Distributed Computing Graduate Course Section 2: Mutual Exclusion

Panagiota Fatourou
Department of Computer Science

The Mutual Exclusion Problem

- The problem concerns a group of processors which occasionally need access to some resource that cannot be used simultaneously by more than a single processor.
- Examples of what the resource may be:
- The printer or any other output device
- A record of a shared database or a shared data structure, etc.
- Each processor may need to execute a code segment called critical section, such that at any time:
- at most one processor is in the critical section
- If one or more processors try to enter the critical section, then one of them eventually succeeds as long as no processor stays in the critical section forever.

The Mutual Exclusion Problem

Entry (Trying) Section: the code executed in preparation for entering the critical section

Critical Section: the code to be protected from concurrent
 execution

Exit Section: the code executed upon leaving the critical section Remainder Section: the rest of the code

Each process cycles through these sections in the order: remainder, entry, critical, exit.

> The problem is to design the entry and exit code in a way that guarantees that the mutual exclusion and deadlock-freedom properties are satisfied.

Mutual Exclusion Algorithms

Admissible Executions

- An execution is admissible if for every process p_{i}, p_{i} either takes an infinite number of steps or p_{i} ends in the remainder section.
- An algorithm solves the mutual exclusion problem if the following hold:
- Mutual Exclusion

In every configuration of every execution, at most one process is in the critical section.

- No Deadlock

In every execution, if some process is in the entry section in some configuration, then there is a later configuration in which some process is in the critical section.

Stronger Progress Property

- No lockout (starvation-free)

In every execution, if some processor is in the entry section in a configuration, then there is a later configuration in which that same processor is in the critical section.

Mutual Exclusion Algorithms

Assumptions

- Any variable that is accessed in the entry or the exit section of the algorithm cannot be accessed in any of the other two sections.
- No process stays in the critical section forever.
- The exit section consists of a finite number of steps.

ME Algorithms that use RW Registers

Algorithms

- Algorithms for two processes
- An algorithm that guarantees mutual exclusion and no lockout but uses $O(n)$ registers of unbounded size.
- An algorithm that guarantees mutual exclusion and no lockout using $O(n)$ registers of bounded size.

Lower Bounds

- Any algorithm that provides mutual exclusion, even with the weak property of no deadlock, must use n distinct RW registers, regardless of the size of these registers.

Proposed solution I

Process po while (true\} \{ while (turn = 1) noop; //entry critical section turn = $1 \quad / /$ exit remainder section	Process p_{1} while (true\} \{ while (turn = 0) noop; / entry critical section turn $=0 \quad / /$ exit \dagger remainder section
$\}$	remainder section

Does it work?

HY586 - Panagiota Fatourou

Proposed Solution II

Process po	Process p_{1}
while (TRUE) \{	while (TRUE) \{
\quad flag[0] = true	flag[1] = true
\quad while (flag[1]) \{skip\}	while (flag[0]) \{skip\}
critical section	critical section
\quad flag[0] = false	flag[1] = false
remainder section	remainder section
\}	\}

Does it work?

HY586 - Panagiota Fatourou

Proposed solution III

```
Process po
while (TRUE) {
    while (flag[1]) {skip}
    flag[0] = true
    critical section
    flag[0] = false
    remainder section
}
```


while (flag[1]) \{skip\}

flag[0] = true
critical section
flag[0] = false
remainder section
\}

Process p_{1}
while (TRUE) \{

while (flag[0]) \{skip\}
 flag[1] = true critical section
 flag[1] = false
 remainder section

\}

Does it work?

