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The Mutual Exclusion Problem 

• The problem concerns a group of processors which 
occasionally need access to some resource that cannot 
be used simultaneously by more than a single processor. 
 

• Examples of what the resource may be: 
– The printer or any other output device 
– A record of a shared database or a shared data structure, etc. 

 
• Each processor may need to execute a code segment 

called critical section, such that at any time: 
– at most one processor is in the critical section 
– If one or more processors try to enter the critical section, 

then one of them eventually succeeds as long as no processor 
stays in the critical section forever. 
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The Mutual Exclusion Problem 

Entry (Trying) Section: the code 
executed in preparation for entering  
the critical section 

Critical Section: the code to be  
protected from concurrent  
execution 

Exit Section: the code executed upon leaving the critical section 

Remainder Section: the rest of the code 
 

Each process cycles through these sections in the order: 
remainder, entry, critical, exit.  

 The problem is to design the entry and exit code in a way that 
guarantees that the mutual exclusion and deadlock-freedom 
properties are satisfied. 
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Mutual Exclusion Algorithms 
Admissible Executions 
• An execution is admissible if for every process pi, pi either takes 

an infinite number of steps or pi ends in the remainder section. 
 

• An algorithm solves the mutual exclusion problem if the 
following hold: 
– Mutual Exclusion  
 In every configuration of every execution, at most one process 

is in the critical section. 
– No Deadlock 
 In every execution, if some process is in the entry section in 

some configuration, then there is a later configuration in which 
some process is in the critical section. 

 

• Stronger Progress Property 
– No lockout (starvation-free) 
 In every execution, if some processor is in the entry section in 

a configuration, then there is a later configuration in which that 
same processor is in the critical section. 
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Mutual Exclusion Algorithms 

Assumptions 

• Any variable that is accessed in the entry 
or the exit section of the algorithm 
cannot be accessed in any of the other 
two sections.  

•  No process stays in the critical section 
forever. 

• The exit section consists of a finite 
number of steps. 
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ME Algorithms that use RW Registers 

Algorithms 
•  Algorithms for two processes 
•  An algorithm that guarantees mutual exclusion 

and no lockout but uses O(n) registers of 
unbounded size. 

• An algorithm that guarantees mutual exclusion 
and no lockout using O(n) registers of bounded 
size. 

 
Lower Bounds 
• Any algorithm that provides mutual exclusion, 

even with the weak property of no deadlock, 
must use n distinct RW registers, regardless of 
the size of these registers. 
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Does it work?  

Proposed solution I 

Process p0 

while (true} { 

         while (turn = 1) noop; //entry 

         critical section 
         turn = 1                     // exit 

         remainder section 

} 

Process p1 

while (true} { 

       while (turn = 0) noop;  //entry 

       critical section 
        turn = 0                      // exit 

        remainder section 

} 

0/1 

turn 
mutual exclusion 
 deadlock-freedom 

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent 
Programming 
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Proposed Solution II 
Process p0 

while (TRUE) { 

       flag[0] = true 

       while (flag[1]) {skip} 

       critical section 

       flag[0] = false 
        remainder section 

} 

Process p1 

while (TRUE) { 

        flag[1] = true 

         while (flag[0]) {skip} 

         critical section 

         flag[1] = false 

         remainder section 

} 

false 

flag 

false 

0 

1 

Does it work?  

mutual exclusion 
 deadlock-freedom 

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming 
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Proposed solution III 
Process p0 

while (TRUE) {  

    while (flag[1]) {skip} 

     flag[0] = true 

     critical section 

     flag[0] = false 

     remainder section 

} 

Process p1 

while (TRUE) { 

     while (flag[0]) {skip} 

      flag[1] = true 

      critical section 

      flag[1] = false 
       remainder section 

} 

false 

flag 

false 

0 

1 

Does it work?  

 mutual exclusion 
Deadlock-freedom 

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming 



ΗΥ586 - Panagiota Fatourou 10 

Peterson’s algorithm 

Process p0 

While (TRUE) { 
      flag[0] = true 
      turn = 1 
      while (flag[1] and turn == 1) 
              {skip} 
      critical section 
      flag[0] = false 
       remainder section 
} 

