
HELLENIC REPUBLIC 
UNIVERSITY OF CRETE 

Distributed Computing 
Graduate Course 

Section 1: Introduction - Sychronization 

 

Panagiota Fatourou 
Department of Computer Science 



ΗΥ586 - Panagiota Fatourou 2 

What is a Distributed System 

Definition  
• A collection of individual 

computing devices that can 
communicate with each other. 

 

This definition is very broad (VLSI 
chip, tightly coupled shared 
memory multiprocessor, local-area 
network, Internet) 
 



ΗΥ586 - Panagiota Fatourou 3 

Motivation 

• The major chip manufacturers are 
turning to multi-core architectures 
– multiple processors (cores) 

communicate directly through 
shared hardware caches. 

 

• Exploiting parallelism is currently 
one of the outstanding challenges of 
Computer Systems! 



ΗΥ586 - Panagiota Fatourou 4 

Difficulties Encountered in Achieving Parallelism 

Task  
• On the first day in your new job, your boss asks you to find 

all primes between 1 and 1010. 
• A machine that supports 10 concurrent threads is provided. 
• The machine is rented by the minute. 

The longer the program takes the more it costs! 
 

1st Attempt 
Give each thread an equal share of the input domain. 
 

Is there any problem in this approach? 
• Equal ranges of input does not necessarily produce equal amounts 

of work! 
• Primes do not occur uniformly! 
• It takes more time to check if a large number is a prime than a 

small number! 
 

UNCLEAR 
•  Is the work divided equal?  
• Which threads are allocated the most work? 



ΗΥ586 - Panagiota Fatourou 5 

Difficulties Encountered in Achieving Parallelism 

2nd Attempt 
• Assign each thread one integer at a time. 
 

Is there any problem in this approach? 
• A Shared Counter is required – How do we implement it? 
 1st Effort 
 shared long int count = 0;  
 return count++; 

 

Is this correct for a system with two processes pA, pB? 
 

Code of pA Code of pB 

1.   tmpΑ = count; 

2.   tmpΑ = tmpΑ +1; 

3.   count = tmpΑ;  

1.     tmpB = count; 

2.     tmpB = tmpB +1; 

3.     count = tmpB;  



ΗΥ586 - Panagiota Fatourou 6 

What Could Go Wrong? 

Process pA Process pB 

tmpΑ = count; 

tmpΑ = tmpΑ +1; 

 

 

count = tmpΑ;  

 

 

tmpB = count; 

tmpB = tmpB +1; 

 

count = tmpB;  

 

Time Axis 



ΗΥ586 - Panagiota Fatourou 7 

Even Worse…. 

Process pA Process pB 

tmpΑ = count;         /* tmpA == 0 */ 

 

 

 

 

 

 

tmpΑ = tmpΑ +1; count = tmpΑ; /* count == 1 */ 

 

tmpΑ = count; tmpΑ = tmpΑ +1; count = tmpΑ;            

/* count == 2 */ 

tmpΑ = count; tmpΑ = tmpΑ +1; count = tmpΑ;  

tmpΑ = count; tmpΑ = tmpΑ +1; count = tmpΑ; 

tmpΑ = count; tmpΑ = tmpΑ +1; count = tmpΑ;    

/* count == 5 */ 

 

tmpB = count; tmpB = tmpB +1; count = tmpB;          

/* count == 1 */ 

tmpB = count; tmpB = tmpB +1; count = tmpB; 

tmpB = count; tmpB = tmpB +1; count = tmpB; 

tmpB = count; tmpB = tmpB +1; count = tmpB;          

/* count == 4 */ 

 

tmpB = count;                      /* tmpB == 1 */ 

 

 

 

 

 

 

tmpB = tmpB +1; count = tmpB; 

/* count == 2 */  



ΗΥ586 - Panagiota Fatourou 8 

The Harsh Realities of Parallelization  

Ideal World 
• Upgrading from a uniprocessor to an n-way 

multiprocessor should provide about an n-fold increase 
in computational power. 

 
Practice 
• This has never happened!!!!! 

This is due to the cost of inter-processor 
communication and synchronization. 

 
Example 
• Five friends decide to paint a five room house.  

 

 What happens if one room is twice as big as each of the 
other rooms? 



ΗΥ586 - Panagiota Fatourou 9 

Amdahl’s Law 

Intuition 
• The extent to which we can speed up any complex job is limited 

by how much of the job can be executed sequentially. 
– S: maximum speedup that can be achieved by n concurrent 

processors (ratio between sequential time and parallel time for 
executing a job) 

– p: fraction of job that can be executed in parallel 

• Assume that it takes (normalized) time 1 for a single processor 
to complete the job.  

