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Terminology

*Event: Every possible outcome of an experiment

*Sample Space: The set of all possible outcomes of an experiment (the set of all events).

*Example: Rolling the dice
* Every possible outcome is an event

* Sample space: {1, 2, 3, 4, 5, 6}

*Example: Toss a coin
* Every possible outcome is an event

* Sample space: {heads, tails}.



Binary Random Variables

*A is a Boolean-random variable if A denotes an event, and there is some degree of uncertainty
as to whether A occurs

*Examples
* A =The US president in 2023 will be male

* A =You wake up tomorrow with a headache

* A =You have Ebola




Visualizing A

Event space of all
possible worlds
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Kolmogorov Axioms




Kolmogorov Axioms

Probability of an event A is a number assigned to this event such that:

0 < P(4) < 1 -All probabllities are between 0 and 1

P(®) = 0 “no outcome” has zero probability

P(S) = 1 some outcome is bound to occur

P(A U B) = P(A) + P(B) — P(A n B) probability of the union equals sum of probabilities minus
probability of the intersection,

o WoNF




Probability of an event A is a number assigned to this event such that:
0 < P(A) £ 1 -All probabllities are between 0 and 1
P(®) = 0 “no outcome” has zero probability

1.
2
F. P(S8) =1 some outcomeis bound to occur
£,

P(A U B) = P(A) + P(B) — P(A n B) probability of the union equals sum of probabilities minus
probability of the intersection.

The area of A cannot be
smaller than O

And a zero area would
mean ho world could ever
have A true.




Probability of an event A is a number assigned to this event such that:
0 < P(A) = 1 -All probabllities are between 0 and 1
P(®) = 0 “no outcome” has zero probability

1.
2
F.  P(5) =1 some outcomeis bound to occur
£,

P(A U B) = P(A) + P(B) — P(A n B) probability of the union equals sum of probabilities minus
probability of the intersection.

The area of A cannot be
larger than 1

And an area of 1 would

mean all worlds will have A
true.




Probability of an event A is a number assigned to this event such that:
0 < P(4) <1 All probabilities are between 0 and 1

P(®) = 0 “no outcome” has zero probability

P(S) = 1 some outcome is bound to occur

P(A U B) = P(A) + P(B) — P(A n B) probability of the union equals sum of probabilities minus
probability of the intersection.
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Theorems from the axioms
*P(mA) =1—P(A4)

*How?
* PAU-A)=P(8) =1
* PAN-4)=P(@)=0
» P(AN A) = P(A) + P(=A) — P(4/A =4)




Theorems from the axioms

*P(B) = P(B N A) + P(B N -A)

*How?
* Try it at home




Multivalued Random Variables

*Suppose A can take more than two values

*A is a random variable with arity k if it can take on exactly one value of {v4, v5, ..., V¢ }.
“Thus..

PA=v,UA=v,U-NA=1) =1



Facts about multivalued random
variables

» Using

P(A=v;nA=v;)=0, ifi #]j
PA=vUA=v,U--NA=v,)=1

*And the axioms of probability we can prove:

*PA=v,UA=v,U--NA=v) =35 PA=v)
* Therefore 3.¥ , P(4 = v;) =1
*AlsoP(B)= Xk PBNA=v)



Elementary probability in pictures

k
Z P(BNA=v;)
i=1




Elementary probability in pictures

k
Z P(BNA=v;)
i=1

BnA=V1
BnA='U2

BnA=V3
BN A=T74_

BﬂA=v5

BnA=V6




Independence

* A and B are independent eventsif P(4|B) = P(A) X P(B)
*Outcome of A has no effect on the outcome of B {and vice versa)

*Examples
» Possibility of tossing heads and then tails is % X % = i.
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Conditional Probability

F = “Coming down with a flu”
H = “Have a headache”
P(H)=1/10

P(F) =1/40

P(H|F)=1/2

P(A|B): Fraction of worlds where B is true
where A is also true.

“Headaches are rare and flu is rarer, but if
you’ re coming down with a flu there’ s a
50-50 chance you’ Il have a headache.”