Process p1 

While (TRUE) { 
      flag[1] = true 
      turn = 0 
      while (flag[0] and turn == 0) 
               {skip} 
      critical section 
      flag[1] = false 
       remainder section 
} 

false 

flag 

false 

0 

1 

0/1 turn 

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming 
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ME Algorithm using Single-Writer binary RW 
registers  

want[0]: SW register written by p0 and read by p1 with initial value 
0; it is set to 1 to identify that process p0 wants to enter the 
critical section 
want[1]: symmetric to want[0] 

Process p0 
while (TRUE) { 
 
 
3. want[0] = 1; 
  
 
6. wait until (want[1] == 0); 
 critical section; 
8. want[0] = 0; 
 remainder section; 
} 

Process p1 
while (TRUE) { 
1. want[1] = 0; 
2. wait until (want[0] == 0); 
3. want[1] = 1; 
4. if (want[0] == 1) then  
5.  goto line 1 
 
 critical section; 
8. want[1] = 0; 
 remainder section; 
} 

Is this correct? 
How can we prove it?  
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Proving Correctness 
Theorem 
• The algorithm ensures the mutual exclusion property. 
 
Sketch of Proof 
• Assume, by contradiction, that at some configuration C, both processes 

are in the critical section 
  want[0] = want[1] = 1. 
• Case 1: Last write of p0 to want[0] follows the last write of p1 to want[1].  

 
 
 
 
 
 

• Case 2: Last write of p1 to want[1] follows the last write of p0 to want[0].  
 
 
 
 
 
 

want[1] = 1 want[0] = 1 both processes in 
critical section 

p0 executes line 
6 and does not 
enter the CS 

want[0] = 1 want[1] = 1 p1 executes line 
5 and does not 
enter the CS 

both processes in 
critical section 

Contradiction! 

Contradiction! 

 The algorithm ensures the no-lockout property. 

 The algorithm does not guarantee lockout freedom. 
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ME Algorithm using Single-Writer binary RW 
registers – Symmetric Version 

 
Code for process pi, i = 0, 1 
 

while (TRUE) { 
1:   want[i] = 0; 
2:   wait until ((want[1-i] == 0) OR (priority == i)); 
3:   want[i] = 1; 
4:   if (priority == 1-i) then { 
5:   if  (want[1-i] == 1) then 
    goto line 1; } 
6:   else wait until (want[1-i] == 0); 
  critical section; 
7:   priority = 1-i; 
8:   want[i] = 0; 
  remainder section; 
} 
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Proving the No-Deadlock Property 

Theorem 
• The algorithm ensures the no-deadlock property. 
 

Sketch of Proof 
• Suppose in contradiction that from some configuration on at least 

one process is forever in the entry section and no process enters 
the critical section. 

• Case 1: Both processes are forever in the entry section. 
The value of Priority does not change 
Assume, wlog, that Priority = 0 (the case where Priority = 1 is 
symmetric). 
One of the two processes cannot be stuck forever in the critical 
section!  
A contradiction!!! 

• Case 2: Just one process is forever in the critical section (wlog, assume 
this holds for p0) .  

Critical and exit sections are bounded  after some point want[1] = 0 forever.  
Process p0 does not loop forever in the entry section! A contradiction!!! 
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Proving Lockout Freedom 
Theorem 
• The algorithm ensures lockout freedom. 
 

Sketch of Proof 
• Assume, by way of contradiction, that some process 

(e.g., p0) is starved  from some configuration on p0 is 
forever in the entry section. 

• Case 1: Suppose p1 executes line 7 at some later point. 
Priority = 0 forever after. 
p0 is stuck executing line 6 
Thus, want[1] == 1 each time p0 checks the condition of line 6. 
This is a contradiction! 

• Case 2: p1 never executes line 7 at any later point. 
Since no-deadlock holds, p1 is forever in the remainder section. 
Thus, want[1] == 0 henceforth. 
p0 cannot be stuck in the entry section! A contradiction!!! 
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ME Algorithms for many processes 

 Processes compete  
pairwise, using a two- 
process algorithm. 

 The pairwise competitions  
are arranged in a complete  
binary tree. 

 The tree is called the  
tournament tree. 

 Each process begins at a  specific leaf of the tree 

 At each level, the winner moves up to the next higher level, and 
competes with the winner of the competition on the other side. 

 The process on the left side plays the role of p0, while the 
process on the right side plays the role of p1. 

