
HELLENIC REPUBLIC
UNIVERSITY OF CRETE

Distributed Computing
Graduate Course

Section 2: Mutual Exclusion

Panagiota Fatourou
Department of Computer Science

ΗΥ586 - Panagiota Fatourou 2

The Mutual Exclusion Problem

• The problem concerns a group of processors which
occasionally need access to some resource that cannot
be used simultaneously by more than a single processor.

• Examples of what the resource may be:
– The printer or any other output device
– A record of a shared database or a shared data structure, etc.

• Each processor may need to execute a code segment

called critical section, such that at any time:
– at most one processor is in the critical section
– If one or more processors try to enter the critical section,

then one of them eventually succeeds as long as no processor
stays in the critical section forever.

ΗΥ586 - Panagiota Fatourou 3

The Mutual Exclusion Problem

Entry (Trying) Section: the code
executed in preparation for entering
the critical section

Critical Section: the code to be
protected from concurrent
execution

Exit Section: the code executed upon leaving the critical section

Remainder Section: the rest of the code

Each process cycles through these sections in the order:
remainder, entry, critical, exit.

 The problem is to design the entry and exit code in a way that
guarantees that the mutual exclusion and deadlock-freedom
properties are satisfied.

ΗΥ586 - Panagiota Fatourou 4

Mutual Exclusion Algorithms
Admissible Executions
• An execution is admissible if for every process pi, pi either takes

an infinite number of steps or pi ends in the remainder section.

• An algorithm solves the mutual exclusion problem if the
following hold:
– Mutual Exclusion
 In every configuration of every execution, at most one process

is in the critical section.
– No Deadlock
 In every execution, if some process is in the entry section in

some configuration, then there is a later configuration in which
some process is in the critical section.

• Stronger Progress Property
– No lockout (starvation-free)
 In every execution, if some processor is in the entry section in

a configuration, then there is a later configuration in which that
same processor is in the critical section.

ΗΥ586 - Panagiota Fatourou 5

Mutual Exclusion Algorithms

Assumptions

• Any variable that is accessed in the entry
or the exit section of the algorithm
cannot be accessed in any of the other
two sections.

• No process stays in the critical section
forever.

• The exit section consists of a finite
number of steps.

ΗΥ586 - Panagiota Fatourou 6

ME Algorithms that use RW Registers

Algorithms
• Algorithms for two processes
• An algorithm that guarantees mutual exclusion

and no lockout but uses O(n) registers of
unbounded size.

• An algorithm that guarantees mutual exclusion
and no lockout using O(n) registers of bounded
size.

Lower Bounds
• Any algorithm that provides mutual exclusion,

even with the weak property of no deadlock,
must use n distinct RW registers, regardless of
the size of these registers.

ΗΥ586 - Panagiota Fatourou 7

Does it work?

Proposed solution I

Process p0

while (true} {

 while (turn = 1) noop; //entry

 critical section
 turn = 1 // exit

 remainder section

}

Process p1

while (true} {

 while (turn = 0) noop; //entry

 critical section
 turn = 0 // exit

 remainder section

}

0/1

turn
mutual exclusion
 deadlock-freedom

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent
Programming

ΗΥ586 - Panagiota Fatourou 8

Proposed Solution II
Process p0

while (TRUE) {

 flag[0] = true

 while (flag[1]) {skip}

 critical section

 flag[0] = false
 remainder section

}

Process p1

while (TRUE) {

 flag[1] = true

 while (flag[0]) {skip}

 critical section

 flag[1] = false

 remainder section

}

false

flag

false

0

1

Does it work?

mutual exclusion
 deadlock-freedom

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming

ΗΥ586 - Panagiota Fatourou 9

Proposed solution III
Process p0

while (TRUE) {

 while (flag[1]) {skip}

 flag[0] = true

 critical section

 flag[0] = false

 remainder section

}

Process p1

while (TRUE) {

 while (flag[0]) {skip}

 flag[1] = true

 critical section

 flag[1] = false
 remainder section

}

false

flag

false

0

1

Does it work?

