist one if data has componential structure

→ Better modeling / Fewer parameters

Advantages of NN-based acoustic modeling for SPSS

Integrating feature extraction

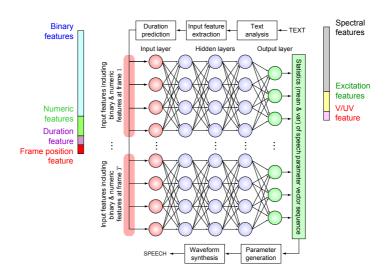
- Efficiently model high-dimensional, highly correlated features
- Layered architecture w/ non-linear operations
 - → Integrated linguistic feature extraction to acoustic modeling

• Distributed representation

More efficient than localist one if data has componential structure

- → Better modeling / Fewer parameters
- Layered hierarchical structure in speech production concept → linguistic → articulatory → vocal tract → waveform

Framework



Framework

Is this new? ... no

- NN [21]
- RNN [22]

Framework

Is this new? ... no

- NN [21]
- RNN [22]

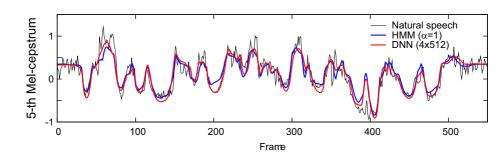
What's the difference?

- More layers, data, computational resources
- Better learning algorithm
- Statistical parametric speech synthesis techniques

Experimental setup

Database	US English female speaker	
Training / test data	33000 & 173 sentences	
Sampling rate	16 kHz	
Analysis window	25-ms width / 5-ms shift	
Linguistic	11 categorical features	
features	25 numeric features	
Acoustic	0-39 mel-cepstrum	
features	$\log F_0$, 5-band aperiodicity, Δ, Δ^2	
HMM	5-state, left-to-right HSMM [23],	
topology	MSD F_0 [24], MDL [25]	
DNN	1-5 layers, 256/512/1024/2048 units/layer	
architecture	sigmoid, continuous F_0 [26]	
Preprocessing	Removed 80% of silence	
Postprocessing	Postfiltering in cepstrum domain [15]	

Example of speech parameter trajectories



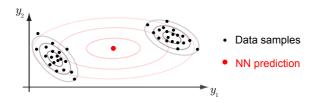
Subjective evaluations

Compared HMM- & DNN-based systems w/ similar # of params

- Paired comparison test
- 173 test sentences, 5 subjects per pair
- Up to 30 pairs per subject
- Crowd-sourced

HMM	DNN			
(α)	$(\#layers \times \#units)$	Neutral	p value	z value
15.8 (16)	38.5 (4 × 256)	45.7	$< 10^{-6}$	-9.9
16.1 (4)	27.2 (4 × 512)	56.8	$< 10^{-6}$	-5.1
12.7 (1)	36.6 (4 × 1024)	50.7	$< 10^{-6}$	-11.5

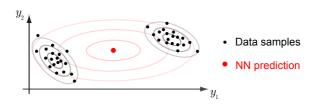
Limitations of DNN-based acoustic modeling



Unimodality

- Human can speak in different ways → one-to-many mapping
- $-\,$ NN trained by MSE loss \rightarrow approximates conditional mean

Limitations of DNN-based acoustic modeling



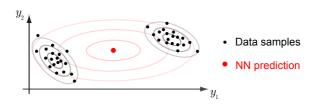
Unimodality

- Human can speak in different ways → one-to-many mapping
- NN trained by MSE loss \rightarrow approximates conditional mean

Lack of variance

- DNN-based SPSS uses variances computed from all training data
- Parameter generation algorithm utilizes variances

Limitations of DNN-based acoustic modeling



Unimodality

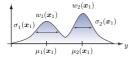
- Human can speak in different ways → one-to-many mapping
- NN trained by MSE loss \rightarrow approximates conditional mean

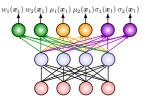
Lack of variance

- DNN-based SPSS uses variances computed from all training data
- Parameter generation algorithm utilizes variances

Linear output layer \rightarrow Mixture density output layer [27]

Mixture density network [27]