 The process that wins at the root enters the critical section. 
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ME Algorithms for many processes 
procedure Node(v: integer, side: 0..1) { 

      1: wantv[side] = 0; 

2: wait until ((wantv[1-side] == 0)  
             OR (priorityv == side)); 
3: wantv[side] = 1; 
4: if (priorityv == 1-side) then { 
5:       if  (wantv[1-side] == 1) then 
  goto line 1; } 
6: else wait until (wantv[1-side] == 0); 
8: if (v == 1) then 

      9:  critical section; 

10: else Node(v/2, v%2) 

11: priorityv = 1-side; 
12: wantv[side] = 0; 

} 

 

 Tree nodes are numbered. The 
number of the root is 1. The number of 
the left child node of a node v is 2v, and 
the number of the right child of v is 
2v+1. 

 wantv[0], wantv[1], priorityv: variables 
associated to node v for the instance of  
2-ME that is executed at this node. 

 Process pi begins by calling  Node(2k+i/2, i % 2), where k =  logn  -1. 
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Tournament ME Algorithm: Correctness Proof 

• Projection of an execution of the tree algorithm onto some node v  
We only consider steps that are taken while executing the code in Node(v,0) and 

Node(v,1) 

 

 

• We will show the following: 

• For each node v, the projection of any execution of the tree algorithm 
onto v is an admissible execution of the symmetric mutual exclusion 
algorithm for 2 processes, if we view every process that executes 
Node(v,0) as p0 and every process that executes Νode(v,1) as p1. 
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Tournament ME Algorithm: Correctness Proof 
More formally: 

• Fix an execution a = C0 φ1 C1 φ2 C2 … of the tournament tree algorithm. 

• Let av be the subsequence of alternating configurations and events 

D0 π1 D1 π2 D2 … 

 defined inductively as follows: 

 Base Case: D0 is the initial configuration of the  2 –processor algorithm 

 Induction Hypothesis: Assume that av has been defined up to configuration  
Di-1.  

 Induction Step: Let φj = k be the i-th event of a that is a step in Node(v,0) or 
Node(v,1) (suppose, wlog, that φj is a step in Node(v,0)). 

• Let πi = 0 (i.e., p0 takes this step) and let Di be a configuration such that: 

o The variables’ states are those of the variables of node v in Cj 

o The state of p1 is the same as in Di-1 

o The state of p0 is the same as the state of pk in Cj except for the id being 
replaced with 0. 
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Process p4 Process p7 

procedure Node(6, 0) { 
      1: want6[0] = 0;                                φ1 

2: wait until ((want6[1] == 0)             φ2 
             OR (priority6 == 0));          φ3 
3: want6[0] = 1;                                φ4 
4: if (priority6 == 1) then {                 φ5 
5:       if  (want6[1] == 1) then goto line 1; }      φ6 
6: else wait until (want6[1] == 0);                      φ7 
8: if (6 == 1) then critical section;                 

    else Node(3, 0)      
 
          want3[0] = 0;                          φ8                    

wait until ((want3[1] == 0) OR (priority3 == 0)); 
                          φ9                         φ10 
 
want3[0] = 1;                         φ14 
if (priority3 == 1) then {          φ15 
      if  (want3[1] == 1) then goto line 1; }   φ16 
else wait until (want3[1] == 0);    φ17 
if (3 == 1) then critical section; 

else Node(1, 1) 
 
 
 
 
 
 
 
 
       want1[1] = 0;                          φ25                    

       wait until ((want1[0] == 0) OR (priority1 == 0)); 
                          φ26                         φ27 
 
       want1[1] = 1;                         φ30 
       if (priority1 == 1) then {          φ31 
            if  (want3[1] == 1) then goto line 1; }   φ32 
       else wait until (want3[1] == 0);    φ33 
       if (1 == 1) then critical section;      

 

procedure Node(7,1) { 
       
 
 
 
 
 
 
 
 
 
 
           
     1: want7[1] = 0;                     φ11 

2: wait until ((want7[0] == 0) OR (priority7 == 1)); 
                            φ12                        φ13 
 
 
 
 
 
3: want7[1] = 1;                      φ18 
4: if (priority7 == 0) then {       φ19 
5:       if  (want7[0] == 1) then goto line 1; } φ20 
6: else wait until (want7[0] == 0);            φ21 
8: if (7 == 1) then critical section; 

    else Node(3, 1) 
             want3[1] = 0;                          φ22                    

wait until ((want3[0] == 0) OR (priority3 == 1)); 
                          φ23                         φ24 
 

           wait until ((want3[0] == 0) OR (priority3 == 1)); 
                          φ28                        φ29 