HY586 - Panagiota Fatourou

Peterson's algorithm

Process po	Process p 1
While (TRUE) \{	While (TRUE) \{
\quad flag[0] = true	flag[1] = true
turn =	turn =
while (flag[1] and turn == 1)	while (flag[0] and turn == 0)
\quad \{skip\}	\{skip\}
critical section	critical section
flag[0] = false	flag[1] = false
remainder section	remainder section
$\}$	$\}$

	flag	
0	false	
1	false	
turn	$0 / 1$	

HY586 - Panagiota Fatourou

ME Algorithm using Single-Writer binary RW registers

want[0]: SW register written by p_{0} and read by p_{1} with initial value 0 ; it is set to 1 to identify that process p_{0} wants to enter the critical section want[1]: symmetric to want[0]
Process p0
while (TRUE) \{
3. \quad want[0] = 1;

6.	wait until (want $[1]==0) ;$
critical section:	
7. | want $[0]=0 ;$ |
| :--- |
| remainder section: |

\}

```
Process p1
while (TRUE) {
1. want[1] = 0;
2. wait until (want[0] == 0);
3. want[1] = 1;
4. if (want[0] == 1) then
5. goto line 1
    critical section;
8. want[1] = 0;
    remainder section;
}
```

Is this correct?

Proving Correctness

Theorem

- The algorithm ensures the mutual exclusion property.

Sketch of Proof

- Assume, by contradiction, that at some configuration C, both processes are in the critical section
\Rightarrow want[0] = want[1] = 1 .
- Case 1: Last write of p_{0} to want[0] follows the last write of p_{1} to want[1].

- Case 2: Last write of p_{1} to want[1] follows the last write of p_{0} to want[0].

ME Algorithm using Single-Writer binary RW registers - Symmetric Version

Code for process $\mathrm{p}_{\mathrm{i}}, \mathrm{i}=0,1$
while (TRUE) \{
1: \quad want $[i]=0$;
2: wait until ((want[1-i] == 0) OR (priority == i));
3: \quad want $[i]=1$;
4: if (priority $==1-i$) then \{
5:
if (want[1-i] ==1) then
goto line 1; \}
6: else wait until (want[1-i] == 0);
critical section;
7: \quad priority $=1-i ;$
8: \quad want $[i]=0$;
remainder section:
\}

Proving the No-Deadlock Property

Theorem

- The algorithm ensures the no-deadlock property.

Sketch of Proof

- Suppose in contradiction that from some configuration on at least one process is forever in the entry section and no process enters the critical section.
Case 1: Both processes are forever in the entry section.
\Rightarrow The value of Priority does not change
\Rightarrow Assume, wlog, that Priority $=0$ (the case where Priority $=1$ is symmetric).
- One of the two processes cannot be stuck forever in the critical section!
A contradiction!!!
Case 2: Just one process is forever in the critical section (wlog, assume this holds for p_{0}).
\Rightarrow Critical and exit sections are bounded \Rightarrow after some point want[1] $=0$ forever.
\Rightarrow Process po does not loop forever in the entry section! A contradiction!!!

Proving Lockout Freedom

Theorem

- The algorithm ensures lockout freedom.

Sketch of Proof

- Assume, by way of contradiction, that some process (e.g., p_{0}) is starved \Rightarrow from some configuration on p_{0} is forever in the entry section.
- Case 1: Suppose p1 executes line 7 at some later point.
- Priority $=0$ forever after.
$\Rightarrow p_{0}$ is stuck executing line 6
\Rightarrow Thus, want[1] == 1 each time po checks the condition of line 6 .
This is a contradiction!
- Case 2: p1 never executes line 7 at any later point.
\Rightarrow Since no-deadlock holds, p_{1} is forever in the remainder section.
\Rightarrow Thus, want[1] == 0 henceforth.
- po cannot be stuck in the entry section! A contradiction!!!

ME Algorithms for many processes

- Processes compete pairwise, using a twoprocess algorithm.
The pairwise competitions are arranged in a complete binary tree.

The tree is called the tournament tree.

Each process begins at a specific leaf of the tree
At each level, the winner moves up to the next higher level, and competes with the winner of the competition on the other side.
\square The process on the left side plays the role of p_{0}, while the process on the right side plays the role of p_{1}.
\square The process that wins at the root enters the critical section.