1-dim, 2-mix MDN

Inputs of activation function

$$z_j = \sum_{i=1}^4 h_i w_{ij}$$

: Weights → Softmax activation function

$$w_1(\mathbf{x}) = \frac{\exp(z_1)}{\sum_{m=1}^2 \exp(z_m)}$$
 $w_2(\mathbf{x}) = \frac{\exp(z_2)}{\sum_{m=1}^2 \exp(z_m)}$

$$\mu_1(\boldsymbol{x}) = z_3 \qquad \qquad \mu_1(\boldsymbol{x}) = z_4$$

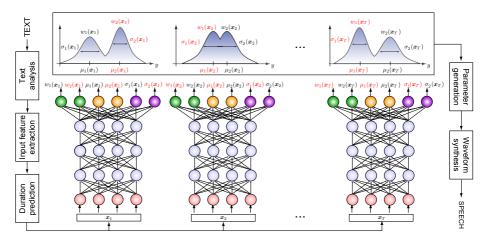
○ : Variances → Exponential activation function

$$\sigma_1(\boldsymbol{x}) = \exp(z_5)$$
 $\sigma_2(\boldsymbol{x}) = \exp(z_6)$

NN + mixture model (GMM)

→ NN outputs GMM weights, means, & variances

DMDN-based SPSS [28]



Experimental setup

- Almost the same as the previous setup
- Differences:

DNN	4-7 hidden layers, 1024 units/hidden layer
architecture	ReLU (hidden) / Linear (output)
DMDN	4 hidden layers, 1024 units/ hidden layer
architecture	ReLU [29] (hidden) / Mixture density (output)
	1–16 mix
Optimization	AdaDec [30] (variant of AdaGrad [31]) on GPU

Subjective evaluation

- 5-scale mean opinion score (MOS) test (1: unnatural 5: natural)
- 173 test sentences, 5 subjects per pair
- Up to 30 pairs per subject
- Crowd-sourced

	1 mix	$\textbf{3.54} \pm \textbf{0.113}$
HMM	2 mix	3.40 ± 0.115
	4×1024	3.64 ± 0.127
DNN	5×1024	$\textbf{3.68}\pm\textbf{0.109}$
	6×1024	3.65 ± 0.108
	7×1024	3.64 ± 0.129
	1 mix	3.65 ± 0.117
DMDN	2 mix	3.80 ± 0.107
(4×1024)	4 mix	3.77 ± 0.113
	8 mix	$\textbf{3.81}\pm\textbf{0.113}$
	16 mix	3.79 ± 0.102

Limitations of DNN/MDN-based acoustic modeling

Fixed time span for input features

- Fixed number of preceding / succeeding contexts
- Difficult to incorporate long time span contextual effect

Limitations of DNN/MDN-based acoustic modeling

Fixed time span for input features

- Fixed number of preceding / succeeding contexts
- Difficult to incorporate long time span contextual effect

Frame-by-frame mapping

- Each frame is mapped independently
- Smoothing is still essential

Preference score (%)		
DNN w/ dyn	DNN w/o dyn	No pref
67.8	12.0	20.0

Limitations of DNN/MDN-based acoustic modeling

Fixed time span for input features

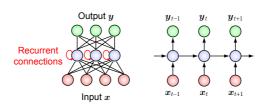
- Fixed number of preceding / succeeding contexts
- Difficult to incorporate long time span contextual effect

Frame-by-frame mapping

- Each frame is mapped independently
- Smoothing is still essential

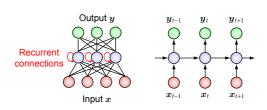
Preference score (%)		
DNN w/ dyn	DNN w/o dyn	No pref
67.8	12.0	20.0

Recurrent connections → Recurrent NN (RNN) [32]



SRN-based acoustic modeling

$$h_t = f\left(W_{hx}x_t + W_{hh}h_{t-1} + b_h\right), \qquad y_t = \phi\left(W_{yh}h_t + b_y\right)$$

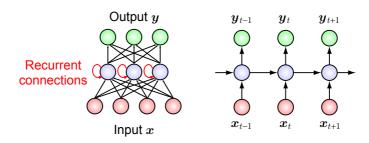


SRN-based acoustic modeling

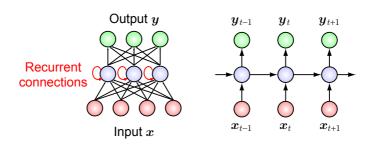
$$h_t = f(W_{hx}x_t + W_{hh}h_{t-1} + b_h), \qquad y_t = \phi(W_{yh}h_t + b_y)$$

With squared loss...