• Time needed for parallel part = p/n 

• Time needed for sequential part = 1 – p 

• Overall Time = 1-p+p/n 
 

Amdahl’s Law  

1 /

1

p p
S

n 




ΗΥ586 - Panagiota Fatourou 10 

Amdahl’s Law – Painting Example (I) 
Assumption 
• Each small room can be painted in 1 time unit. The sequential 

execution of the painting task requires 6 time units.  
When 5 painters are working concurrently, 5/6 of the work can 
be performed in parallel.  
Thus, parallel execution time = 1-5/6+1/6 = 1/6+1/6 = 2/6 = 1/3 
Thus, S = 1/(1/3) = 3   

 
Important Notice 
 Although we have 5 workers, the speedup we obtain is only 3-

fold!!!! 
 It could be worse: 

– 10 rooms, 10 painters, one room twice as big as each other room. 
– Then, parallel execution time = 1 – 10/11 + 1/11 = 2/11. 
– Speedup = 1/ (2/11) = 11/2 = 5.5!!! 

 

Only 5.5-fold speedup, almost half of what was expected    
And this is so given that > 90% of the work can be parallelized 
and < 10% cannot be parallelized     



ΗΥ586 - Panagiota Fatourou 11 

Amdahl’s Law – Painting Example (II) 

Solution 

• As soon as a painter’s work in a room 
is done, s/he helps others to paint 
the remaining room. 

 

• Substantial communication and 
synchronization is needed!!! 

 
This is a hard task    



ΗΥ586 - Panagiota Fatourou 12 

Course Objectives 
• Understanding the major tools and techniques that 

allow programmers to effectively program the 
parts of the code that require substantial 
communication and synchronization 

• Studying the core ideas behind modern coordination 
paradigms and concurrent data structures 

• Becoming familiar with the basic principles up to 
the best practice engineering techniques of 
concurrent computing 

• Presenting techniques for formally studying the 
progress properties of concurrent algorithms  

• Analyzing the performance of multiprocessor 
algorithms – Introduce a variety of methodologies 
and approaches for reasoning about concurrent 
programs 



ΗΥ586 - Panagiota Fatourou 13 

Characteristics of Concurrent Algorithms 

• Inter-process Communication Mechanism 

• Timing Model 

• Failure Model 

• Studied Problems 
 

 Distributed Systems (DSs) are highly desirable! 

 Putting together a properly functioning DS is notoriously 
difficult.  

 Main difficulties are introduced by three factors: 

• Asynchrony 
– Several processes are executed concurrently at different 

speeds, probably starting their execution at a different point in 
time. 

– Process execution can be halted or delayed in an unpredictable 
way (interrupts, preemptions, cache misses, page faults, etc.). 

• Limited Local Knowledge 

• Failures  



ΗΥ586 - Panagiota Fatourou 14 

Modeling 
Timing Models 
• Asynchronous Model of Computation  

– Processes are executed in arbitrary speeds and with 
arbitrary order. 

• Synchronous Model of Computation  
– Some assumptions are made on the relative timing of 

events.  
 

Failure Models 
• Crash Failures 

– A process may stop its computation at an arbitrary 
point of its execution 

• Byzantine Failures  
– A failed process can behave in an arbitrary way.  



ΗΥ586 - Panagiota Fatourou 15 

Modeling a Shared Memory System (I) 

• There are n processes p1, …, pn, running 
concurrently in the system. 

• Processes communicate by accessing shared 
registers.  

• Each process is modeled as a state machine. 
 

Registers 
• Each register R has a type which specifies the 

following: 
– The values that can be taken on by R 
– The operations that can be executed on R 
– The value to be returned by each operation  
– The new value of the register resulting from 

each operation 

Operations Supported by a Read/Write (RW) RegisterOperations Supported by a Read/Write (RW) Register  
      Read(R):Read(R):  returns the current value of R, leaving R unchangedreturns the current value of R, leaving R unchanged  
      Write(R,v):Write(R,v):  writes v into R and returns ackwrites v into R and returns ack 



ΗΥ586 - Panagiota Fatourou 16 

Modeling a Shared Memory System (II) 

Configurations 
 

In a shared memory system with m registers, a 
configuration C is a vector 

C = (q1,…, qn, r1, …, rm), where:  

• qi is the state of process pi,  i, 1  i  n, and 

• rj is the value of register Rj,  j, 1  j  m 

• In an initial configuration, all processors are in 
their initial states and all registers contain 
initial values. 

 

A configuration describes the distributed 
system at some point in time. 

 

 



ΗΥ586 - Panagiota Fatourou 17 

Modeling a Shared Memory System 
(III) 

Events - Steps 
• An event is a computational step by any 

process. At each computation step by some 
process pi, the following happen atomically: 
– pi chooses a shared variable to access with a 

specific operation, based on pi’s current state; 
– the specified operation is performed on the shared 

variable, and  
– pi’s state changes according to pi’s transition 

function, based on pi’s current state and the value 
returned by the shared memory operation 
performed. 