ME Algorithms for many processes

procedure Node(v: integer, side: 0..1) \{
1: want`[side] = 0; 2: wait until ((want`[1-side] == 0) OR (priority" $==$ side));
3: wantv[side] = 1;
4: if (priority ${ }^{v}==1$-side) then \{
5: if (want[$[1$-side] == 1) then goto line 1; $\}$
6: else wait until (wanty[1-side] == 0);

8: if $(v==1)$ then
9: critical section;
10: else Node(Lv/2」, v\%2)
11: priority $^{v}=1$-side;
12: want[side] = 0;

Tree nodes are numbered. The number of the root is 1 . The number of the left child node of a node v is $2 v$, and the number of the right child of v is $2 \mathrm{v}+1$.
want[0], wantr${ }^{2}$ [1], priorityv: variables associated to node v for the instance of 2-ME that is executed at this node.
\square Process p_{i} begins by calling Node($\left.\left.2 k+L i / 2\right\rfloor, i \% 2\right)$, where $k=\lceil\operatorname{logn}\rceil-1$.

Tournament ME Algorithm: Correctness Proof

- Projection of an execution of the tree algorithm onto some node v We only consider steps that are taken while executing the code in Node $(\mathrm{v}, 0)$ and Node(v,1)
- We will show the following:
- For each node v, the projection of any execution of the tree algorithm onto v is an admissible execution of the symmetric mutual exclusion algorithm for 2 processes, if we view every process that executes Node $(\mathrm{v}, 0)$ as p_{0} and every process that executes $\operatorname{Node}(\mathrm{v}, 1)$ as p_{1}.

Tournament ME Algorithm: Correctness Proof

More formally:

- Fix an execution a $=C_{0} \varphi_{1} C_{1} \varphi_{2} C_{2} \ldots$ of the tournament tree algorithm.
- Let a^{v} be the subsequence of alternating configurations and events

$$
\mathrm{D}_{0} \pi_{1} \mathrm{D}_{1} \pi_{2} \mathrm{D}_{2} \ldots
$$

defined inductively as follows:
Base Case: D_{0} is the initial configuration of the 2 -processor algorithm
Induction Hypothesis: Assume that a^{v} has been defined up to configuration $\mathrm{D}_{\mathrm{i}-1}$.
Induction Step: Let $\varphi_{\mathrm{j}}=\mathrm{k}$ be the i -th event of a that is a step in $\operatorname{Node}(\mathrm{v}, 0)$ or Node(v,1) (suppose, wlog, that φ_{j} is a step in $\operatorname{Node}(\mathrm{v}, 0)$).

- Let $\pi_{\mathrm{i}}=0$ (i.e., p_{0} takes this step) and let D_{i} be a configuration such that:
- The variables' states are those of the variables of node v in C_{j}
- The state of p_{1} is the same as in D_{i-1}
- The state of p_{0} is the same as the state of p_{k} in C_{j} except for the id being replaced with 0 .

Process p4

Process p7
procedure $\operatorname{Node}(7,1)$ \{

```
    1: want \(^{6}[0]=0\);
    2: wait until \(\left(\left(\right.\right.\) want \(\left.^{6}[1]==0\right) \quad \varphi 2\)
                \(\varphi 1\)
            OR (priority \(\left.{ }^{6}==0\right)\) ); \(\quad \varphi 3\)
    3: want \(^{6}[0]=1\); \(\quad \varphi 4\)
    4: if (priority \({ }^{6}==1\) ) then \(\{\quad \varphi 5\)
    5: if \(\left(\right.\) want \(\left.^{6}[1]==1\right)\) then goto line 1; \} \(\varphi 6\)
    6: else wait until (want \(\left.{ }^{6}[1]==0\right)\);
8: if \((6==1)\) then critical section; else Node \((3,0)\)
```