 

a = C0, φ1, C1, φ2, C2, φ3, C3, φ4, C4, φ5, C5, φ6, C6, 
φ7, C7, φ8, C8, φ9, C9, φ10, C10, φ11, C11, φ12, C12, 
φ13, C13, φ14, C14, φ15, C15, φ16, C16, φ17, C17, φ18, 
C18, φ19, C19, φ20, C20, φ21, C21, φ22, C22, φ23, 
C23, φ24, C24, φ25, C25, φ26, C26, φ27, C27, φ28, 
C28, φ29, C29, φ31, C30, φ31, C31, φ32, C32, φ33, 
C33  … 
 
Orange events are steps of Node(3,0) or Node(3,1).  
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Tournament ME: Example Execution 
a = C0, φ1, C1, φ2, C2, φ3, C3, φ4, C4, φ5, C5, φ6, C6, φ7, C7, φ8, C8, φ9, C9, φ10, C10, φ11, C11, φ12, C12, φ13, 
C13, φ14, C14, φ15, C15, φ16, C16, φ17, C17, φ18, C18, φ19, C19, φ20, C20, φ21, C21, φ22, C22, φ23, C23, φ24, 
C24, φ25, C25, φ26, C26, φ27, C27, φ28, C28, φ29, C29, φ31, C30, φ31, C31, φ32, C32, φ33, C33  … 
 

 

 

 

 

 

a3 = D0, π1 , D1, π2, D2, π3, D3, π4, D4, π5, D5, π6, D6, π7, D7, π8, D8, π9, D9, π10, D10, π11, D11, π12, D12 
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Tournament ME Algorithm: Correctness Proof 
Lemma  

For every v, av is an execution of the 2-process algorithm. 

Proof 

• The code of Νode(v,i) and the code of the 2-process algorithm for pi, i = 0,1, are 
the same.  

• The only thing to check is that only one process performs instructions of  
Node(v,i) at a time. We prove this by induction on the level of v, starting at the 
leaves. 

 Base Case: It holds by construction.  

 Induction Hypothesis: Let v be any internal node of the tournament tree. 

 Induction Step: We prove the claim for v. 

– If a process executes instructions of, e.g., Node(v,0), then it is in the critical 
section for v’s left child. 

– By induction hypothesis and the fact that the 2-process algorithm guarantees 
mutual exclusion, only one process at a time is in the critical section for v’s 
left child. -> The claim follows. 

– Similarly, only one process at a time executes instructions of Node(v,1). 
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Tournament ME Algorithm: Correctness Proof 

Lemma 

• For all v, if a is an admissible execution of the tournament algorithm, 
then av is an admissible execution of the 2-process algorithm. 

Proof 

• We prove that in av no process stays in the critical section forever.  

• The proof is performed by induction on the level of v, starting from the 
root.  

 

Theorem 

• The Tournament Algorithm provides mutual exclusion.  

Proof 

• The restriction of any execution to the root of the tree is an admissible 
execution of the 2-process algorithm.  

• Since this algorithm provides mutual exclusion, the Tournament 
algorithm also provides mutual exclusion.  
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The Bakery Algorithm 
for each i, 0 ≤i ≤ n-1: 
 Choosing[i]: it has the value TRUE as long as pi is choosing a number 
 Number[i]: the number chosen by pi 

Code for process pi, 0 ≤i ≤ n-1 

Initially, Number[i] = 0, και 
        Choosing[i] = FALSE, for each i, 0 ≤i ≤ n-1 

Choosing[i] = TRUE; 
Number[i] = max{Number[0], …, Number[n-1]}+1; 
Choosing[i] = FALSE; 
for j = 0 to n-1, j ≠ i, do 
 wait until Choosing[j] == FALSE; 
 wait until ((Number[j] == 0) OR ((Number[j], j) > (Number[i], i))); 

critical section; 

Number[i] = 0; 

remainder section; 
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The Bakery Algorithm 

Lemma 

• In every configuration C of any execution a, if pi is in the critical 
section, and for some k ≠ i, Number[k] ≠ 0, then  
(Number[k],k) > (Number[i],i). 