 mutual exclusion
Deadlock-freedom

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming

ΗΥ586 - Panagiota Fatourou 10

Peterson’s algorithm

Process p0

While (TRUE) {
 flag[0] = true
 turn = 1
 while (flag[1] and turn == 1)
 {skip}
 critical section
 flag[0] = false
 remainder section
}

Process p1

While (TRUE) {
 flag[1] = true
 turn = 0
 while (flag[0] and turn == 0)
 {skip}
 critical section
 flag[1] = false
 remainder section
}

false

flag

false

0

1

0/1 turn

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming

ΗΥ586 - Panagiota Fatourou 11

ME Algorithm using Single-Writer binary RW
registers

want[0]: SW register written by p0 and read by p1 with initial value
0; it is set to 1 to identify that process p0 wants to enter the
critical section
want[1]: symmetric to want[0]

Process p0
while (TRUE) {

3. want[0] = 1;

6. wait until (want[1] == 0);
 critical section;
8. want[0] = 0;
 remainder section;
}

Process p1
while (TRUE) {
1. want[1] = 0;
2. wait until (want[0] == 0);
3. want[1] = 1;
4. if (want[0] == 1) then
5. goto line 1

 critical section;
8. want[1] = 0;
 remainder section;
}

Is this correct?
How can we prove it?

ΗΥ586 - Panagiota Fatourou 12

Proving Correctness
Theorem
• The algorithm ensures the mutual exclusion property.

Sketch of Proof
• Assume, by contradiction, that at some configuration C, both processes

are in the critical section
 want[0] = want[1] = 1.
• Case 1: Last write of p0 to want[0] follows the last write of p1 to want[1].

• Case 2: Last write of p1 to want[1] follows the last write of p0 to want[0].

want[1] = 1 want[0] = 1 both processes in
critical section

p0 executes line
6 and does not
enter the CS

want[0] = 1 want[1] = 1 p1 executes line
5 and does not
enter the CS

both processes in
critical section

Contradiction!

Contradiction!

 The algorithm ensures the no-lockout property.

 The algorithm does not guarantee lockout freedom.

ΗΥ586 - Panagiota Fatourou 13

ME Algorithm using Single-Writer binary RW
registers – Symmetric Version

Code for process pi, i = 0, 1

while (TRUE) {
1: want[i] = 0;
2: wait until ((want[1-i] == 0) OR (priority == i));
3: want[i] = 1;
4: if (priority == 1-i) then {
5: if (want[1-i] == 1) then
 goto line 1; }
6: else wait until (want[1-i] == 0);
 critical section;
7: priority = 1-i;
8: want[i] = 0;
 remainder section;
}

ΗΥ586 - Panagiota Fatourou 14

Proving the No-Deadlock Property

Theorem
• The algorithm ensures the no-deadlock property.

Sketch of Proof
• Suppose in contradiction that from some configuration on at least

one process is forever in the entry section and no process enters
the critical section.

• Case 1: Both processes are forever in the entry section.
The value of Priority does not change
Assume, wlog, that Priority = 0 (the case where Priority = 1 is
symmetric).
One of the two processes cannot be stuck forever in the critical
section!
A contradiction!!!

• Case 2: Just one process is forever in the critical section (wlog, assume
this holds for p0) .

Critical and exit sections are bounded after some point want[1] = 0 forever.
Process p0 does not loop forever in the entry section! A contradiction!!!

ΗΥ586 - Panagiota Fatourou 15

Proving Lockout Freedom
Theorem
• The algorithm ensures lockout freedom.

Sketch of Proof
• Assume, by way of contradiction, that some process

(e.g., p0) is starved from some configuration on p0 is
forever in the entry section.

• Case 1: Suppose p1 executes line 7 at some later point.
Priority = 0 forever after.
p0 is stuck executing line 6
Thus, want[1] == 1 each time p0 checks the condition of line 6.
This is a contradiction!