Conditional Probability

P(Headache|Flu): Fraction of flu -infectd worlds where
you also have a headache =

_#worlds with flu and headache

#worlds withu
S —
_areaof Fand Hregion _
F = “Coming down with a flu” area ofH region
H = “Have a headache”
P(H)= 1/10 _P(HNF)
P(F) = 1/40 P(H)

P(H|F)=1/2




Conditional Probability

*Definition of conditional Probability

- P(AIB) = £

*Corollary: The Chain Rule
*P(A|B) = P(A|B)P(B)

*if A, B independent:
*P(A|B) = P(A) xP(B) = P(A|B) = P(4)




Conditional Probability

One day you wake up with a
headache. You think: “Drat! 50% of
flues are associated with

F = “Coming down with a flu”
H = “Have a headache”

P(H)= 1/10

P(F) = 1/40

P(H|F) =1/2

headaches so | must have a 50-50
chance of coming down with a flu”




Bayes Rule

P(A|B) x P(B)
P(4)

P(B|A) =




Using Bayes Rule to Gamble

000 e 'Y X )
The win envelope has one The lose envelope has no
dollar and four beads dollar and three beads

Trivial question: someone draws an envelope at random and offers to sell it to you.
How much should you pay?



Using Bayes Rule to Gamble

000 e 'Y X )
The win envelope has one The lose envelope has no
dollar and four beads dollar and three beads

Interesting question: before deciding, you are allowed to see one bead drawn from the envelope.
Suppose its black: How much should you pay?
Suppose its red: How much should you pay?



Discrete Probability Distributions

*In the discrete case, a probability distribution P on S (and hence on the domain of X) is an
assignment of a non-negative real number P(x) to each x € X (or each valid value of x) such

that:
c0=PX=x)<1
* Y PX =%)

* Example: The Bernoulli distribution with parameter €:

1-9, x=0
'P(X=x)={e, x=1



Continuous Probability Distributions

*Sofar we have only mentioned disrete variables.

*A continuous random variable X can take any value in an interval on the real line orin a region ina
high dimensional space

*X usually corresponds to a real-valued measurements of some property, e.g., length, position...
*It is not possible to talk about the probability of the random variable assuming a particular value:

* PX=x)=0
*|Instead, we talk about the probability of the random variable assuming a value within a given interval,
or half interval:

* P(X € [x1; x2])
* PX< x) = P(X €(—c0, x])



Probability of a continuous random
variable

*The probability of the random variable assuming a value within some given interval from x; to
x, is defined to be the area under the graph of the probability density function, p(x) between
x, and x,.

*Probability Density Function?

- f o p(x)dx
1
*P(X € (x3,%2)) = [ p(x)dx
*It is NOT probability!



Probability Density Function

*What does p(x,) = a mean?

*‘What does p(x;) = a and p(x;) = b mean?

*When a value x is sampled from the distribution with density p(x), you are E times as likely to
find that X is "very close to" x; than that X is "very close to" x,.

*It's something like a histogram with innitely small bar widths.




Famous continuous probability

distributions

Uniform Distribution
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Expectations

* The expected value of some function f(X) of a random variable X that follows a probability
distribution is:

*E[f(X)] = Yx=x P(X = x)f (X = x), ifthe distribution is discrete

* E[f(X)] = _fxp(x) f (x)dx, if the distribution is continuous

» What is the expected value of rolling a dice? {(what is the expected value of function f(x) = x ?

1
P(X=x) = Vx€{1,23,4,56)

1 1 1 1 1 1
E[X]=ZP(X=x)x= EX1+EX2+EX3+EX4+EX5+EX5=3.5

X=x



Expectations

* How far from the mean do you expect to be?

*What is the expected difference between a random quantity and its expected value {(mean)?
*What is the expected valueof f(X) = X —u ?
*Differences from the mean can be either positive or negative, this can be confusing.

*What is the expected squared difference of a random quantity from its expected value?

* E[(X — w?]

*This is called variance 2 of the distribution.



Gaussians

* The distribution is symmetric, and is often
illustrated as a bell-shaped curve.

* Two parameters, (mean) and (standard
deviation), determine the location and shape of
the distribution.

* Very important distribution.