Sketch of Proof 

• Number[i] > 0 

• pi has finished the execution of the for loop (in particular, the 2nd 
wait statement for j = k). 

• Case 1: pi read that Number[k] == 0 

• Case 2: pi read (Number[k],k) > (Number[i],i) 

 

Theorem 

• The Bakery algorithm ensures the mutual exclusion property. 

 



ΗΥ586 - Panagiota Fatourou 26 

The Bakery Algorithm 
Theorem 

• The Bakery algorithm provides  no lockout. 

Sketch of proof  

• Assume, by the way of contradiction, that there is a starved process.  
• All processes wishing to enter the critical section eventually finish 

choosing a number. 
• Let pj be the process with the smallest (Number[j],j) that is starved. 
• All processes entering the critical section after pj has chosen its 

number will choose greater numbers, and therefore will not enter the 
critical section before pj.  

• Each process pk with Number[k] < Number[j] will enter the critical 
section and exit it. 

• Then, pj will pass all tests in the for loop and enter the critical section. 

Space Complexity 

• The Bakery Algorithm uses 2n single-writer RW registers. The n 
Choosing[j] variables are binary, while the n Number[j] variables 
are unbounded, 0 ≤j ≤ n-1. 
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Bakery Algorithm versus  

Properties of the Bakery Algorithm 

• The Bakery Algorithm satisfies mutual exclusion & 
FIFO. 

• The size of number[i] is unbounded. 

 
Bakery (FIFO, unbounded) 

The Black-White Bakery Algorithm 

FIFO 
Bounded space 
+ one bit 

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent 
Programming 
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The Black-White Bakery Algorithm 
choosing[i] = true; 
mycolor[i] = color; 
number[i] = 1 + max{number[j] | (1  j  n)  (mycolor[j] = mycolor[i])}; 
choosing[i] = false; 
for j = 0 to n { 
      await (choosing[j] == false); 
      if (mycolor[j] == mycolor[i]) 
      then await (number[j] == 0)  (number[j],j)  (number[i],i)   
                       (mycolor[j]  mycolor[i]); 
      else await  (number[j] == 0)  (mycolor[i]  color)   
                       (mycolor[j] == mycolor[i]);  
} 
critical section; 
if (mycolor[i] == black) then color = white; 
else color = black; 
number[i] = 0; 

 
Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent 
Programming 
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Tight space bounds for mutual 
exclusion using atomic registers 

• All mutual exclusion algorithms presented 
so far use at least n shared r/w registers. 
This is not an accident! 
Any mutual exclusion algorithm using only 
shared read-write registers must use at 
least n such registers.  

• This is so:  
– even if we require the basic conditions – 

mutual exclusion and progress, and 
– regardless of the size of the registers.  
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Tight space bounds for mutual 
exclusion using r/w registers – Useful Definitions 

• A configuration C is called idle (or inactive) if no process is in the entry, 
critical or exit section at C.  
 
 
 

• A process p covers some register R at some configuration C, if at its next 
step, p will perform a write into R, overwriting whatever was written in R 
before.  
 
 
 
 

• For any k, 1 ≤ k ≤ n, we say that a configuration C is k-reachable from 
another configuraion C’ if there is an execution fragment starting from C 
and ending at C’ which contains steps only of processes p0, …, pk-1.  

• An execution fragment a is called p-only if p is the only process taking 
steps in a. We say that a is S-only (where S is a set of processes) if only 
processes belonging to  S take steps in a. 
 
 
 

C a 

all processes are in the 
remainder section 

C a 

p’s first step after C is performed 
just before C’ and it is a write into R 

C’ 

C 

a 

only p takes steps in a’ 

C’ 

a’ 

         p-only execution fragment 

k-reachable from 
C 

only pp00, …, , …, ppkk--11  take stepstake steps  
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Lower Bound - Useful Definitions 
• The schedule of an execution a is the sequence of 

process indices that take steps in a (in the same order 
as in a).  

• Example 
– a = C0, i1, C1, i2, C2, i3, … 
– σ(a) = i1, i2, i3, … 

• A configuration C and a schedule σ uniquely determine 
an execution fragment which we denote by exec(C,σ). 

• For each configuration C, let mem(C) = (r0, …, rm-1) be 
the vector of register values in C 

• A configuration C is similar with or indistinguishable 
from some other configuration C’ to some process set S, 
if each process of S is in the same state at C and  C’ and  
mem(C) = mem(C’).  
 