• Case 2: p1 never executes line 7 at any later point.
Since no-deadlock holds, p1 is forever in the remainder section.
Thus, want[1] == 0 henceforth.
p0 cannot be stuck in the entry section! A contradiction!!!

ΗΥ586 - Panagiota Fatourou 16

ME Algorithms for many processes

 Processes compete
pairwise, using a two-
process algorithm.

 The pairwise competitions
are arranged in a complete
binary tree.

 The tree is called the
tournament tree.

 Each process begins at a specific leaf of the tree

 At each level, the winner moves up to the next higher level, and
competes with the winner of the competition on the other side.

 The process on the left side plays the role of p0, while the
process on the right side plays the role of p1.

 The process that wins at the root enters the critical section.

ΗΥ586 - Panagiota Fatourou 17

ME Algorithms for many processes
procedure Node(v: integer, side: 0..1) {

 1: wantv[side] = 0;

2: wait until ((wantv[1-side] == 0)
 OR (priorityv == side));
3: wantv[side] = 1;
4: if (priorityv == 1-side) then {
5: if (wantv[1-side] == 1) then
 goto line 1; }
6: else wait until (wantv[1-side] == 0);
8: if (v == 1) then

 9: critical section;

10: else Node(v/2, v%2)

11: priorityv = 1-side;
12: wantv[side] = 0;

}

 Tree nodes are numbered. The
number of the root is 1. The number of
the left child node of a node v is 2v, and
the number of the right child of v is
2v+1.

 wantv[0], wantv[1], priorityv: variables
associated to node v for the instance of
2-ME that is executed at this node.

 Process pi begins by calling Node(2k+i/2, i % 2), where k = logn -1.

ΗΥ586 - Panagiota Fatourou 18

Tournament ME Algorithm: Correctness Proof

• Projection of an execution of the tree algorithm onto some node v
We only consider steps that are taken while executing the code in Node(v,0) and

Node(v,1)

• We will show the following:

• For each node v, the projection of any execution of the tree algorithm
onto v is an admissible execution of the symmetric mutual exclusion
algorithm for 2 processes, if we view every process that executes
Node(v,0) as p0 and every process that executes Νode(v,1) as p1.

ΗΥ586 - Panagiota Fatourou 19

Tournament ME Algorithm: Correctness Proof
More formally:

• Fix an execution a = C0 φ1 C1 φ2 C2 … of the tournament tree algorithm.

• Let av be the subsequence of alternating configurations and events

D0 π1 D1 π2 D2 …

 defined inductively as follows:

 Base Case: D0 is the initial configuration of the 2 –processor algorithm

 Induction Hypothesis: Assume that av has been defined up to configuration
Di-1.

 Induction Step: Let φj = k be the i-th event of a that is a step in Node(v,0) or
Node(v,1) (suppose, wlog, that φj is a step in Node(v,0)).

• Let πi = 0 (i.e., p0 takes this step) and let Di be a configuration such that:

o The variables’ states are those of the variables of node v in Cj

o The state of p1 is the same as in Di-1

o The state of p0 is the same as the state of pk in Cj except for the id being
replaced with 0.

ΗΥ586 - Panagiota Fatourou 20

Process p4 Process p7

procedure Node(6, 0) {
 1: want6[0] = 0; φ1

2: wait until ((want6[1] == 0) φ2
 OR (priority6 == 0)); φ3
3: want6[0] = 1; φ4
4: if (priority6 == 1) then { φ5
5: if (want6[1] == 1) then goto line 1; } φ6
6: else wait until (want6[1] == 0); φ7
8: if (6 == 1) then critical section;

 else Node(3, 0)

 want3[0] = 0; φ8

wait until ((want3[1] == 0) OR (priority3 == 0));
 φ9 φ10

want3[0] = 1; φ14
if (priority3 == 1) then { φ15
 if (want3[1] == 1) then goto line 1; } φ16
else wait until (want3[1] == 0); φ17
if (3 == 1) then critical section;

else Node(1, 1)