 



ΗΥ586 - Panagiota Fatourou 18 

Modeling a Shared Memory System (IV) 

• An execution fragment of an algorithm is a (finite or 
infinite) sequence of the following form:  

Ck-1, φk, Ck, φk+1, Ck+1, φk+2, Ck+2, φk+3, … , 
 where each Ck is a configuration and each φk is an event. 

 
• The application of φκ to Ck-1 results in Ck, as follows: 

– Suppose φk = i (i.e., φk is a computation step by process pi) and 
pi’s state in Ck indicates that shared register Rj is to be 
accessed.  

– Ck is the result of changing Ck-1 in accordance with pi’s 
computation step acting on pi’s state in Ck-1 and the value of 
register Rj in Ck-1. 
The only changes are to pi’s state and the value of Rj. 



ΗΥ586 - Panagiota Fatourou 19 

Modeling a Shared Memory System (V) 

• An execution is an execution fragment 
starting from an initial configuration C0. 

 

• The schedule of an execution is the 
sequence of steps φ1, φ2, φ3, … taken in 
the execution. 

 

 



ΗΥ586 - Panagiota Fatourou 20 

Correctness & Progress Properties 
 

An execution must satisfy a variety of 
properties 

• Safety Properties 
– A condition that must hold in every finite prefix of 

the sequence 
– It states that nothing bad has happened yet! 

• Liveness Propoerties 
– It must hold a certain number of times (probably 

an infinite number of times) 
– It states that eventually something good must 

happen! 
 

• An admissible execution satisfies all required 
safety and liveness properties.  
 



ΗΥ586 - Panagiota Fatourou 21 

Modeling a Shared Memory System (VI) 

Fairness 
• In an infinite execution, each process should be 

given the chance to execute an infinite number 
of steps. Each time the process is given the 
chance, it may execute one more step or do 
nothing depending on its algorithm and its 
current state. 

 
• In a finite execution, there should not be any 

processes that are interested in performing 
more steps. 



ΗΥ586 - Panagiota Fatourou 22 

Modeling a Shared Memory System –
Complexity Measures 

Space Complexity 
• Amount of shared memory needed 

– Measured in number of shared registers/objects used; 
the sizes of these registers/object are also of interest. 

 

Step (or Time) Complexity 
• Number of steps performed by each process to execute its 

algorithm. Are they finite, infinite, bounded? 
– Problem 

• Contention: the number of processors concurrently 
accessing the same variable. 

• Deriving meaningful and precise definitions of contention on 
shared memory systems is the subject of current research!!!! 
 

 

Number of Failures 



ΗΥ586 - Panagiota Fatourou 23 

Bibliography 

These slides are based on material that appears 
in the following books: 

• M. Herlihy and N. Shavit, The Art of 
Multiprocessor Programming, Morgan 
Kauffman, 2008 (Chapter 1) 

• H. Attiya & J. Welch, Distributed Computing: 
Fundamentals, Simulations and Advanced 
Topics, Morgan Kaufmann, 1998 (Chapter 1) 

• N. Lynch, Distributed Algorithms, Morgan 
Kaufmann, 1996 (Chapters 1 & 9).  



End of Section 



Financing 
• The present educational material has been developed as part of 

the educational work of the instructor. 

• The project “Open Academic Courses of the University of 
Crete” has only financed the reform of the educational material.  

• The project is implemented under the operational program 
“Education and Lifelong Learning” and funded by the European 
Union (European Social Fund) and National Resources  



Notes 



Licensing Note 
• The current material is available under the Creative Commons 

Attribution-NonCommercial-NoDerivs 4.0[1] International license or 
later International Edition.  The individual works of third parties are 
excluded, e.g. photographs, diagrams etc. They are contained therein and 
covered under their conditions of use in the section «Use of Third 
Parties Work Note».  

 

 

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/  
 

• As Non-Commercial is defined the use that: 

 Does not involve direct or indirect financial benefits from the use of the 
work for the distributor of the work and the license holder  

 Does not include financial transaction as a condition for  the use or access  to 
the work  

 Does not confer to the distributor and license holder of the work  indirect 
financial benefit (e.g. advertisements) from the viewing of the work on 
website  

 

• The copyright holder may give to the license holder a separate license to 
use the work for commercial use, if requested.  

 



Reference Note 

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota 
Fatourou. «Distributed Computing. Section 1: Introduction - 
Sychronization». Edition: 1.0. Heraklion 2015. Available at: 
https://opencourses.uoc.gr/courses/course/view.php?id=359. 

 



Preservation Notices 

Any reproduction or adaptation of the material should 
include:  

• the Reference  Note  

• the Licensing Note  

• the declaration of Notices Preservation  

• the Use of Third Parties Work Note (if is available)  

together with the accompanied URLs. 

 