If C is similar with C’ to S, we write C S C’. 

 



ΗΥ586 - Panagiota Fatourou 32 

Lower Bound – Simple Facts 

•  Lemma 1 
Suppose that C is a reachable idle configuration and let 
pi be any process. Then, there is an execution 
fragment starting from C and involving steps of 
process pi only, in which pi enters the critical section. 

 

• Lemma 2 
Suppose that C and C’ are reachable configurations 
that are indistinguishable to some process pi and 
suppose that C’ is an idle configuration. Then, there is 
an execution fragment starting from C and involving 
steps of process pi only, in which pi enters the critical 
section. 
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Lower Bound – Simple Facts 

• Lemma 3 

Suppose that C is a reachable configuration where some 
process pi is in the remainder section. Consider an 
execution fragment α1 starting from C such that (1) α1 
involves steps of pi only and (2) pi is in the critical section in 
the final configuration of α1. Then, α1 contains a write by pi 
to some shared register. 

• Proof 

 α1 
C 

pi is in the 
critical 
section 

pi is in the 
remainder 

section 

C’ 

α2: execution fragment  
not containing steps by pi 

some process pj  pi is in 
the critical section 
(by the progress 
condition) 

C ~j C’,  j  i 

exec(C’, σ(α2)) 

pi and pj are in the 
critical section. 
A contradiction! 

C = <q0, …, qi, …, qn-1, mem(C)> 

C’ = <q0, …, q’i, …, qn-1, mem(C)> 
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Lower Bound 
Definition 
• A register is called single-writer if it can be written by only 

one process. 
 

Theorem 1 (Lower Bound for Single-Writer Multi-Reader R/W 
Registers) 

• If algorithm A solves the mutual exclusion problem for n > 1 
processes, using only single-writer r/w shared registers, then 
A must use at least n shared registers. 

Proof  
• Immediate from Lemma 3 

 
Theorem 2 (Lower Bound for Multi-Writer R/W Registers) 
• If algorithm A solves the mutual exclusion problem for n > 1 

processes, using only r/w shared registers, then A must use at 
least n shared registers. 
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Lower Bound 

Lemma 4 (Generalized Version of Lemma 3)  

• Let C be a reachable configuration in which process pi is in 
the remainder section. Consider an execution fragment α1 
starting from C such that (1) α1 involves steps of pi only and 
(2) pi is in the critical section in the final configuration of α1. 
Then, α1 contains a write by pi to some shared register that 
is not covered by any other process in C. 

Proof 

Left as an exercise! (for Wednesday, 10/10/12) 
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Lower Bound - Two processes 

Theorem 2.1 (Special Case: just two processes) 
• There is no algorithm that solves the mutual exclusion 

problem for two processes using only one R/W shared 
register. 

 
Proof 
Assume, by contradiction, that A is such an algorithm. 
 
Let x be the unique shared r/w register that it uses. 
 
Denote by C0 the initial state of the algorithm. 
 
We construct an execution α that violates mutual 

exclusion!  
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Lower Bound - Two processes 
C0 C C’ 

p0-only p0-only 

process p0 
covers x 

process p0 is in 
the critical 
section C1 

p1-only process p1 is in the 
critical section 

C0 

a0 a0’ 

a1 

C0 C 

p0-only 

process p0 
covers x 

a0 

process p0 
covers x 

process p0 is in 
the critical 
section C1 

p1-only 

C0 a1 

C’1 

p1-only 

process p1 is in the 
critical section 

σ(a1) 
C C’’  

p0-only 

both processes are  
in the critical 
section 

σ(a0’) 
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Lower Bound - Three processes 

Theorem 2.2 (Special Case: three processes) 
• There is no algorithm that solves the mutual exclusion problem for 

three processes using only two R/W shared register. 
 

Proof 
• Assume, by contradiction, that A is such an algorithm. 
• Let x, y be the shared r/w registers that it uses. 
• We construct an execution α that violates mutual exclusion! 
 

• Strategy 
1. Starting from C0, we will maneuver processes p0 and p1 to a point 

where each covers one of the two variables x and y. Moreover, the 
resulting configuration C’ will be indistinguishable to process p2 from 
some reachable idle state.  