 want1[1] = 0; φ25

 wait until ((want1[0] == 0) OR (priority1 == 0));
 φ26 φ27

 want1[1] = 1; φ30
 if (priority1 == 1) then { φ31
 if (want3[1] == 1) then goto line 1; } φ32
 else wait until (want3[1] == 0); φ33
 if (1 == 1) then critical section;

procedure Node(7,1) {

 1: want7[1] = 0; φ11

2: wait until ((want7[0] == 0) OR (priority7 == 1));
 φ12 φ13

3: want7[1] = 1; φ18
4: if (priority7 == 0) then { φ19
5: if (want7[0] == 1) then goto line 1; } φ20
6: else wait until (want7[0] == 0); φ21
8: if (7 == 1) then critical section;

 else Node(3, 1)
 want3[1] = 0; φ22

wait until ((want3[0] == 0) OR (priority3 == 1));
 φ23 φ24

 wait until ((want3[0] == 0) OR (priority3 == 1));
 φ28 φ29

a = C0, φ1, C1, φ2, C2, φ3, C3, φ4, C4, φ5, C5, φ6, C6,
φ7, C7, φ8, C8, φ9, C9, φ10, C10, φ11, C11, φ12, C12,
φ13, C13, φ14, C14, φ15, C15, φ16, C16, φ17, C17, φ18,
C18, φ19, C19, φ20, C20, φ21, C21, φ22, C22, φ23,
C23, φ24, C24, φ25, C25, φ26, C26, φ27, C27, φ28,
C28, φ29, C29, φ31, C30, φ31, C31, φ32, C32, φ33,
C33 …

Orange events are steps of Node(3,0) or Node(3,1).

ΗΥ586 - Panagiota Fatourou 21

Tournament ME: Example Execution
a = C0, φ1, C1, φ2, C2, φ3, C3, φ4, C4, φ5, C5, φ6, C6, φ7, C7, φ8, C8, φ9, C9, φ10, C10, φ11, C11, φ12, C12, φ13,
C13, φ14, C14, φ15, C15, φ16, C16, φ17, C17, φ18, C18, φ19, C19, φ20, C20, φ21, C21, φ22, C22, φ23, C23, φ24,
C24, φ25, C25, φ26, C26, φ27, C27, φ28, C28, φ29, C29, φ31, C30, φ31, C31, φ32, C32, φ33, C33 …

a3 = D0, π1 , D1, π2, D2, π3, D3, π4, D4, π5, D5, π6, D6, π7, D7, π8, D8, π9, D9, π10, D10, π11, D11, π12, D12

ΗΥ586 - Panagiota Fatourou 22

Tournament ME Algorithm: Correctness Proof
Lemma

For every v, av is an execution of the 2-process algorithm.

Proof

• The code of Νode(v,i) and the code of the 2-process algorithm for pi, i = 0,1, are
the same.

• The only thing to check is that only one process performs instructions of
Node(v,i) at a time. We prove this by induction on the level of v, starting at the
leaves.

 Base Case: It holds by construction.

 Induction Hypothesis: Let v be any internal node of the tournament tree.

 Induction Step: We prove the claim for v.

– If a process executes instructions of, e.g., Node(v,0), then it is in the critical
section for v’s left child.

– By induction hypothesis and the fact that the 2-process algorithm guarantees
mutual exclusion, only one process at a time is in the critical section for v’s
left child. -> The claim follows.

– Similarly, only one process at a time executes instructions of Node(v,1).

ΗΥ586 - Panagiota Fatourou 23

Tournament ME Algorithm: Correctness Proof

Lemma

• For all v, if a is an admissible execution of the tournament algorithm,
then av is an admissible execution of the 2-process algorithm.

Proof

• We prove that in av no process stays in the critical section forever.

• The proof is performed by induction on the level of v, starting from the
root.

Theorem

• The Tournament Algorithm provides mutual exclusion.

Proof

• The restriction of any execution to the root of the tree is an admissible
execution of the 2-process algorithm.