$a=C 0, \varphi 1, C 1, \varphi 2, C 2, \varphi 3, C 3, \varphi 4, C 4, \varphi 5, C 5, \varphi 6, C 6$,
$\varphi 7, C 7, \varphi 8, С 8, \varphi 9, С 9, \varphi 10, C 10, \varphi 11, С 11, \varphi 12, C 12$,
$\varphi 13, C 13, \varphi 14, C 14, \varphi 15, C 15, \varphi 16, C 16, \varphi 17, C 17, \varphi 18$,
C18, $\varphi 19$, C19, $\varphi 20$, C20, $\varphi 21$, C21, $\varphi 22$, C22, $\varphi 23$,
C23, $\varphi 24, ~ С 24, \varphi 25, ~ C 25, \varphi 26, ~ C 26, \varphi 27, C 27, \varphi 28$,
С28, 429, C29, $\varphi 31$, C30, $\varphi 31$, C31, $\varphi 32$, C32, $\varphi 33$,
C33 ...
Orange events are steps of $\operatorname{Node}(3,0)$ or $\operatorname{Node}(3,1)$.

want $^{1}[1]=0$;
wait until $\left(\left(\right.\right.$ want $\left.^{1}[0]==0\right)$ OR $\underset{\varphi 26}{\left(\text { priority }^{1}==0\right)} \underset{\varphi 27}{ } \quad$;
want ${ }^{1}[1]=1$;
甲30
if (priority ${ }^{1}==1$) then $\{$
甲 31
if $\left(\right.$ want $\left.^{3}[1]==1\right)$ then goto linty 586%-3Panaqiota Fatourou
else wait until (want ${ }^{3}[1]==0$); $\varphi 33$
if $(1==1)$ then critical section;

Tournament ME: Example Execution

$a=C 0, \varphi 1, C 1, \varphi 2, C 2, \varphi 3, C 3, \varphi 4, C 4, \varphi 5, C 5, \varphi 6, C 6, \varphi 7, C 7, \varphi 8, C 8, \varphi 9, C 9, \varphi 10, C 10, \varphi 11, C 11, \varphi 12, C 12, \varphi 13$, $С 13, \varphi 14, C 14, \varphi 15, С 15, \varphi 16, C 16, \varphi 17, C 17, \varphi 18, C 18, \varphi 19, C 19, \varphi 20, C 20, \varphi 21, C 21, \varphi 22, C 22, \varphi 23, C 23, \varphi 24$, $C 24, \varphi 25, C 25\rangle, \varphi 26, C 20, \varphi 27, C 22, \varphi 28, C 2\rangle, \varphi 22, C 29, \varphi 31, C 30, \varphi 31, C 31, \varphi 32, C 32, \varphi 33 /, C 33 \ldots$

Tournament ME Algorithm: Correctness Proof

Lemma

For every $\mathrm{v}, \mathrm{a}^{\mathrm{v}}$ is an execution of the 2-process algorithm.

Proof

- The code of $\operatorname{Node}(\mathrm{v}, \mathrm{i})$ and the code of the 2-process algorithm for $\mathrm{p}_{\mathrm{i}}, \mathrm{i}=0,1$, are the same.
- The only thing to check is that only one process performs instructions of Node(v,i) at a time. We prove this by induction on the level of v , starting at the leaves.
Base Case: It holds by construction.
Induction Hypothesis: Let v be any internal node of the tournament tree.
Induction Step: We prove the claim for v .
- If a process executes instructions of, e.g., Node(v,0), then it is in the critical section for v's left child.
- By induction hypothesis and the fact that the 2-process algorithm guarantees mutual exclusion, only one process at a time is in the critical section for v's left child. -> The claim follows.
- Similarly, only one process at a time executes instructions of $\operatorname{Node}(\mathrm{v}, 1)$.

Tournament ME Algorithm: Correctness Proof

Lemma

- For all v, if a is an admissible execution of the tournament algorithm, then a^{v} is an admissible execution of the 2-process algorithm.

Proof

- We prove that in a^{v} no process stays in the critical section forever.
- The proof is performed by induction on the level of v , starting from the root.

Theorem

- The Tournament Algorithm provides mutual exclusion.

Proof

- The restriction of any execution to the root of the tree is an admissible execution of the 2-process algorithm.
- Since this algorithm provides mutual exclusion, the Tournament algorithm also provides mutual exclusion.