2. We run process p2 on its own from C’ until it reaches the critical 
section.  

3. We let each of processes p0 and p1 take a step. Since each covers one 
of the two variables, they can eliminate all traces of process p2’s 
execution.  

4. Then, we let p0 and p1 continue taking steps until one of them enters 
the critical section. 

5. At this point we have two processes in the critical section, which is a 
contradiction! 
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Lower Bound - Three processes 
How can we construct an execution such that at its final configuration C2 
processes p0 and p1 cover both registers x and y, yet C’ is indistinguishable to 
an idle configuration to p2? 

In two out of the three configurations S1, S2, S3, process p0 covers the same 
register. Wlog, assume that in S1 and S3, p0 covers register x. Let S1’ = C0.  
 

If we run p1 alone starting from S1, p1 will enter its critical section since S1 
1 

S0’.  
By Lemma 4, in this execution, p1 writes to y. 

p0 covers some variable 
for the first time while 
executing the entry 
section 

p0 covers some variable for 
the first time while 
executing the current entry 
section 

p0 covers some variable for 
the first time while 
executing the current entry 
section 

a0 (p0-only) a1 (p0-only) a2 (p0-only) 

S0
’ S1 S3 S2 

initial configuration 

S1
’ S2

’ 

first idle config after 
S1 

first idle config after 
S2 

p0 in CS p0 in CS 
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Lower Bound - Three processes 

C’ is the configuration at which (1) p0 and p1 cover x and y, respectively, and  
(2) C’ is indistinguishable from an idle reachable configuration (S2

’) to p2. 

We now apply steps 2,3,4 and 5 of our strategy to derive a contradiction!  

a0 (p0-only) 

S0
’ S1 S3 S2 

S1
’ S2

’ 

p0 covers x 
a3: p1-only 

S4 

p0 covers x 
p1 covers y 
S1 ~0 S4 

a1 (p0-only) a2 (p0-only) 

σ(a1): p0-only 
σ(a2): p0- only 

p0 covers x 
p1 covers y 
C’

 ~0 S3 

C’ ~1 S4 

C’ ~2 S2
’ 

idle config idle config 

C’ 
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Lower Bound – The General Case 

Lemma 5 
Suppose A solves the mutual exclusion problem for 
n > 1 processes using exactly n-1 r/w shared 
registers. Let C be any reachable idle configuration. 
Suppose 1  k  n-1. Then, there are two 
configurations C’ and C’’, each k-reachable from C, 
satisfying the following properties:  
1.  k distinct registers are covered by processes  
     p0, …, pk-1 in C’, 
2.  C’’ is an idle configuraton 
3.  C’ ~i C’’, for all i, k  i  n-1 
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Lower Bound – The General Case 

Proof: By induction on k.  
Base Case: We run process p0 alone until it first covers a shared 

register. Let C’ be the resulting configuration and C’’ = C0. Then, 
all properties hold. 

Induction Step: Natural generalization of the proof of Theorem 
2.2, where similar arguments as those for proving the first step 
of the employed strategy are used. 

 

Proof of Theorem 2: 
• By Lemma 5, there are two configurations C’ and C’’, each (n-1)-

reachable from C0, such that: 
– all n-1 shared r/w registers are covered by processrs p0, ..., pn-2 in 

C’ 
– C’’ is an idle configuration 
– C’ n-1 C’’. 

• There exists an (n-1)-only execution fragment α from C’ in which 
pn-1 ends up in the critical section 

• In α, pn-1 must write into some register which is not covered in C’ 
• However, all n-1 are covered in C’. This is a contradiction! 
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A Tight Upper Bound - The One-Bit Algorithm 

repeat { 
     b[i] = true; j = 1; 
          while (b[i] == true) and (j < i) { 
                if (b[j] == true) {  
  b[i] = false; await (b[j] ==false);  
      } 
                 j = j+1 
           } 
} 
until (b[i] == true); 
for (j = i+1 to n) 
       await (b[j] == false); 
critical section 
b[i] = false; 

Properties of the OneProperties of the One--Bit AlgorithmBit Algorithm  
• Satisfies mutual exclusion and deadlock-freedom 
• Starvation is possible 
• It is not symmetric 
• It uses only n shared bits and hence it is space optimal  

Code of process pi ,    i  {1 ,..., n} 

Transparency made by Gadi Taubenfeld – Synchronization Algorithms and Concurrent Programming 
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