• Since this algorithm provides mutual exclusion, the Tournament
algorithm also provides mutual exclusion.

ΗΥ586 - Panagiota Fatourou 24

The Bakery Algorithm
for each i, 0 ≤i ≤ n-1:
 Choosing[i]: it has the value TRUE as long as pi is choosing a number
 Number[i]: the number chosen by pi

Code for process pi, 0 ≤i ≤ n-1

Initially, Number[i] = 0, και
 Choosing[i] = FALSE, for each i, 0 ≤i ≤ n-1

Choosing[i] = TRUE;
Number[i] = max{Number[0], …, Number[n-1]}+1;
Choosing[i] = FALSE;
for j = 0 to n-1, j ≠ i, do
 wait until Choosing[j] == FALSE;
 wait until ((Number[j] == 0) OR ((Number[j], j) > (Number[i], i)));

critical section;

Number[i] = 0;

remainder section;

ΗΥ586 - Panagiota Fatourou 25

The Bakery Algorithm

Lemma

• In every configuration C of any execution a, if pi is in the critical
section, and for some k ≠ i, Number[k] ≠ 0, then
(Number[k],k) > (Number[i],i).

Sketch of Proof

• Number[i] > 0

• pi has finished the execution of the for loop (in particular, the 2nd
wait statement for j = k).

• Case 1: pi read that Number[k] == 0

• Case 2: pi read (Number[k],k) > (Number[i],i)

Theorem

• The Bakery algorithm ensures the mutual exclusion property.

ΗΥ586 - Panagiota Fatourou 26

The Bakery Algorithm
Theorem

• The Bakery algorithm provides no lockout.

Sketch of proof

• Assume, by the way of contradiction, that there is a starved process.
• All processes wishing to enter the critical section eventually finish

choosing a number.
• Let pj be the process with the smallest (Number[j],j) that is starved.
• All processes entering the critical section after pj has chosen its

number will choose greater numbers, and therefore will not enter the
critical section before pj.

• Each process pk with Number[k] < Number[j] will enter the critical
section and exit it.

• Then, pj will pass all tests in the for loop and enter the critical section.

Space Complexity

• The Bakery Algorithm uses 2n single-writer RW registers. The n
Choosing[j] variables are binary, while the n Number[j] variables
are unbounded, 0 ≤j ≤ n-1.

ΗΥ586 - Panagiota Fatourou 27

Bakery Algorithm versus

Properties of the Bakery Algorithm

• The Bakery Algorithm satisfies mutual exclusion &
FIFO.

• The size of number[i] is unbounded.

Bakery (FIFO, unbounded)

The Black-White Bakery Algorithm

FIFO
Bounded space
+ one bit

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent
Programming

ΗΥ586 - Panagiota Fatourou 28

The Black-White Bakery Algorithm
choosing[i] = true;
mycolor[i] = color;
number[i] = 1 + max{number[j] | (1 j n) (mycolor[j] = mycolor[i])};
choosing[i] = false;
for j = 0 to n {
 await (choosing[j] == false);
 if (mycolor[j] == mycolor[i])
 then await (number[j] == 0) (number[j],j) (number[i],i)
 (mycolor[j] mycolor[i]);
 else await (number[j] == 0) (mycolor[i] color)
 (mycolor[j] == mycolor[i]);
}
critical section;
if (mycolor[i] == black) then color = white;
else color = black;
number[i] = 0;

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent
Programming

ΗΥ586 - Panagiota Fatourou 29

Tight space bounds for mutual
exclusion using atomic registers

• All mutual exclusion algorithms presented
so far use at least n shared r/w registers.
This is not an accident!
Any mutual exclusion algorithm using only
shared read-write registers must use at
least n such registers.

• This is so:
– even if we require the basic conditions –

mutual exclusion and progress, and
– regardless of the size of the registers.

ΗΥ586 - Panagiota Fatourou 30

Tight space bounds for mutual
exclusion using r/w registers – Useful Definitions

• A configuration C is called idle (or inactive) if no process is in the entry,
critical or exit section at C.