The Bakery Algorithm

for each $i, 0 \leq i \leq n-1$:
Choosing[i]: it has the value TRUE as long as p_{i} is choosing a number Number $[i]$: the number chosen by p_{i}

Code for process $p_{i}, 0 \leq i \leq n-1$
Initially, Number $[i]=0$, kaı
Choosing[i] = FALSE, for each $i, 0 \leq i \leq n-1$
Choosing[i] = TRUE;
Number[i] $=\max \{$ Number[0], ..., Number[n-1]\}+1;
Choosing[i] = FALSE;
for $j=0$ to $n-1, j \neq i$, do
wait until Choosing[j] == FALSE;
wait until ((Number[j] == 0) OR ((Number[j], j) > (Number[i], i)));
critical section;
Number[i] = 0;
remainder section;

The Bakery Algorithm

Lemma

- In every configuration C of any execution a, if p_{j} is in the critical section, and for some $k \neq i$, Number[k] $\neq 0$, then (Number[k],k) > (Number[i],i).

Sketch of Proof

- Number[i]>0
- p_{i} has finished the execution of the for loop (in particular, the $2^{\text {nd }}$ wait statement for $\mathrm{j}=\mathrm{k}$).
- Case 1: p_{i} read that Number[k] $==0$
- Case 2: p_{i} read (Number[k],k) > (Number[i],i)

Theorem

- The Bakery algorithm ensures the mutual exclusion property.

The Bakery Algorithm

Theorem

- The Bakery algorithm provides no lockout.

Sketch of proof

- Assume, by the way of contradiction, that there is a starved process.
- All processes wishing to enter the critical section eventually finish choosing a number.
- Let p_{j} be the process with the smallest (Number[j],j) that is starved.
- All processes entering the critical section after p_{j} has chosen its number will choose greater numbers, and therefore will not enter the critical section before p_{j}.
- Each process p_{k} with Number[k] < Number[j] will enter the critical section and exit it.
- Then, p_{j} will pass all tests in the for loop and enter the critical section.

Space Complexity

- The Bakery Algorithm uses $2 n$ single-writer RW registers. The n Choosing[j] variables are binary, while the n Number[j] variables are unbounded, $0 \leq j \leq n-1$.

Bakery Algorithm versus

Properties of the Bakery Algorithm

- The Bakery Algorithm satisfies mutual exclusion \& FIFO.
- The size of number[i] is unbounded.

\author{

- Bakery (FIFO, unbounded)
 The Black-White Bakery Algorithm
}

FIFO
Bounded space
+ one bit

The Black-White Bakery Algorithm

choosing[i] = true;

mycolor[i] = color:
number[i] $=1+\max \{n u m b e r[j] \mid(1 \leq j \leq n) \wedge(m y c o l o r[j]=$ mycolor[i])\};
choosing[i] = false:
for $j=0$ to n \{
await (choosing[j] == false);
if (mycolor[j] == mycolor[i])
then await (number[j] == 0$) \vee($ number $[j], j) \geq($ number[i],i) \vee (mycolor[j] \neq mycolor[i]):
else await (number[j] == 0) $\vee($ mycolor $[i] \neq$ color $) \vee$ (mycolor[j] == mycolor[i]);
\}
critical section;
if (mycolor[i] == black) then color = white;
else color = black;
number[i] = 0;

> Tight space bounds for mutual exclusion using atomic registers

- All mutual exclusion algorithms presented so far use at least n shared r/w registers. This is not an accident!
- Any mutual exclusion algorithm using only shared read-write registers must use at least n such registers.
- This is so:
- even if we require the basic conditions mutual exclusion and progress, and
- regardless of the size of the registers.