- ullet DNN output (prediction) $\hat{y}_t
 ightarrow \mathbb{E}\left[oldsymbol{y}_t \mid oldsymbol{x}_t
 ight]$
- ullet RNN output (prediction) $\hat{y}_t
 ightarrow \mathbb{E}\left[oldsymbol{y}_t \mid oldsymbol{x}_1, \dots, oldsymbol{x}_t
 ight]$



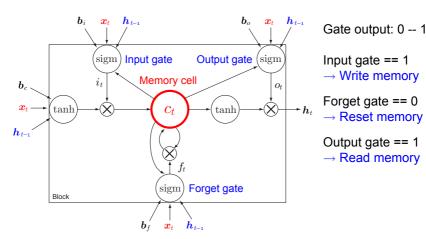
- Only able to use previous contexts
 - → bidirectional RNN [32]



- Only able to use previous contexts
 - → bidirectional RNN [32]
- Trouble accessing long-range contexts
 - Information in hidden layers loops through recurrent connections
 - → Quickly decay over time
 - Prone to being overwritten by new information arriving from inputs
 - → long short-term memory (LSTM) RNN [33]

Long short-term memory (LSTM) [33]

- RNN architecture designed to have better memory
- Uses linear memory cells surrounded by multiplicative gate units



Advantages of RNN-based acoustic modeling for SPSS

- Model dependency between frames
 - HMM: discontinuous (step-wise) → smoothing
 - DNN: discontinuous (frame-by-frame mapping) [34] \rightarrow smoothing
 - RNN: smooth [35, 34]

Advantages of RNN-based acoustic modeling for SPSS

• Model dependency between frames

- HMM: discontinuous (step-wise) → smoothing
- DNN: discontinuous (frame-by-frame mapping) [34] \rightarrow smoothing
- RNN: smooth [35, 34]

Low latency

- Unidirectional structure allows fully frame-level streaming [34]

Advantages of RNN-based acoustic modeling for SPSS

• Model dependency between frames

- HMM: discontinuous (step-wise) → smoothing
- DNN: discontinuous (frame-by-frame mapping) [34] \rightarrow smoothing
- RNN: smooth [35, 34]

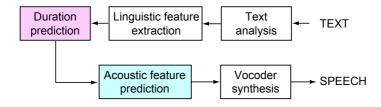
• Low latency

- Unidirectional structure allows fully frame-level streaming [34]

More efficient representation

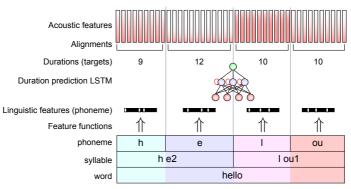
RNN offers more efficient representation than DNN for time series

Synthesis pipeline



Duration & acoustic feature prediction blocks involve NN

Duration modeling

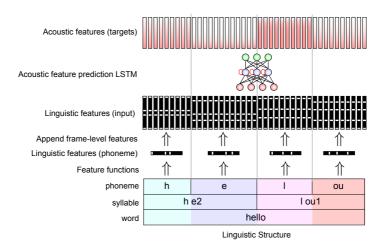


Linguistic Structure

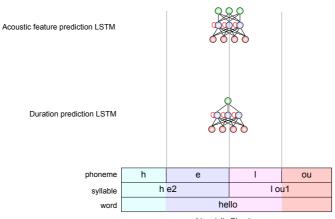
Feature function examples

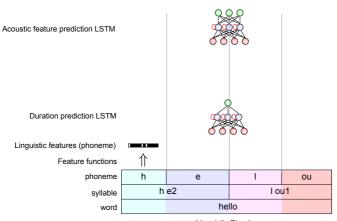
phoneme == 'h'? syllable stress == '2'? # of syllables in word?

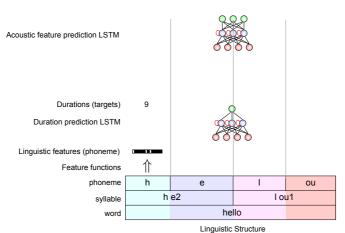
Acoustic modeling

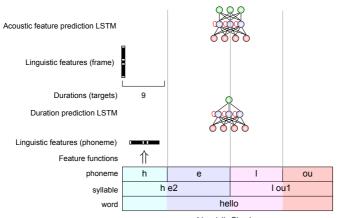


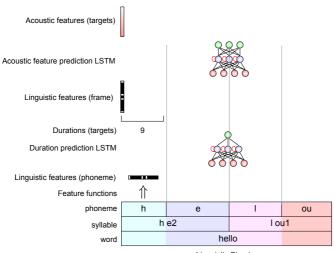
Append frame-level featuresRelative position of frame in phoneme