• A process p covers some register R at some configuration C, if at its next
step, p will perform a write into R, overwriting whatever was written in R
before.

• For any k, 1 ≤ k ≤ n, we say that a configuration C is k-reachable from
another configuraion C’ if there is an execution fragment starting from C
and ending at C’ which contains steps only of processes p0, …, pk-1.

• An execution fragment a is called p-only if p is the only process taking
steps in a. We say that a is S-only (where S is a set of processes) if only
processes belonging to S take steps in a.

C a

all processes are in the
remainder section

C a

p’s first step after C is performed
just before C’ and it is a write into R

C’

C

a

only p takes steps in a’

C’

a’

 p-only execution fragment

k-reachable from
C

only pp00, …, , …, ppkk--11 take stepstake steps

ΗΥ586 - Panagiota Fatourou 31

Lower Bound - Useful Definitions
• The schedule of an execution a is the sequence of

process indices that take steps in a (in the same order
as in a).

• Example
– a = C0, i1, C1, i2, C2, i3, …
– σ(a) = i1, i2, i3, …

• A configuration C and a schedule σ uniquely determine
an execution fragment which we denote by exec(C,σ).

• For each configuration C, let mem(C) = (r0, …, rm-1) be
the vector of register values in C

• A configuration C is similar with or indistinguishable
from some other configuration C’ to some process set S,
if each process of S is in the same state at C and C’ and
mem(C) = mem(C’).

If C is similar with C’ to S, we write C S C’.

ΗΥ586 - Panagiota Fatourou 32

Lower Bound – Simple Facts

• Lemma 1
Suppose that C is a reachable idle configuration and let
pi be any process. Then, there is an execution
fragment starting from C and involving steps of
process pi only, in which pi enters the critical section.

• Lemma 2
Suppose that C and C’ are reachable configurations
that are indistinguishable to some process pi and
suppose that C’ is an idle configuration. Then, there is
an execution fragment starting from C and involving
steps of process pi only, in which pi enters the critical
section.

ΗΥ586 - Panagiota Fatourou 33

Lower Bound – Simple Facts

• Lemma 3

Suppose that C is a reachable configuration where some
process pi is in the remainder section. Consider an
execution fragment α1 starting from C such that (1) α1
involves steps of pi only and (2) pi is in the critical section in
the final configuration of α1. Then, α1 contains a write by pi
to some shared register.

• Proof

 α1
C

pi is in the
critical
section

pi is in the
remainder

section

C’

α2: execution fragment
not containing steps by pi

some process pj pi is in
the critical section
(by the progress
condition)

C ~j C’, j i

exec(C’, σ(α2))

pi and pj are in the
critical section.
A contradiction!

C = <q0, …, qi, …, qn-1, mem(C)>

C’ = <q0, …, q’i, …, qn-1, mem(C)>

ΗΥ586 - Panagiota Fatourou 34

Lower Bound
Definition
• A register is called single-writer if it can be written by only

one process.

Theorem 1 (Lower Bound for Single-Writer Multi-Reader R/W
Registers)

• If algorithm A solves the mutual exclusion problem for n > 1
processes, using only single-writer r/w shared registers, then
A must use at least n shared registers.

Proof
• Immediate from Lemma 3

Theorem 2 (Lower Bound for Multi-Writer R/W Registers)
• If algorithm A solves the mutual exclusion problem for n > 1

processes, using only r/w shared registers, then A must use at
least n shared registers.

ΗΥ586 - Panagiota Fatourou 35

Lower Bound

Lemma 4 (Generalized Version of Lemma 3)

• Let C be a reachable configuration in which process pi is in
the remainder section. Consider an execution fragment α1
starting from C such that (1) α1 involves steps of pi only and
(2) pi is in the critical section in the final configuration of α1.
Then, α1 contains a write by pi to some shared register that
is not covered by any other process in C.