Tight space bounds for mutual exclusion using r/w registers - Useful Definitions

- A configuration C is called idle (or inactive) if no process is in the entry, critical or exit section at C.
all processes are in the
remainder section
- A process p covers some register R at some configuration C, if at its nex \dagger step, p will perform a write into R, overwriting whatever was written in R before. ${ }^{C} \quad \stackrel{C^{\prime}}{ } \quad \mathrm{a}$
p's first step after C is performed just before C^{\prime} and it is a write into R
- For any $k, 1 \leq k \leq n$, we say that a configuration C is k-reachable from another configuraion C^{\prime} if there is an execution fragment starting from C and ending at C^{\prime} which contains steps only of processes $\mathrm{p}_{0}, \ldots, \mathrm{p}_{\mathrm{k}-1}$.
- An execution fragment a is called p-only if p is the only process taking steps in a. We say that a is S-only (where S is a set of processes) if only processes belonging to S take steps in a_{0}
only p takes steps in $a^{\prime} \quad a^{\prime} \quad$ k-reachable from
HY586 - Panagiota Fatotwronly execution fragment 30

Lower Bound - Useful Definitions

- The schedule of an execution a is the sequence of process indices that take steps in a (in the same order as in a).
- Example
- $a=C_{0}, i_{1}, C_{1}, i_{2}, C_{2}, i_{3}, \ldots$
- $\sigma(a)=i_{1}, i_{2}, i_{3}, \ldots$
- A configuration C and a schedule σ uniquely determine an execution fragment which we denote by exec (C, σ).
- For each configuration C, let mem $(C)=\left(r_{0}, \ldots, r_{m-1}\right)$ be the vector of register values in C
- A configuration C is similar with or indistinguishable from some other configuration C^{\prime} to some process set S, if each process of S is in the same state at C and C^{\prime} and $\operatorname{mem}(C)=\operatorname{mem}\left(C^{\prime}\right)$.

If C is similar with $C^{\prime \prime}$ to S, we write $C \sim^{s} C^{\prime}$.

Lower Bound - Simple Facts

- Lemma 1

Suppose that C is a reachable idle configuration and let p_{i} be any process. Then, there is an execution fragment starting from C and involving steps of process p_{i} only, in which p_{i} enters the critical section.

Lemma 2
Suppose that C and C^{\prime} are reachable configurations that are indistinguishable to some process p_{i} and suppose that $C^{\prime \prime}$ is an idle configuration. Then, there is an execution fragment starting from C and involving steps of process p_{i} only, in which p_{i} enters the critical section.

Lower Bound - Simple Facts

- Lemma 3

Suppose that C is a reachable configuration where some process p_{i} is in the remainder section. Consider an execution fragment a_{1} starting from C such that (1) a_{1} involves steps of p_{i} only and (2) p_{i} is in the critical section in the final configuration of a_{1}. Then, a_{1} contains a write by p_{i} to some shared register.

$$
C=\left\langle\mathrm{q}_{0}, \ldots, \mathrm{q}_{\mathrm{i}}, \ldots, \mathrm{q}_{\mathrm{n}-1}, \operatorname{mem}(\mathrm{C})\right\rangle
$$