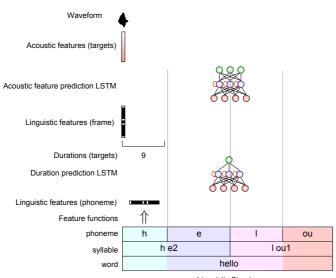


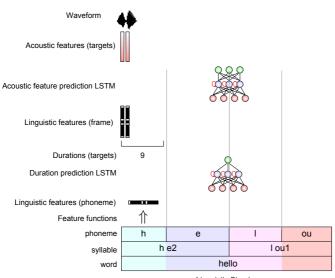


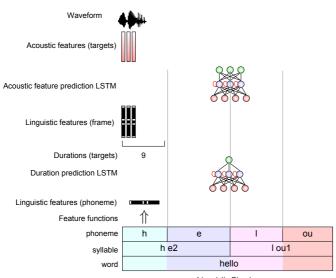


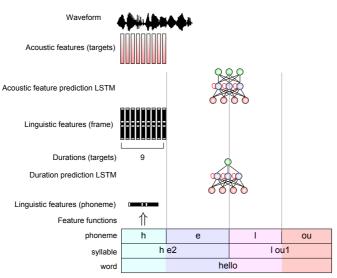


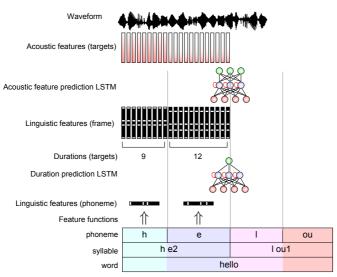


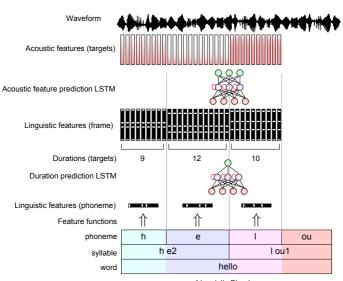


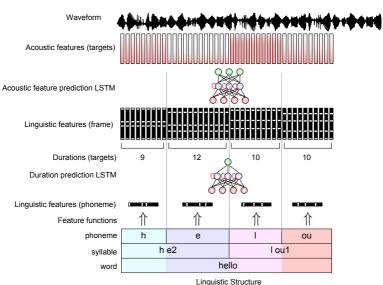












Data & speech analysis

Database	US English female speaker 34 632 utterances	
Speech analysis	16 kHz sampling 25-ms width / 5-ms shift	
Synthesis	Vocaine [36] Postfiltering-based enhancement	
Input	DNN: 442 linguistic features ULSTM: 291 linguistic features	
Target	0–39 mel-cepstrum features continuous $\log F_0$ [26] 5-band aperiodicity optionally Δ, Δ^2	

Training

Preprocessing	Acoustic: removed 80% silence Duration: removed first/last silence	
Normalization	Input: mean / standard deviations Output: 0.01 – 0.99	
Architecture	DNN: 4 \times 1024 units, ReLU [29] ULSTM: 1 \times 256 cells	
Output layer	Acoustic: feed-forward or recurrent Duration: feed-forward	
Initialization	DNN: random + layer-wise BP [37] ULSTM: random	
Optimization	Common: squared loss, SGD DNN: GPU, AdaDec [38] ULSTM: distributed CPU [39]	

Subjective tests

Common	100 sentences Crowd-sourcing Using head-phones
MOS	7 evaluations per sample Up to 30 stimuli per subject 5-scale score in naturalness (1: Bad – 5: Excellent)
Preference	5 evaluations per pair Up to 30 pairs per subject Chose prefered one or "neutral"

of future contexts

# of future contexts	5-scale MOS
0	3.57 ± 0.121
1	3.75 ± 0.119
2	3.81 ± 0.115
3	3.78 ± 0.118
4	3.75 ± 0.115

Preference scores

DI	VN	ULSTM				
Feed-f	orward	Feed-f	orward	Recu	irrent	Neutral
w/	w/o	w/	w/o	w/	w/o	
67.8	12.0					20.0
18.4		34.9				47.6
		21.0	12.2			66.8
		21.8			21.0	57.2
				16.6	29.2	54.2