Proof

Left as an exercise! (for Wednesday, 10/10/12)

ΗΥ586 - Panagiota Fatourou 36

Lower Bound - Two processes

Theorem 2.1 (Special Case: just two processes)
• There is no algorithm that solves the mutual exclusion

problem for two processes using only one R/W shared
register.

Proof
Assume, by contradiction, that A is such an algorithm.

Let x be the unique shared r/w register that it uses.

Denote by C0 the initial state of the algorithm.

We construct an execution α that violates mutual

exclusion!

ΗΥ586 - Panagiota Fatourou 37

Lower Bound - Two processes
C0 C C’

p0-only p0-only

process p0
covers x

process p0 is in
the critical
section C1

p1-only process p1 is in the
critical section

C0

a0 a0’

a1

C0 C

p0-only

process p0
covers x

a0

process p0
covers x

process p0 is in
the critical
section C1

p1-only

C0 a1

C’1

p1-only

process p1 is in the
critical section

σ(a1)
C C’’

p0-only

both processes are
in the critical
section

σ(a0’)

ΗΥ586 - Panagiota Fatourou 38

Lower Bound - Three processes

Theorem 2.2 (Special Case: three processes)
• There is no algorithm that solves the mutual exclusion problem for

three processes using only two R/W shared register.

Proof
• Assume, by contradiction, that A is such an algorithm.
• Let x, y be the shared r/w registers that it uses.
• We construct an execution α that violates mutual exclusion!

• Strategy
1. Starting from C0, we will maneuver processes p0 and p1 to a point

where each covers one of the two variables x and y. Moreover, the
resulting configuration C’ will be indistinguishable to process p2 from
some reachable idle state.

2. We run process p2 on its own from C’ until it reaches the critical
section.

3. We let each of processes p0 and p1 take a step. Since each covers one
of the two variables, they can eliminate all traces of process p2’s
execution.

4. Then, we let p0 and p1 continue taking steps until one of them enters
the critical section.

5. At this point we have two processes in the critical section, which is a
contradiction!

ΗΥ586 - Panagiota Fatourou 39

Lower Bound - Three processes
How can we construct an execution such that at its final configuration C2
processes p0 and p1 cover both registers x and y, yet C’ is indistinguishable to
an idle configuration to p2?

In two out of the three configurations S1, S2, S3, process p0 covers the same
register. Wlog, assume that in S1 and S3, p0 covers register x. Let S1’ = C0.

If we run p1 alone starting from S1, p1 will enter its critical section since S1
1

S0’.
By Lemma 4, in this execution, p1 writes to y.

p0 covers some variable
for the first time while
executing the entry
section

p0 covers some variable for
the first time while
executing the current entry
section

p0 covers some variable for
the first time while
executing the current entry
section

a0 (p0-only) a1 (p0-only) a2 (p0-only)

S0
’ S1 S3 S2

initial configuration

S1
’ S2

’

first idle config after
S1

first idle config after
S2

p0 in CS p0 in CS

ΗΥ586 - Panagiota Fatourou 40

Lower Bound - Three processes

C’ is the configuration at which (1) p0 and p1 cover x and y, respectively, and
(2) C’ is indistinguishable from an idle reachable configuration (S2

’) to p2.

We now apply steps 2,3,4 and 5 of our strategy to derive a contradiction!

a0 (p0-only)

S0
’ S1 S3 S2

S1
’ S2

’

p0 covers x
a3: p1-only

S4

p0 covers x
p1 covers y
S1 ~0 S4

a1 (p0-only) a2 (p0-only)

σ(a1): p0-only
σ(a2): p0- only

p0 covers x
p1 covers y
C’

 ~0 S3

C’ ~1 S4

C’ ~2 S2
’

idle config idle config

C’

ΗΥ586 - Panagiota Fatourou 41

Lower Bound – The General Case

Lemma 5
Suppose A solves the mutual exclusion problem for
n > 1 processes using exactly n-1 r/w shared
registers. Let C be any reachable idle configuration.
Suppose 1 k n-1. Then, there are two
configurations C’ and C’’, each k-reachable from C,
satisfying the following properties:
1. k distinct registers are covered by processes
 p0, …, pk-1 in C’,
2. C’’ is an idle configuraton
3. C’ ~i C’’, for all i, k i n-1

ΗΥ586 - Panagiota Fatourou 42

Lower Bound – The General Case

Proof: By induction on k.
Base Case: We run process p0 alone until it first covers a shared

register. Let C’ be the resulting configuration and C’’ = C0. Then,
all properties hold.