a_{2} : execution fragment
not containing steps by p_{i}
some process $p_{j} \neq p_{i}$ is in
the critical section
(by the progress
condition) Hy586 - Panagiota Fatourou

```
                                    C~j}\mp@subsup{C}{}{\prime},\forall\textrm{j}\not=\textrm{i
                                    exec(C',\sigma(az))
```



```
                            pi critical section. A contradiction!

\section*{Lower Bound}

\section*{Definition}
- A register is called single-writer if it can be written by only one process.

Theorem 1 (Lower Bound for Single-Writer Multi-Reader R/W Registers)
- If algorithm \(A\) solves the mutual exclusion problem for \(n>1\) processes, using only single-writer r/w shared registers, then A must use at least \(n\) shared registers.
Proof
- Immediate from Lemma 3

Theorem 2 (Lower Bound for Multi-Writer R/W Registers)
- If algorithm \(A\) solves the mutual exclusion problem for \(n>1\) processes, using only r/w shared registers, then A must use at least \(n\) shared registers.

\section*{Lower Bound}

\section*{Lemma 4 (Generalized Version of Lemma 3)}
- Let \(C\) be a reachable configuration in which process \(p_{i}\) is in the remainder section. Consider an execution fragment \(a_{1}\) starting from \(C\) such that (1) \(a_{1}\) involves steps of \(p_{i}\) only and (2) \(p_{i}\) is in the critical section in the final configuration of \(a_{1}\). Then, \(a_{1}\) contains a write by \(p_{i}\) to some shared register that is not covered by any other process in \(C\).
Proof
Left as an exercise! (for Wednesday, 10/10/12)

\section*{Lower Bound - Two processes}

\section*{Theorem 2.1 (Special Case: just two processes)}
- There is no algorithm that solves the mutual exclusion problem for two processes using only one R/W shared register.

Proof
Assume, by contradiction, that \(A\) is such an algorithm.
Let \(x\) be the unique shared \(r / w\) register that it uses.
Denote by \(C_{0}\) the initial state of the algorithm.
We construct an execution a that violates mutual exclusion!

\section*{Lower Bound - Two processes}



\section*{Lower Bound - Three processes}

\section*{Theorem 2.2 (Special Case: three processes)}
- There is no algorithm that solves the mutual exclusion problem for three processes using only two R/W shared register.

\section*{Proof}
- Assume, by contradiction, that \(A\) is such an algorithm.
- Let \(x, y\) be the shared \(r / w\) registers that it uses.
- We construct an execution a that violates mutual exclusion!

\section*{Strategy}
1. Starting from \(C_{0}\), we will maneuver processes \(p_{0}\) and \(p_{1}\) to a point where each covers one of the two variables \(x\) and \(y\). Moreover, the resulting configuration \(C^{\prime}\) will be indistinguishable to process \(p_{2}\) from some reachable idle state.
2. We run process \(p_{2}\) on its own from \(C^{\prime}\) until it reaches the critical section.
3. We let each of processes \(p_{0}\) and \(p_{1}\) take a step. Since each covers one of the two variables, they can eliminate all traces of process \(p_{2}\) 's execution.
4. Then, we let \(p_{0}\) and \(p_{1}\) continue taking steps until one of them enters the critical section.
5. At this point we have two processes in the critical section, which is a contradiction!

\section*{Lower Bound - Three processes}

How can we construct an execution such that at its final configuration \(C_{2}\) processes \(p_{0}\) and \(p_{1}\) cover both registers \(x\) and \(y\), yet \(C\) ' is indistinguishable to an idle configuration to \(p_{2}\) ?


In two out of the three configurations \(S_{1}, S_{2}, S_{3}\), process \(p_{0}\) covers the same register. Wlog, assume that in \(S_{1}\) and \(S_{3}, p_{0}\) covers register x. Let \(S_{1}{ }^{\prime}=C_{0}\).

If we run \(p_{1}\) alone starting from \(S_{1}, p_{1}\) will enter its critical section since \(S_{1} \sim^{1}\) \(S_{0}{ }^{\prime}\).


\section*{Lower Bound - Three processes}

\(C^{\prime}\) is the configuration at which (1) \(p_{0}\) and \(p_{1}\) cover \(x\) and \(y\), respectively, and (2) \(C^{\prime}\) is indistinguishable from an idle reachable configuration \(\left(S_{2}^{\prime}\right)\) to \(p_{2}\).

We now apply steps 2,3,4 and 5 of our strategy to derive a contradiction!

Lower Bound - The General Case

\section*{Lemma 5}

Suppose A solves the mutual exclusion problem for \(n>1\) processes using exactly \(n-1 r / w\) shared registers. Let \(C\) be any reachable idle configuration. Suppose \(1 \leq k \leq n-1\). Then, there are two configurations \(C^{\prime}\) and \(C^{\prime \prime}\), each \(k\)-reachable from \(C\), satisfying the following properties:
1. \(k\) distinct registers are covered by processes \(p_{0}, \ldots, p_{k-1}\) in \(C^{\prime}\),
2. \(C^{\prime \prime}\) is an idle configuraton
3. \(C^{\prime \prime} \sim^{i} C^{\prime \prime}\), for all \(\mathrm{i}, \mathrm{k} \leq \mathrm{i} \leq \mathrm{n}-1\)

\section*{Lower Bound - The General Case}

Proof: By induction on \(k\).
Base Case: We run process po alone until it first covers a shared register. Let \(C^{\prime \prime}\) be the resulting configuration and \(C^{\prime \prime}=C_{0}\). Then, all properties hold.

Natural generalization of the proof of Theorem 2.2, where similar arguments as those for proving the first step of the employed strategy are used.

\section*{Proof of Theorem 2:}
- By Lemma 5, there are two configurations \(C^{\prime}\) and \(C^{\prime \prime}\), each ( \(n-1\) )reachable from \(C_{0}\), such that:
- all \({ }_{C^{\prime}}\) n-1 shared \(r / w\) registers are covered by processrs \(p 0, \ldots, p n-2\) in
- \(C^{\prime \prime}\) is an idle configuration
- \(C^{\prime \prime} \sim^{n-1} C^{\prime \prime}\).
- There exists an ( \(n-1\) )-only execution fragment a from \(C^{\prime}\) in which \(p_{n-1}\) ends up in the critical section
- In a, \(\mathrm{p}_{\mathrm{n}-1}\) must write into some register which is not covered in \(C^{\prime}\)
- However, all n-1 are covered in \(C^{\prime}\). This is a contradiction!

\section*{A Tight Upper Bound - The One-Bit Algorithm}

\section*{Code of process \(p_{i}, \quad i \in\{1, \ldots, n\}\)}
```