MOS

- DNN w/ dynamic features
- ULSTM w/o dynamic features, w/ recurrent output layer

Model	# params	5-scale MOS
DNN	3,747,979	3.37 ± 0.114
ULSTM	476,435	3.72 ± 0.105

Latency

- Nexus 7 2013
- Use Advanced SIMD (NEON), single thread
- Audio buffer size: 1024
- ullet HMM one used time-recursive version w/ L=15
- HMM & ULSTM used the same text analysis front-end

	Average latency (ms)		
	HMM	ULSTM	
chars	26	25	
short	123	55	
long	311	115	

LSTM-based TTS demo

- Turkish
- Korean
- Mandarin
- Thai
- French
- Italian
- German
- Spanish
- Russian
- Polish
- Dutch
- Japanese
- US, UK, & Indian English

Outline

Basics of HMM-based speech synthesis

Background HMM-based speech synthesis

Advanced topics in HMM-based speech synthesis

Flexibility
Improve naturalness

Neural network-based speech synthesis

Feed-forward neural network (DNN & DMDN) Recurrent neural network (RNN & LSTM-RNN) Results

Conclusion

Summary

Statistical parametric speech synthesis

- Vocoding + acoustic model
- HMM-based SPSS
 - Flexible (e.g., adaptation, interpolation)
 - Improvements
 - Vocoding
 - Acoustic modeling
 - Oversmoothing compensation
- NN-based SPSS
 - Learn mapping from linguistic features to acoustic ones
 - Static network (DNN, DMDN) \rightarrow dynamic ones (LSTM)

Google academic program

Award programs

- Google Faculty Research Awards
 Provides unrestricted gifts to support fulltime faculty members
- Google Focused Research Awards
 Fund specific key research areas
- Visiting Faculty Program Support full-time faculty in research areas of mutual interest http://research.google.com/university/relations/

Student support programs

- Graduate Fellowships
 Recognize outstanding graduate students
- Internships

Work on real-world problems with Google's data & infrastructure

http://research.google.com/university/student-support/ http://www.google.com/about/careers/students/

References I

[1] E. Moulines and F. Charpentier.

Pitch synchronous waveform processing techniques for text-to-speech synthesis using diphones. Speech Commun., 9:453–467, 1990.

[2] A. Hunt and A. Black.

Unit selection in a concatenative speech synthesis system using a large speech database. In *Proc. ICASSP*, pages 373–376, 1996.

[3] H. Zen, K. Tokuda, and A. Black.

Statistical parametric speech synthesis. Speech Commun., 51(11):1039–1064, 2009.

- [4] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis. In Proc. Eurospeech, pages 2347—2350, 1999.
- [5] F. Itakura and S. Saito. A statistical method for estimation of speech spectral density and formant frequencies. Trans. IEICE. 153–A:35–42, 1970.
- [6] S. Imai.

Cepstral analysis synthesis on the mel frequency scale.

In Proc. ICASSP, pages 93-96, 1983.

[7] J. Odell.

The use of context in large vocabulary speech recognition.

PhD thesis. Cambridge University, 1995.

[8] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura.

Duration modeling for HMM-based speech synthesis.

In Proc. ICSLP, pages 29-32, 1998.

References II

[9] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura. Speech parameter generation algorithms for HMM-based speech synthesis. In *Proc. ICASSP*, pages 1315–1318, 2000.

[10] J. Yamagishi. Average-Voice-Based Speech Synthesis. PhD thesis, Tokyo Institute of Technology, 2006.

[11] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Speaker interpolation in HMM-based speech synthesis system. In Proc. Eurospeech, pages 2523–2526, 1997.

- [12] K. Shichiri, A. Sawabe, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Eigenvoices for HMM-based speech synthesis. In Proc. ICSLP, pages 1269–1272, 2002.
- [13] H. Zen, N. Braunschweiler, S. Buchholz, M. Gales, K. Knill, S. Krstulovic, and J. Latorre. Statistical parametric speech synthesis based on speaker and language factorization. *IEEE Trans. Acoust. Speech Lang. Process.*, 20(6):1713–1724, 2012.
- [14] T. Nose, J. Yamagishi, T. Masuko, and T. Kobayashi. A style control technique for HMM-based expressive speech synthesis. *IEICE Trans. Inf. Syst.*, E90-D(9):1406–1413, 2007.
- [15] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Incorporation of mixed excitation model and postfilter into HMM-based text-to-speech synthesis. *IEICE Trans. Inf. Syst.*, J87-D-II(8):1563–1571, 2004.
- [16] H. Kawahara, I. Masuda-Katsuse, and A.de Cheveigné. Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based f_0 extraction: possible role of a repetitive structure in sounds. Speech Commun., 27:187–207, 1999.