Induction Step: Natural generalization of the proof of Theorem
2.2, where similar arguments as those for proving the first step
of the employed strategy are used.

Proof of Theorem 2:
• By Lemma 5, there are two configurations C’ and C’’, each (n-1)-

reachable from C0, such that:
– all n-1 shared r/w registers are covered by processrs p0, ..., pn-2 in

C’
– C’’ is an idle configuration
– C’ n-1 C’’.

• There exists an (n-1)-only execution fragment α from C’ in which
pn-1 ends up in the critical section

• In α, pn-1 must write into some register which is not covered in C’
• However, all n-1 are covered in C’. This is a contradiction!

ΗΥ586 - Panagiota Fatourou 43

A Tight Upper Bound - The One-Bit Algorithm

repeat {
 b[i] = true; j = 1;
 while (b[i] == true) and (j < i) {
 if (b[j] == true) {
 b[i] = false; await (b[j] ==false);
 }
 j = j+1
 }
}
until (b[i] == true);
for (j = i+1 to n)
 await (b[j] == false);
critical section
b[i] = false;

Properties of the OneProperties of the One--Bit AlgorithmBit Algorithm
• Satisfies mutual exclusion and deadlock-freedom
• Starvation is possible
• It is not symmetric
• It uses only n shared bits and hence it is space optimal

Code of process pi , i {1 ,..., n}

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming

ΗΥ586 - Panagiota Fatourou 44

Bibliography

These slides are based on material that appears
in the following books:

• H. Attiya & J. Welch, Distributed Computing:
Fundamentals, Simulations and Advanced
Topics, Morgan Kaufmann, 1998 (Chapter 4)

• G. Taubenfeld, Synchronization Algorithms
and Concurrent Programming, Pearson /
Prentice Hall, 2006 (Chapter 2)

• N. Lynch, Distributed Algorithms, Morgan
Kaufmann, 1996 (Chapter 10).

End of Section

Financing
• The present educational material has been developed as part of

the educational work of the instructor.

• The project “Open Academic Courses of the University of
Crete” has only financed the reform of the educational material.

• The project is implemented under the operational program
“Education and Lifelong Learning” and funded by the European
Union (European Social Fund) and National Resources

Notes

Licensing Note
• The current material is available under the Creative Commons

Attribution-NonCommercial-NoDerivs 4.0[1] International license or
later International Edition. The individual works of third parties are
excluded, e.g. photographs, diagrams etc. They are contained therein and
covered under their conditions of use in the section «Use of Third
Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

• As Non-Commercial is defined the use that:

 Does not involve direct or indirect financial benefits from the use of the
work for the distributor of the work and the license holder

 Does not include financial transaction as a condition for the use or access to
the work

 Does not confer to the distributor and license holder of the work indirect
financial benefit (e.g. advertisements) from the viewing of the work on
website

• The copyright holder may give to the license holder a separate license to
use the work for commercial use, if requested.

Reference Note

Copyright University of Crete , Panagiota Fatourou 2015. Panagiota
Fatourou. «Distributed Computing. Section 2: Mutual Exclusion».
Edition: 1.0. Heraklion 2015. Available at:
https://opencourses.uoc.gr/courses/course/view.php?id=359.

Preservation Notices

Any reproduction or adaptation of the material should
include:

• the Reference Note

• the Licensing Note

• the declaration of Notices Preservation

• the Use of Third Parties Work Note (if is available)

together with the accompanied URLs.