repeat {
b[i] = true; j = 1;
while (b[i] == true) and (j< i) {
if (b[j] == true) {
b[i] = false; await (b[j] ==false);
}
j = j+1
}
}
until (b[i] == true);
for (j= i+1 to n)
await (b[j] == false);
critical section
b[i] = false;

```

\section*{Properties of the One-Bit Algorithm}
- Satisfies mutual exclusion and deadlock-freedom
- Starvation is possible
- It is not symmetric
- It uses only \(n\) shared bits and hence it is space optimal

> HY586 - Panagiota Fatourou

\section*{Bibliography}

These slides are based on material that appears in the following books:
- H. Attiya \& J. Welch, Distributed Computing:

Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998 (Chapter 4)
- G. Taubenfeld, Synchronization Algorithms and Concurrent Programming, Pearson / Prentice Hall, 2006 (Chapter 2)
- N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996 (Chapter 10).

\section*{End of Section}


EПIXEIPH乏IAKO ПРОГРАММА
EKПAIIEYEH KAI \(\triangle I A\) BIOY MAOHEH
СЕЕПA
erivolvon orav uoaveria ens prions,





\section*{Financing}
- The present educational material has been developed as part of the educational work of the instructor.
- The project "Open Academic Courses of the University of Crete" has only financed the reform of the educational material.
- The project is implemented under the operational program "Education and Lifelong Learning" and funded by the European Union (European Social Fund) and National Resources


Eupшпаїкй'Еvшon


Notes

\section*{Licensing Note}
- The current material is available under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0[1] International license or later International Edition. The individual works of third parties are excluded, e.g. photographs, diagrams etc. They are contained therein and covered under their conditions of use in the section «Use of Third Parties Work Note».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/
- As Non-Commercial is defined the use that:
- Does not involve direct or indirect financial benefits from the use of the work for the distributor of the work and the license holder
- Does not include financial transaction as a condition for the use or access to the work
- Does not confer to the distributor and license holder of the work indirect financial benefit (e.g. advertisements) from the viewing of the work on website
- The copyright holder may give to the license holder a separate license to use the work for commercial use, if requested.

\section*{Reference Note}

Copyright University of Crete, Panagiota Fatourou 2015. Panagiota Fatourou. «Distributed Computing. Section 2: Mutual Exclusion». Edition: 1.0. Heraklion 2015. Available at: https://opencourses.uoc.gr/courses/course/view.php?id=359.

\section*{Preservation Notices}

Any reproduction or adaptation of the material should include:
- the Reference Note
- the Licensing Note
- the declaration of Notices Preservation
- the Use of Third Parties Work Note (if is available) together with the accompanied URLs.```