*Why?
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Central Limit Theorem

* If (Xq,X5,...,X,) arei.i.d. (independent and
identically distributed) random variables

* Then define:

N
)_( —_ ZX,_
i=1

*Asn — o
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. P()_() — Gaussian with mean E[(X;)] and
variance Var[X;]/n

* Somewhat a justification for assuming
Gaussian distribution for just about anything
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Mean and variance in Gaussians

* The distribution is symmetric, and is
often illustrated as a bell-shaped
curve.

*u shows the center of the bell.

34.1% 34.1%

0% shows the width of the curve.

*N(0; 1): The normal distribution
with mean 0 and variance 1.

*If X~ N(0; 1), 95% of the the value
of X will be within 20

00 01 02 03 0.4




Learning Gaussians from data

* Suppose we have a series of N i.i.d. observations of the scalar variable X, x =
{x1,%2, ..., XN}

* We know X follows a Gaussian distribution.
» We do not know 2

= Which are the most likely values for g, o given the data
* Which p, % maximizes P(, 0% |xyq, X5, .., Xy) ?

» For which u,a? are the data more likely?

= Which z, 02 maximizes P(xy, %2, -.., Xx|th, 0%) ?

* Which sounds better? Which sounds easier?



Likelihood

* We have X~{x1, X2, ., Xy}

* For which @ = p,062 is {xy, X5, m, Xy} most likely?
* P(Data|y, ) is called Likelthood

* “Find p, 0% st P(xy,%5, ..., Xy, 0%) is maximum”, aka maximize the likelihood
(x1—1)?
* If have X~N(t, 0%) then L(x,) = p(x; |p, 6%) = ﬁe_ 262

Hmie = argmaxyP(xy, Xz, ., Xy |1 67)

6%,, = argmaxzP(xy, %y, .., Xy |1t 62)



Learning MLE

Hmie = argmax#P(xll X2y ueey xNIﬂJ 0-2) =

= argmaxy Hjiv:1 P(xy, %3, ..., Xy |1, 6%) =

N 1 - = -"')z
=argmax, [liz ;=¢ 2

Too hard!!




Learning MLE

Instead, minimize —log Likelihood
Hmie = W‘gmax,;P(xl,xz, ...,xN|y, 0'2) =

= m“gmﬂxﬂ —_— log(n{';i P(x]_prJ "'!xNIaul 0.2)) =

_1?__ (x1—i)2
= argmax, — Xir, log(w_ ) = argmax, Y1, log ( m./_) +3X  log(e™ e ) =

=-argmazx,[Nlog (aﬁ) —3¥ (x;;‘;)Z)]




Learning MLE

2
of-n1og(2)-x( -8l )

Find i such that ™ =0
_ 2 Xi
=N




Learning MLE

2
a[-N log(ﬁﬁ)-zy( (x;%‘z‘) )]

Find i such that ™ =0
N
LL i X
Hmie = U S.L. EVR 0 Hmle = ILV
N 2
2 _ .2 OLL _ 2 (i—tmie)
Omie = 0° S.L 52 0 O-glle — ~




Learning MAP

* Likelihood : P(Data|@)

P(Data|9_)xp(a)
P(Data)

*Bayes Rule: P(@|Data) =

» P(@|Data) « P(Data|8) x P(6)
* Posterior < Likelihood X Prior
* Opmqp = argmaxg P(6|Data) = argmaxy P(Datal\theta) x P(8)

* Bad news: You have to chose a prior



Learning MAP

* You have to chose a prior

* e.g., assume any value between X,,;,, and X,,,. is equally possible for g.

1
Hmap = argmax,, P(Datal®) x P(0) = argmax, P(Datal®) x p—

N
— Zi Xi |
Hmap N

: 2 — L —[x;ﬁi
* But: If you assume gt~ N(it, 05) then p,q, = argmax, P(Datal@) X L

Sample size increases
the denominator and
makes prior less
significant




MLE vs. MAP

* MLE: 8, = argmaxgP(Data|6)

* Choose a value that maximizes the probability of the observed data.

* Easy to overt if dataset is too small.

* MAP : 8., = argmaxyP(8|Data)

* Choose a value that is most probable given observed data and prior belief.
* People with different priors end up with different estimators.

*With uniform prior MAP = MLE.

‘When sample is large, prior is forgotten.