References III

[17] R. Maia, T. Toda, H. Zen, Y. Nankaku, and K. Tokuda. An excitation model for HMM-based speech synthesis based on residual modeling. In Proc. ISCA SSW6, pages 131–136, 2007.

[18] H. Zen, K. Tokuda, and T. Kitamura. Reformulating the HMM as a trajectory model by imposing explicit relationships between static and dynamic features. Comput. Speech Lang., 21(1):153–173, 2007.

[19] T. Toda and K. Tokuda.

A speech parameter generation algorithm considering global variance for HMM-based speech synthesis. IEICE Trans. Inf. Syst., E90-D(5):816–824, 2007.

- [20] H. Zen, A. Senior, and M. Schuster. Statistical parametric speech synthesis using deep neural networks. In Proc. ICASSP, pages 7962–7966, 2013.
- [21] O. Karaali, G. Corrigan, and I. Gerson. Speech synthesis with neural networks. In Proc. World Congress on Neural Networks, pages 45–50, 1996
- [22] C. Tuerk and T. Robinson. Speech synthesis using artificial network trained on cepstral coefficients. In Proc. Eurospeech, pages 1713–1716, 1993.
- [23] H. Zen, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. A hidden semi-Markov model-based speech synthesis system. *IEICE Trans. Inf. Syst.*, E90-D(5):825–834, 2007.
- [24] K. Tokuda, T. Masuko, N. Miyazaki, and T. Kobayashi. Multi-space probability distribution HMM. IEICE Trans. Inf. Syst., E85-D(3):455-464, 2002.

References IV

[25] K. Shinoda and T. Watanabe.

Acoustic modeling based on the MDL criterion for speech recognition.

In Proc. Eurospeech, pages 99-102, 1997.

[26] K. Yu and S. Young.

Continuous F0 modelling for HMM based statistical parametric speech synthesis. *IEEE Trans. Audio Speech Lang. Process.*, 19(5):1071–1079, 2011.

[27] C. Bishop.

Mixture density networks.

Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, 1994.

[28] H. Zen and A. Senior.

Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis. In *Proc. ICASSP*, pages 3872–3876, 2014.

[29] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.-V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. Hinton.

On rectified linear units for speech processing.

In Proc. ICASSP, pages 3517-3521, 2013.

[30] A. Senior, G. Heigold, M. Ranzato, and K. Yang.

An empirical study of learning rates in deep neural networks for speech recognition.

In Proc. ICASSP, pages 6724-6728, 2013.

[31] J. Duchi, E. Hazan, and Y. Singer.

Adaptive subgradient methods for online learning and stochastic optimization. *The Journal of Machine Learning Research*, pages 2121–2159, 2011.

[32] M. Schuster and K. Paliwal.

Bidirectional recurrent neural networks.

IEEE Trans. Signal Process., 45(11):2673-2681, 1997.

References V

[33] S. Hochreiter and J. Schmidhuber.

Long short-term memory.

Neural computation, 9(8):1735-1780, 1997.

[34] H. Zen and H. Sak.

Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis.

In Proc. ICASSP, pages 4470-4474, 2015.

[35] Y. Fan, Y. Qian, F. Xie, and F. Soong.

TTS synthesis with bidirectional LSTM based recurrent neural networks.

In Proc. Interspeech, 2014.

(Submitted) http://research.microsoft.com/en-us/projects/dnntts/.

[36] Y. Agiomyrgiannakis.

Vocaine the vocoder and applications is speech synthesis.

In Proc. ICASSP, pages 4230-4234, 2015.

[37] F. Seide, G. Li, X. Chen, and D. Yu.

Feature engineering in context-dependent deep neural networks for conversational speech transcription.

In Proc. ASRU, pages 24-29. IEEE, 2011.

[38] A. Senior, G. Heigold, M. Ranzato, and K. Yang.

An empirical study of learning rates in deep neural networks for speech recognition.

In Proc. ICASSP, pages 6724-6728, 2013.

[39] H. Sak, A. Senior, and F. Beaufays.

Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In *Proc. Interspeech.* 2014.

